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Abstract

We study high-dimensional estimators with the
trimmed ¢, penalty, which leaves the h largest pa-
rameter entries penalty-free. While optimization
techniques for this nonconvex penalty have been
studied, the statistical properties have not yet been
analyzed. We present the first statistical analyses
for M -estimation, and characterize support recov-
ery, ¢~ and /5 error of the trimmed ¢; estimates
as a function of the trimming parameter h. Our
results show different regimes based on how h
compares to the true support size. Our second
contribution is a new algorithm for the trimmed
regularization problem, which has the same the-
oretical convergence rate as difference of convex
(DC) algorithms, but in practice is faster and finds
lower objective values. Empirical evaluation of ¢,
trimming for sparse linear regression and graphi-
cal model estimation indicate that trimmed ¢; can
outperform vanilla ¢; and non-convex alternatives.
Our last contribution is to show that the trimmed
penalty is beneficial beyond M -estimation, and
yields promising results for two deep learning
tasks: input structures recovery and network spar-
sification.

1. Introduction

We consider high-dimensional estimation problems, where
the number of variables p can be much larger that the num-
ber of observations n. In this regime, consistent estimation
can be achieved by imposing low-dimensional structural
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constraints on the estimation parameters. Sparsity is a pro-
totypical structural constraint, where at most a small set
of parameters can be non-zero. A key class of sparsity-
constrained estimators is based on regularized M -estimators
using convex penalties, with the /1 penalty by far the most
common. In the context of linear regression, the Lasso
estimator (Tibshirani, 1996) solves an ¢; regularized or con-
strained least squares problem, and has strong statistical
guarantees, including prediction error consistency (van de
Geer & Buhlmann, 2009), consistency of the parameter esti-
mates in some norm (van de Geer & Buhlmann, 2009; Mein-
shausen & Yu, 2009; Candes & Tao, 2007), and variable
selection consistency (Meinshausen & Biihlmann, 2006;
Wainwright, 2009a; Zhao & Yu, 2006). In the context of
sparse Gaussian graphical model (GMRF) estimation, the
graphical Lasso estimator minimizes the Gaussian nega-
tive log-likelihood regularized by the ¢; norm of the off-
diagonal entries of the concentration (Yuan & Lin, 2007;
Friedman et al., 2007; Bannerjee et al., 2008). Strong sta-
tistical guarantees for this estimator have been established
(see Ravikumar et al. (2011) and references therein).

Recently, there has been significant interest in non-convex
penalties to alleviate the bias incurred by convex approaches,
including SCAD and MCP penalties (Fan & Li, 2001; Bre-
heny & Huang, 2011; Zhang et al., 2010; Zhang & Zhang,
2012). In particular, Zhang & Zhang (2012) established
consistency for the global optima of least-squares prob-
lems with certain non-convex penalties. Loh & Wainwright
(2015) showed that under some regularity conditions on the
penalty, any stationary point of the objective function will
lie within statistical precision of the underlying parameter
vector and thus provide ¢5- and ¢;- error bounds for any
stationary point. Loh & Wainwright (2017) proved that for
a class of amenable non-convex regularizers with vanish-
ing derivative away from the origin (including SCAD and
MCP), any stationary point is able to recover the parameter
support without requiring the typical incoherence conditions
needed for convex penalties. All of these analyses apply to
non-convex penalties that are coordinate-wise separable.

Our starting point is a family of M -estimators with trimmed
{7 regularization, which leaves the largest h parameters un-
penalized. This non-convex family includes the Trimmed
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Lasso (Gotoh et al., 2017; Bertsimas et al., 2017) as a spe-
cial case. Unlike SCAD and MCP, trimmed regularization
exactly solves constrained best subset selection for large
enough values of the regularization parameter, and offers
more direct control of sparsity via the parameter h. While
Trimmed Lasso has been studied from an optimization per-
spective and with respect to its connections to existing penal-
ties, it has not been analyzed from a statistical standpoint.

