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1. Proofs of Theorem 1 and 2
In this section we present the proofs of main theorems as
described in the main text. We will first reintroduce some
notations for the reader’s convenience.

Notation Let λmax(A) and λmin(A) denote the largest and
smallest non-zero singular values of the matrix A. We use
f(·) to denote the density of Q with respect to Lebesgue
measure on the K − 1 dimensional subspace containing
the simplex B. Let g(·) be the density of P with respect
to the Lebesgue measure on the K − 1 dimensional space
containing the eigenvectors of ΣKtot, where ΣKtot is best K −
1-rank approximation matrix of Σtot := BSBT + ε0ID and
ε0ID is a uniform upper bound on Cov[xi | θ]. Let Σ be the
population covariance matrix with ΣK as the best K − 1
rank approximation. Note that

Σ = Cov(Xi) = E[Cov(Xi|µi)] + Cov(E[Xi|µi])
≤ ε0ID +BSBT . (1)

The following is a standard assumption to ensure the consis-
tency of the k-means procedure embedded in our algorithm:

(a.1) Pollard’s regularity criterion (PRC): The Hessian ma-
trix of the function c 7→ QφBSBT (·, c) evaluated at c∗

for all optimizer c∗ of QφBSBT (·, c) is positive defi-
nite, with minimum eigenvalue λ0 > 0.

Theorem 1. Consider the noiseless setting, i.e., F (· | µ) =
δµ. Suppose that B = Conv(β1, . . . , βK) is the true sim-
plex, while (β1n, . . . , βKn) are the vertex estimates ob-
tained by VLAD algorithm. Moreover, we assume that
the error in the Monte Carlo estimates of the extension pa-
rameters is negligible. Provided that condition (a.1) holds,
then

min
π
‖(βπ(1)n, . . . , βπ(K)n)− (β1, . . . , βK)‖ = OP(n−1/2)
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where the minimization is taken over all permutations π of
{1, . . . ,K}.

Proof. First, we note that under the assumption of the
noiseless setting, by following along the lines of the proof
of Lemma 2 in main text, it can be seen that if c∗ =
(c∗1, . . . , c

∗
K) optimize Eq. (1) in the main text and vk’s are

such that (v1, . . . , vK) form the empirical CVT centroids
of ∆K−1, then c∗i = BPvi + c0, where c0 is the population
centroid.

Next, the convergence of the empirical CVT centroids to
the corresponding population CVT centroids occurs at rate
OP( 1√

n
) rate following Pollard (1982). The consistency of

the extreme points of the Dirichlet Simplex Nest follows by
the continuous mapping theorem since

‖Pek‖2
‖Pvk‖2

=
‖ek − 1

K1K‖2
‖vk − 1

K1K‖2
=
‖B(ek − 1

K1K)‖2
‖B(vk − 1

K1K)‖2
, (2)

where e1, . . . , eK are the canonical basis vectors on RK
denoting the vertices of ∆K−1.

Finally, the knowledge of α enables us to compute
‖ek− 1

K 1K‖2
‖vk− 1

K 1K‖2
. This concludes the proof.

It is considerably more challenging to establish the error
bounds for our algorithm in the general setting where the
observations are noisy. First, let us define the following:

CPn
={c∗ : c∗ = argmin

c∈RkD

Pnφ(Σn)K (·, c)

= argmin
c∈RkD

1

n

n∑
i=1

φ(Σn)K (X̃i, c)},

CQ ={c∗ : c∗ = argmin
c∈RkD

QφBSBT (·, c)}.

Recall the following assumptions from the main text:

(a.2) The Hessian matrix of the function c 7→ Pφ(Σ)K (·, c)
evaluated at c∗ for all optimizer c∗ of Pφ(Σ)K (·, c) is
uniformly positive definite with minimum eigenvalue
bounded below from some λ0 > 0, for all (Σ)K such
that (Σ−BSBT ) ≤ ε̃ID, for some ε̃ > 0.
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(b) There exists ε0 > 0 such that ε0ID − Conv(X|θ) is
positive semi-definite uniformly over θ ∈ ∆K−1.

(c) There exists M0 such that for all M > M0,∫
B(
√
M,c0)c

‖x− c0‖22g(x)dx ≤ k1

M
,

for some universal constant k1, where B(
√
M, c0) is a

ball of radius
√
M around the population centroid, c0.

The assumptions (b) and (c) are very general assumptions
and satisfied by a vast array of noise distributions, espe-
cially those with subexponential tails. In particular, the
noise distributions considered in this work all satisfy these
assumptions.

We restate the second main theorem of the paper.