Contributions:

e We present the first statistical analysis of M -estimators
with trimmed regularization, including Trimmed Lasso.
Existing results for non-convex regularizers (Loh &
Wainwright, 2015; 2017) cannot be applied as trimmed
regularization is neither coordinate-wise decomposable
nor “ameanable”. We provide support recovery guar-
antees, /., and /5 estimation error bounds for general
M -estimators, and derive specialized corollaries for
linear regression and graphical model estimation. Our
results show different regimes based on how the trim-
ming parameter h compares to the true support size.

e To optimize the trimmed regularized problem we de-
velop and analyze a new algorithm, which performs
better than difference of convex (DC) functions opti-
mization (Khamaru & Wainwright, 2018).

e Experiments on sparse linear regression and graphical
model estimation show ¢; trimming is competitive with
other non-convex penalties and vanilla ¢; when h is
selected by cross-validation, and has consistent benefits
for a wide range of values for h.

e Moving beyond M -estimation, we apply trimmed reg-
ularization to two deep learning tasks: (i) recovering in-
put structures of deep models and (ii) network pruning
(a.k.a. sparsification, compression). Our experiments
on input structure recovery are motivated by Oymak
(2018), who quantify complexity of sparsity encour-
aging regularizers by introducing the covering dimen-
sion, and demonstrates the benefits of regularization
for learning over-parameterized networks. We show
trimmed regularization achieves superior sparsity pat-
tern recovery compared to competing approaches. For
network pruning, we illustrate the benefits of trimmed
£1 over vanilla ¢; on MNIST classification using the
LeNet-300-100 architecture. Next, motivated by re-
cently developed pruning methods based on varia-
tional Bayesian approaches (Dai et al., 2018; Louizos
et al., 2018), we propose Bayesian neural networks
with trimmed ¢; regularization. In our experiments,
these achieve superior results compared to compet-
ing approaches with respect to both error and sparsity
level. Our work therefore indicates broad relevance of
trimmed regularization in multiple problem classes.

2. Trimmed Regularization

Trimming has been typically applied to the loss function
L of M-estimators. We can handle outliers by trimming
observations with large residuals in terms of £: given a
collection of n samples, D = {Z1, ..., Z,}, we solve

n n
minimize w; L(0;Z;) st Z w; =n—h,
0cQ,we{0,1}n 4 :
=1 =1
where (2 denotes the parameter space (e.g., RP for linear
regression). This amounts to trimming h outliers as we learn
0 (see Yang et al. (2018) and references therein).

In contrast, we consider here a family of M -estimators
with trimmed regularization for general high-dimensional
problems. We trim entries of @ that incur the largest penalty
using the following program:

minimize

p
0:D)+ \, 105
0e0r wel01]r L(0;D) + ij| J|

j=1
s.t. 1Tw>p—h. (D

Defining the order statistics of the parameter [0y >
102)] > ... > [0, we can partially minimize over w
(setting w; to 0 or 1 based on the size of |6;|), and rewrite
the reduced version of problem (1) in 6 alone:

minimize £(0;D) + A\, R(0;h) (2)
0c

where the regularizer R(6;h) is the smallest p —
h absolute sum of 6 > ni1 10l The con-
strained version of (2) is equivalent to minimizing a
loss subject to a sparsity penalty (Gotoh et al., 2017):
minimizegeq £(6; D) s.t. ||0]|o < h. For statistical analy-
sis, we focus on the reduced problem (2). When optimizing,
we exploit the structure of (1), treating weights w as auxil-
iary optimization variables, and derive a new fast algorithm
with a custom analysis that does not use DC structure.

We focus on two key examples: sparse linear models and
sparse graphical models. We also present empirical results
for trimmed regularization of deep learning tasks to show
that the ideas and methods generalize well to these areas.

Example 1: Sparse linear models. In high-dimensional
linear regression, we observe n pairs of a real-valued target
y; € R and its covariates «; € RP? in a linear relationship:

y=X0"+e 3)

Here, y € R", X € R"*? and € € R" is a vector of n
independent observation errors. The goal is to estimate the
k-sparse vector 0* € RP. According to (2), we use the least
squares loss function with trimmed ¢; regularizer (instead
of the standard ¢; norm in Lasso (Tibshirani, 1996)):

I 2
miglimize EHXO - yH2 + A R(O; 1). 4)
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Example 2: Sparse graphical models. GGMs form a
powerful class of statistical models for representing dis-
tributions over a set of variables (Lauritzen, 1996), using
undirected graphs to encode conditional independence con-
ditions among variables. In the high-dimensional setting,
graph sparsity constraints are particularly pertinent for esti-
mating GGMs. The most widely used estimator, the graphi-
cal Lasso minimizes the negative Gaussian log-likelihood
regularized by the ¢; norm of the entries (or the off-diagonal
entries) of the precision matrix (see Yuan & Lin (2007);
Friedman et al. (2007); Bannerjee et al. (2008)). In our
framework, we replace /E\ 1 norm with its trimmed version:
minimize@esi+ trace(Z@) —log det (@) FAR(Opr; 1)
where Sf_ 4 denotes the convex cone of symmetric and
strictly positive definite matrices, R(®y; i) does the small-
est p(p — 1) — h absolute sum of off-diagonals.

Relationship with SLOPE (OWL) penalty. Trimmed
regularization has an apparent resemblance to the SLOPE
(or OWL) penalty (Bogdan et al., 2015; Figueiredo &
Nowak, 2014), but the two are in fact distinct and pursue
different goals. Indeed, the SLOPE penalty can be written
as y o, wi| By for a fixed set of weights wy > wy >
-+ > wp 2> 0 and where |B(1)| > ‘ﬁ(2)| > e > |,3(p)|
are the sorted entries of 3. SLOPE is convex and penal-
izes more those parameter entries with largest amplitude,
while trimmed regularization is generally non-convex, and
only penalizes entries with smallest amplitude; the weights
are also optimization variables. While the goal of trimmed
regularization is to alleviate bias, SLOPE is akin to a sig-
nificance test where top ranked entries are subjected to a
“tougher” threshold, and has been employed for clustering
strongly correlated variables (Figueiredo & Nowak, 2014).
Finally from a robust optimization standpoint, Trimmed reg-
ularization can be viewed as using an optimistic (min-min)
model of uncertainty and SLOPE a pessimistic (min-max)
counterpart. We refer the interested reader to Bertsimas et al.
(2017) for an in-depth exploration of these connections.

Relationship with ¢, regularization. The ¢y norm can
be written as |0 = Z?Zl z; with reparameterization
0; = zjéj such that z; € {0,1} and éj # 0. Louizos et al.
(2018) suggest a smoothed version via continuous relaxation
on z in a variational inference framework. The variable z
plays a similar role to w in our formulation in that they both
learn sparsity patterns. In Section 5 we consider a Bayesian
extension of the trimmed regularization problem where 0
only is be treated as Bayesian, since we can optimize w
without any approximation, in contrast to previous work
which needs to relax the discrete nature of z.

3. Statistical Guarantees of M -Estimators
with Trimmed Regularization

Our goal is to estimate the frue k-sparse parameter vector
(or matrix) 6* that is the minimizer of expected loss: 6* :=
argming.o, E[£(0)]. We use S to denote the support set of
6*, namely the set of non-zero entries (i.e., k = |S|). In this
section, we derive support recovery, ¢, and {» guarantees
under the following standard assumptions:

(C-1) The loss function L is differentiable and convex.

(C-2) (Restricted strong convexity on 6) Let D be the
possible set of error vector on the parameter 6. Then, for
all A:=60—9* €D, <vz(9* FA)—VL(6%), A> >

K1l| A3 — 71222 || A2, where £, is a “curvature” pa-

rameter, and 7 is a “tolerance” constant.

In the high-dimensional setting (p > n), the loss function £
cannot be strongly convex in general. (C-2) imposes strong
curvature only in some limited directions where the ratio
”2“; is small. This condition has been extensively studied
and known to hold for several popular high dimensional
problems (see Raskutti et al. (2010); Negahban et al. (2012);
Loh & Wainwright (2015) for instance). The convexity
condition of £ in (C-1) can be relaxed as shown in (Loh
& Wainwright, 2017). For clarity, however, we focus on
convex loss functions.

We begin with /., guarantees. We use a primal-dual witness
(PDW) proof technique, which we adapt to the trimmed
regularizer R(0; h). The PDW method has been used to
analyze the support set recovery of ¢; regularization (Wain-
wright, 2009¢; Yang et al., 2015) as well as decomposable
and amenable non-convex regularizers (Loh & Wainwright,
2017). However, the trimmed regularizer R(0; h) is nei-
ther decomposable nor amenable, thus the results of Loh
& Wainwright (2017) cannot be applied. The key step of
PDW is to build a restricted program: Let 7" be an arbi-
trary subset of {1,...,p} of size h. Denoting U := SUT
and V' := S — T, we consider the following restricted pro-
gram: 0 € argmingcpu, gco L£(0)+ A, R(0; h) where we
fix §j = 0 for all j € U°. We further construct the dual
variable Z to satisfy the zero sub-gradient condition

VL(O) + Az =0 (5)

where z = (0, 2y, Zy<) for 0 = (éT,év,OUc) (after re-
ordering indices properly) and 2y € 3||§V |l1. We suppress
the dependency on T in Z and 6 for clarity. In order to
derive the final statement, we will establish the strict dual
feasibility of Z<, i.e., |2y« |lso < 1.

The following theorem describes our main theoretical result
concerning any local optimum of the non-convex program
(2). The theorem guarantees under strict dual feasibility
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that non-relevant parameters of local optimum have smaller
absolute values than relevant parameters; hence relevant
parameters are not penalized (as long as h > k).

Theorem 1. Consider the problem with trimmed regularizer
(2) that satisfies (C-1) and (C-2). Let 0 be an any local
minimum of (2) with a sample size n > 277;1(/6 + h)logp
and A, > 2||VL(0%)||s0- Suppose that:

(a) given any selection of T C {1,...,p} s.t. |T| = h,
the dual vector Z from the PDW construction (5) satisfies
the strict dual feasibility with some 6 € (0, 1], ||Zye||oo <
1 — d where U is the union of true support S and T,

(b) letting Q := fol V2L(6* +4(0— 6*))dt, the minimum
absolute value 0}, = minjcs |07 is lower bounded

min
by 30 = [(Quu) ' VLO ) ullos + Al (Que) ™ oo
where || - ||o denotes the maximum absolute row sum of
the matrix.

Then, the following properties hold:
(1) For every pair j1 € S, jo € S¢, we have |0, | > |0,,],

(2) If h <k, all j € S¢ are successfully estimated as zero
and ||0 — 0* || is upper bounded by

1(@ss) VL@ )s]l .+ Aall (@55) e ©

(3) If h > k, at least the smallest (in absolute value) p — h
entries in S€ are estimated exactly as zero and we have a
simpler (possibly tighter) bound:

16 - 0"l < [[(Qpa) "' VLO ). D

where U is defined as the h largest absolute entries of 0
including S.

Remarks. The above theorem will be instantiated for the
specific cases of sparse linear and sparse graphical models
in subsequent corollaries (for which we will bound terms
involving VL(6*), z and Q). Though conditions (a) and (b)
in Theorem 1 seem apparently more stringent than the case
where h = 0 (vanilla Lasso), we will see in corollaries that
they are uniformly upper bounded for all selections, under
the asymptotically same probability as h = 0.

Note also that for ~ = 0, we recover the results for the
vanilla #; norm. Furthermore, by the statement (1) in the
theorem, if h < k, U only contains relevant feature indices
and some relevant features are not penalized. If h > k, U
includes all relevant indices (and some non-relevant indices).
In this case, the second term in (6) disappears, but the term
1(Qs5) _IVE(B*)ﬁ | increases as |U| gets larger. More-
over, the condition that n =< (k + h) log p will be violated
as h approaches p. While we do not know the true sparsity
k a priori in many problems, we implicitly assume that we
can set h < k (i.e., by cross-validation).

Now we turn to /5 bound under the same conditions:

Theorem 2. Consider the problem with trimmed regularizer
(2) where all conditions in Theorem 1 hold. Then, for any
local minimum of (2), the parameter estimation error in
terms of U5 norm is upper bounded: for some constant C,

Chn (\/E/Q VRS h) ifh <k

16 — 67| <
CxVh)2

otherwise

Remarks. The benefit of using trimmed ¢; over standard
¢ can be clearly seen in Theorem 2. Even though both
have the same asymptotic convergence rates (in fact, stan-
dard ¢; is already information theoretically optimal in many
cases such as high-dimensional least squares), trimmed ¢;

has a smaller constant: w for standard ¢, (h = 0)

Vs. C)‘#\/E for trimmed ¢; (h = k). Comparing with non-
convex (u,y)-amenable regularizers SCAD or MCP, we
can also observe that the estimation bounds are asymptot-
ically the same: [0 — %[0 < ¢[|(Qss) VL") s]ls
and Hg — 0%||2 < e\,Vk. However, the constant ¢ here
for those regularizers might be too large if 4 is not small
enough, since it involves ﬁ term (Vs. Kil for the trimmed
¢1.) Moreover amenable non-convex regularizers require
the additional constraint ||@]|; < R in their optimization
problems for theoretical guarantees, along with further as-
sumptions on 8* and tuning parameter R, and the true pa-
rameter must be feasible for their modified program (see
Loh & Wainwright (2017)). The condition ||0*||; < R is
stringent with respect to the analysis: as p and k increase, in
order for R to remain constant, ||6*| . must shrink to get
satisfactory theoretical bounds. In contrast, while choosing
the trimming parameter h requires cross-validation, it is
possible to set h on a similar order as k.

We are now ready to apply our main theorem to the popular
high-dimensional problems introduced in Section 2: sparse
linear regression and sparse graphical model estimation.
Due to space constraint, the results for sparse graphical
models are provided in the supplementary materials.

3.1. Sparse Linear Regression

Motivated by the information theoretic bound for arbitrary
methods, all previous analyses of sparse linear regression
assume n > cok log p for sufficiently large constant cy. We
also assume n > c¢o max{k, h}log p, provided h =< k.

Corollary 1. Consider the model (3) where € is sub-
Gaussian. Suppose we solve (4) with the selection of:

logp :
(a) An = cen/ == for some constant c; depending only
on the sub-Gaussian parameters of X and €
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(b) h satisfying: for any selection of T C [p] s.t. |T| = h,

~ ~ ~ —1
1ol e oo (Fov) ] <0

max {)\max(fUCU“)y Amax((fUU)il) } S Cy (8)

ey T . . .
where T = X nX is the sample covariance matrix and

Amax I8 the maximum singular value of a matrix.

log p
hin = C1\/ ot + AnCoo for some

constant cj. Then with high probability at least 1 —
¢ exp(—cs log p), any local minimum 0 of (4) satisfies

Further suppose 10*

(a) for every pair j1 € S, jo € S¢, we have |§j1| > |0~ ,

(b) ifh <k, all j € S¢are successfully estimated as zero
and we have

~ 1
10 =6 loe < e19/ =2F + Aew,
16 — 6> < cu/—oip (VE/2+VE=R) .

(c) if h > k, at least the smallest p — h entries in S¢ have
exactly zero and we have

log hlo
1= 6" lloe < e/ =2E, 6672 < 5/ —2E
n

Remarks. The conditions in Corollary 1 are also used in
previous work and may be shown to hold with high proba-
bility via standard concentration bounds for sub-Gaussian
matrices. In particular (8) is known as an incoherence condi-
tion for sparse least square estimators (Wainwright, 2009b).
In the case of vanilla Lasso, estimation will fail if the in-
coherence condition is violated (Wainwright, 2009b). In
contrast, we confirm by simulations in Section 5 that the
trimmed ¢; problem (4) can succeed even when this condi-
tion is not met. Therefore we conjecture that the incoherence
condition could be relaxed in our case, similarly to the case
of non-convex p-amenable regularizers such as SCAD or
MCP (Loh & Wainwright, 2017). Proving this conjecture
is highly non-trivial, since our penalty is based on a sum
of absolute values, which is not y-amenable; we leave the
proof for future work.

4. Optimization

We develop and analyze a block coordinate descent algo-
rithm for solving objective (1), which is highly nonconvex
problem because of the coupling of w and 6 in the regu-
larizer. The block-coordinate descent algorithm uses sim-
ple nonlinear operators: projg(z) := arg minyes 5|z —
w||? and Prox;, g (. ,k+1)(2) = arg ming 277%“0 —z|?+

?:1 wf+1|9j |. Adding a block of weights w decouples
the problem into simply computable pieces. Projection onto

Algorithm 1 Block Coordinate Descent for (1)

Input: A\, 7, and 7.

Initialize: 6°, w°, and k& = 0.

while not converged do
wF !« projs[wk — 77 (6%))
0" = Prox, s g (. ety [0F — NVL(OF)]
k+—k+1

end while

Output: %, w*

a polyhedral set is straightforward, while the prox operator
is a weighted soft thresholding step.

We analyze Algorithm 1 using the structure of (1) instead
of relying on the DC formulation for (2). The convergence
analysis is summarized in Theorem 3 below. The analysis
centers on the general objective function

min F (0, w)

0, w

)+ A Z wiri(0 w|S), (9)

where §(w|S) enforces w € S. We let

r(0) = [r1(z) rp(a)]” (w, 7(6)).

In the case of trimmed /7, r is the ¢; norm, 7;(z) = ||
and S encodes the constraints 0 < w; < 1, 17w = p — h.

7R(Ov w) =

We make the following assumptions.

Assumption 1. (a) L is a smooth closed convex function
with an L y-Lipchitz continuous gradient; (b) r; are convex,
and L.,.-Lipchitz continuous and (c) S is a closed convex set

and F' is bounded below.

In the non-convex setting, we do not have access to dis-
tances to optimal iterates or best function values, as we do
for strongly convex and convex problems. Instead, we use
distance to stationarity to analyze the algorithm. Objec-
tive (9) is highly non-convex, so we design a stationarity
criterion, which goes to 0 as we approach stationary points.
The analysis then shows Algorithm 1 drives this measure
to 0, i.e. converges to stationarity. In our setting, every
stationary point of (1) corresponds to a local optimum in w
with 0 fixed, and a local optimum in 6 with w fixed.

Definition 1 (Stationarity). Define the stationarity condi-
tion T'(0,w) by
T(0, w) = min{||u|® + ||v||* :u € O F (0, w),

v € 0, F(0,w)}. (10

The pair (0, w) is a stationary point when T'(0,w) = 0.
Theorem 3. Suppose Assumptions 1 (a-c) hold, and define
the quantity G as follows:

k+1 —wk||2.

L A
Gr = 510"+ — 0¥ + ~aw
T
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With step size n = 1/ Ly, we have,

K
. 1 1 1 "
mkmngE;g;CSE(F(@ )—F™)

T(0k+17 wk+1)

IN

and therefore

_ A+ 2L /Ly

min {T(0%,w")} < 7

1 *
min (F(6%) — F™).
The trimmed ¢; problem satisfies Assumption 1 and hence
Theorem 3 holds. Algorithm 1 for (1) converges at a sublin-
ear rate measured using the distance to stationarity 7' (10),
see Theorem 3. In the simulation experiments of Section 5,
we will observe that the iterates converge to very close points
regardless of initializations. Khamaru & Wainwright (2018)
use similar concepts to analyze their DC-based algorithm,
since it is also developed for a nonconvex model.

We include a small numerical experiment, comparing Al-
gorithm 1 with Algorithm 2 of (Khamaru & Wainwright,
2018). The authors proposed multiple approaches for DC
programs; the prox-type algorithm (Algorithm 2) did partic-
ularly well for subset selection, see Figure 2 of (Khamaru
& Wainwright, 2018). We generate Lasso simulation data
with variables of dimension 500, and 100 samples. The
number of nonzero elements in the true generating variable
is 10. We take h = 25, and apply both Algorithm 1 and
Algorithm 2 of (Khamaru & Wainwright, 2018). Initial
progress of the methods is comparable, but Algorithm 1
continues at a linear rate to a lower value of the objective,
while Algorithm 2 of (Khamaru & Wainwright, 2018) ta-
pers off at a higher objective value. We consistently observe
this phenomenon for a broad range of settings, regardless
of hyperparameters; see convergence comparisons in Fig-
ure 1 for A € {0.5,5,20}. This comparison is very brief;
we leave a detailed study comparing Algorithm 1 with DC-
based algorithms to future algorithmic work, along with
further analysis of Algorithm 1 and its variants under the
Kurdyka-Lojasiewicz assumption (Attouch et al., 2013).

S. Experimental Results

Simulations for sparse linear regression. We design
four experiments. For all experiments except the third one
where we investigate the effect of small regularization pa-
rameters, we choose the regularization parameters via cross-
validation from the set: log;q A € {—3.0,—-2.8,...,1.0}.
For non-convex penalties requiring additional parameter,
we just fix their values (2.5 for MCP and 3.0 for SCAD re-
spectively) since they are not sensitive to results. When we
generate feature vectors, we consider two different covari-
ance matrices of normal distribution as introduced in Loh &

) 5 N . 107!
& 10 \ [
I \ o :
& 1010 N\ | =107 =107
\ .
|

0 2000 1000 0 1000 0 500 1000
Iteration Iteration Tteration

(@ \A=05 b A=5 (©) A =20

Figure 1. Convergence of Algorithm 1 (blue solid) vs. Algorithm 2
of (Khamaru & Wainwright, 2018) (orange dot). We see consistent
results across parameter settings.
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Figure 2. Results for the incoherent case of the first experiments.
(a)~(c): Probability of sucessful support recovery for Trimmed
41, SCAD, MCP, and standard ¢; as sample size n increases. For
(d), (e), we adopt the high-dimensional setting with (n,p, k) =
(160,256, 16), and use 50 random initializations.

Wainwright (2017) to see how regularizers are affected by
the incoherence condition.

In our first experiment, we generate i.i.d. observations from
x; ~ N(0, Ms(6)) where M(0) = 0117 + (1 —6)1, with
6 = 0.7.! This choice of Ms(f) satisfies the incoherence
condition Loh & Wainwright (2017). We give non-zero
values 3* with the magnitude sampled from N (0,52), at k
random positions, and the response variables are generated
by y; = 1 8* + €;, where ¢; ~ N(0,1?). In Figure 2 (a)
~ (c), we set (p, k) = (128, 8), (256, 16), (512, 32) and in-
crease the sample size n. The probability of correct support
recovery for trimmed Lasso is higher than baselines for all
samples in all cases. Figure 2(d) corroborates Corollary 1:
any local optimum with trimmed ¢; is close to points with
correct support regardless of initialization; see comparisons
against baselines with same setting in Figure 2(e).

In the second experiment, we replace M () with M, (),
which does not satisfy the incoherence condition.? Trimmed
still outperforms comparison approaches (Figure 3). Lasso

"M and M as defined in Loh & Wainwright (2017).
2 M, (6) is a matrix with 1’s on the diagonal, s in the first k
positions of the (k + 1) row and column, and 0’s elsewhere.
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Figure 4. Plots for third and last experiments. (a): Trimmed Lasso
versus standard one in a small regime. We set h = [0.05p]. (b),

(¢): Performance of the trimmed Lasso as the value of A varies.

is omitted from Figure 3(e) as it always fails in this setting.

Our next experiment compares Trimmed Lasso against
vanilla Lasso where both A and true non-zeros are small:
log\ € {-3.0,—-28,...,—1.0} and 3* ~ N(0,0.82).
When the magnitude of 8* is large, standard Lasso tends
to choose a small value of A to reduce the bias of the esti-
mate while Trimmed Lasso gives good performance even
for large values of A as long as h is chosen suitably. Fig-
ure 4(a) also confirms the superiority of Trimmed Lasso in
a small regime of A\ with a proper choice of h.

In the last experiment, we investigate the effect of choosing
the trimming parameter h. Figure 4(b) and (c) show that
Trimmed ¢; outperforms if we set h = k (note (p — h)/p =
0.94). As h | 0 (when (p — h)/p = 1), the performance
approaches that of Lasso, as we can see in Corollary 1.

Additional experiments on sparse Gaussian Graphical Mod-
els are provided as supplementary materials.

Input Structure Recovery of Compact Neural Networks.
We apply the Trimmed ¢; regularizer to recover input struc-
tures of deep models. We follow Oymak (2018) and con-
sider the regression model y; = 17o(W*x;) with input
dimension p = 80, hidden dimension z = 20, and ReLU

n =200 \\_\ B VL
n = 500 \‘\_\ ‘\_\_
n = 1000 \-‘\‘\ E\R\g .

True Weight Lo

\R_‘hﬂ_
..Ehﬂ-

Trimmed ¢,
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n = 1500 \N N :
.. :
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‘x____‘\

Trimmed ¢
(b) with random initialization

Figure 5. Results for sparsity pattern recovery of deep models.

activation o (-). We generate i.i.d. data x; ~ N(0, I,,) and
W* € R**P such that ith row has exactly 4 non-zero en-
tries from N(0, £) to ensure that E[||W*z||7 | = [jx[|7,
atonly 4(¢ — 1) + 1 ~ 44 positions. For ¢y and ¢; regular-
izations, we optimize W using a projected gradient descent
with prior knowledge of ||[W*(|o and ||[W*||1, and we use
Algorithm 1 for trimmed ¢; regularization with h = 4z and
(A, 7) = (0.01,0.1) obtained by cross-validation. We set
the step size n = 0.1 for all approaches. We consider two
sets of simulations with varying sample size n where the
initial W, is selected as (a) a small perturbation of W* and
(b) at random, as in Oymak (2018). Figure 5 shows the re-
sults where black dots indicate nonzero values in the weight
matrix, and we can confirm that Trimmed ¢; outperforms
alternatives in terms of support recovery for both cases.

Pruning Deep Neural Networks. Several recent stud-
ies have shown that neural networks are highly over-
parameterized, and we can prune the weight parame-
ters/neurons with marginal effect on performance. To-
ward this, we consider trimmed regularization based net-
work pruning. Suppose we have deep neural networks
with L hidden layers. Let n; be the number of neurons
in the layer h;. The parameters we are interested in are

{6,,b,}! for 6, € R™-1X™ and b, € R™
where hg is the input feature  and hr; is the output
y. Then, for I = ,L, hy = ReLU(h;_16; + b;).
Since the edge-wise pruning will not give actual benefit
in terms of computation, we prune unnecessary neurons
through group-sparse encouraging regularizers. Specifically,
given the weight parameter 8 := 6; between h;_; and
h;, we consider the group norm extension of trimmed /1 :

Ri(0,w) =AY 75wy 02 +---+ 607, with the con-

straint of 17w = n;_; — h. Moreover, we can naturally
make an extension to a convolutional layer with encouraging
activation map sparsity as follows. If 0 is a weight param-
eter for 2-dimensional convolutional layer (most generally
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Table 1. Results on MNIST using LeNet-300-100.

Method Pruned Model  Error (%)
No Regularization 784-300-100 1.6
grp 41 784-241-67 1.7
grp 41, b = half of original 392-150-50 1.6

Table 2. Results on MNIST classification for LeNet 300-100 with
Bayesian approaches. h = o means that the trimming parameter
h is set to the same sparsity level of o, and A sep. indicates that
different \ values are employed on each layer.

Method Pruned Model  Error (%)
lo (Louizos et al., 2018) 219-214-100 14
Lo, A sep. (Louizos et al., 2018) 266-88-33 1.8
Bayes grp 41,,,. h = 4o 219-214-100 1.4
Bayes grp £1,;,,, h = £o, ) sep. 266-88-33 1.6
Bayes grp 41, b < Lo, A sep. 245-75-25 1.7

Table 3. Results on MNIST classification for LeNet-5-Caffe with
Bayesian approaches.

Method Pruned Model  Error (%)
£o (Louizos et al., 2018) 20-25-45-462 0.9
Lo, A sep. (Louizos et al., 2018) 9-18-65-25 1.0
Bayes grp {1,;,,, b < {o 20-25-45-150 0.9
Bayes grp £1,,,, h = Yo, A sep. 9-18-65-25 1.0
Bayes grp {1, b < {o, X sep. 8-17-53-19 1.0

used) with @ € RCouxCnxXHXW ‘the trimmed regularization
term that induces activation map-wise sparsity is given by

Ri(6,w) ==\ ZJC;“‘I WiA/ Dk 07 i fOT all possible
indices (m, n, k). Finally, we add all penalizing terms to a

loss function to have L(W; D) +ZIL:+11 MNR(0;, w;) where
we allow different hyperparameters \; and h; for each layer.

In Table 1, we compare trimmed group ¢; regularization
against vanilla group ¢; on MNIST dataset using LeNet-
300-100 architecture (Lecun et al., 1998). Here, we set the
trimming parameter h to half sparsity level of the original
model. For the vanilla group ¢, we need larger \ values to
obtain sparser models, for which we pay a significant loss of
accuracy. In contrast, we can control the sparsity level using
trimming parameters h with little or no drop of accuracy.

Most algorithms for network pruning recently proposed are
based on a variational Bayesian approach (Dai et al., 2018;
Louizos et al., 2018). Motivated by learning sparse struc-
tures via smoothed version of /o norm (Louizos et al., 2018),
we propose a Bayesian neural network with trimmed reg-
ularization where we regard only 6 as Bayesian. Inspired
by a relation between variational dropout and Bayesian
neural networks (Kingma et al., 2015), we specifically
choose a fully factorized Gaussian as a variational distri-
bution, g¢ o (0i,;) = N(¢i j, i j¢7 ;). to approximate the

true posterior and leave w to directly learn sparsity pat-
terns. Then the problem is cast to maximizing correspond-
ing evidence lower bound (ELBO), E,,  [L(WV;D)] —
KL(¢p,a(W)|lp(W)). Combined with trimmed ¢; regu-
larization, the objective is

L+1
Byya0) [ — LOW;D) + Y NRi(61,wr)
=1

+ KL(gp.a(W)llp(WV)) ~ (11)

which can be interpreted as a sum of expected loss and
expected trimmed group ¢; penalizing term. Kingma &
Welling (2014) provide the efficient unbiased estimator of
stochastic gradients for training (¢, «¢), via the reparam-
eterization trick to avoid computing gradient of sampling
process. In order to speed up our method, we approximate
expected loss term in (11) using a local reparameterization
trick (Kingma et al., 2015) while the standard reparameteri-
zation trick is used for the penalty term.

Trimmed group ¢; regularized Bayesian neural networks
have smaller capacity with less error than other baselines
(Table 2). Our model has lower error rate and better sparsity
even for convolutional network, LeNet-5-Caffe’ (Table 3).*

The code is available at https://github.com/
abcdxyzpgrst/Trimmed_Penalty.

6. Concluding Remarks

In this work we studied statistical properties of high-
dimensional M -estimators with the trimmed ¢; penalty, and
demonstrated the value of trimmed regularization compared
to convex and non-convex alternatives. We developed a
provably convergent algorithm for the trimmed problem,
based on specific problem structure rather than generic DC
structure, with promising numerical results. A detailed
comparison to DC based approaches is left to future work.
Going beyond M -estimation, we showed that trimmed reg-
ularization can be beneficial for two deep learning tasks:
input structure recovery and network pruning. As future
work we plan to study trimming of general decomposable
regularizers, including ¢ /¢, norms, and further investigate
the use of trimmed regularization in deep models.
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