Theorem 2. Suppose that B = Conv(β1, . . . , βK) is the
true simplex, while (β1n, . . . , βKn) are the vertex estimates
obtained by VLAD algorithm. Assume the error in the
Monte Carlo estimates of the extension parameter is neg-
ligible. Provided that conditions (a.2), (b) and (c) hold,
then

minπ ‖(βπ(1)n, . . . , βπ(K)n)− (β1, . . . , βK)‖2 =

O

(√
ε
1/3
0 /λ0

)
+OP(n−1/2), (3)

where the minimization is over all permutations π of
{1, . . . ,K}.

Proof. The proof proceeds by the following steps:

First, in Step 1, we show that it is enough to restrict attention
to the population estimates instead of empirical estimates.
Next, in Step 2, we show that the k-means objectives for
distributions of µi’s and xi’s are close. Step 3 shows that
the objective values at the respective minimizers are also
close to each other for the distributions considered in Step 2.
Finaly, Step 4 uses the strong convexity condition of (a.2)
to bound the distance between respective k-means centers,
and Step 5 translates this bound to the estimation of the
simplex vertices.

In that regard,

Step 1: Following Pollard (1982), the empirical esti-
mates of CVT centroids optimizing PφΣK (·, c) converges to
the corresponding population estimate at rate OPn(n−1/2).
Thus it is enough to restrict attention to the population esti-
mates.

Step 2: We will show that for all ε0 sufficiently small,

|QφBSBT (·, c)− PφΣK (·, c)| = O(ε
1/3
0 )

uniformly over c ∈ BK .

Since Q denotes the distribution corresponding to µi’s, this
distribution places its entire mass inside the simplex, there-
fore all minimizers of the function QφBSBT (·, c) lie inside
BK . We can hence restrict our attention to c ∈ BK . By as-
sumption (b), we have BSBT ≤ ΣK . Thus, it is enough to
establish a bound for |QφBSBT (·, c)− PφΣK (·, c)| ∀ c ∈
BK .

|QφBSBT (·, c)− PφΣK (·, c)| ≤ |PφΣK (·, c)−QφΣK (·, c)|
+|QφBSBT (·, c)−QφΣK (·, c)|.

(4)

Step 2.1: Now, to bound the second term on the right hand
side of Eq. (4) we use,

|QφBSBT (·, c)−QφΣK (·, c)|

≤
∫
|φBSBT (x, c)− φΣK (x, c)|f(x)dx

≤ λmax([BSBT ]† − [ΣK ]†)

≤ λmax([BSBT ]† − [(BSBT + ε0I
K
D ]†)

≤ ε0
λmin(BSBT )λmin(BSBT + ε0IKD )

,

where B† denotes the pseudo-inverse of B, and IKD is the
matrix with top K−1 diagonal elements as 1, the rest zeros.

Step 2.2: Turning to the first term on right hand side of
Eq. (4), we note that ‖βi − βj‖2 ≤ K−1

K λmax(BSBT ).
Therefore a compact ball of radius aλmax(BSBT ) around
the centroid c0 of the simplex B for all sufficiently large
constants a > K−1

K contains the simplex completely.
Consider a ball B(

√
M, c0) of radius

√
M , with M =

aλmax(BSBT ) around the centroid c0, the scalar a to be
chosen later. For any M > 0,

|PφΣK (·, c)−QφΣK (·, c)| ≤
∣∣∣∣ ∫
B(
√
M,c0)c

φΣK (x, c)g(x)dx
∣∣∣∣

+

∣∣∣∣ ∫
B(
√
M,c0)

φΣK (x, c)[g(x)− f(x)]dx
∣∣∣∣.

(5)

Step 2.2.1: For the first term on the right hand side of Eq.
(5), we see that,∫
B(
√
M,c0)c

φΣK (x, (c1, . . . , cK))g(x)dx

≤ min
i∈{1,...,K}

∫
B(
√
M,c0)c

‖x− ci‖2ΣKg(x)dx

≤ max 2‖ci − c0‖22P(X ∈ B(
√
M, c0)c)

+
2

λmin(BSBT )

∫
B(
√
M,c0)c

‖x− c0‖22g(x)dx.

(6)
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The first inequality follows from Fatou’s lemma, while the
second follows from the fact that ‖a+b‖22 ≤ 2(‖a‖22+‖b‖22).

Suppose that the noise distribution is subexponential for all
latent locations θ ∈ B. Combining this with the Chebyshev
inequality and condition (c), Eq. (6) can be re-written as:∫

B(
√
M,c0)c

φΣK (x, (c1, . . . , cK))g(x)dx

≤ C̃λmax(BSBT )
V ar(X)

M
+

2k1

λmin(BSBT )M

≤ C̃ 2(K − 1)λ2
max(BSBT )

M
+

2k1

λmin(BSBT )M

(7)

for some universal constant k1.

Step 2.2.2: For the second term on the right hand side on
Eq. (5), we use the following result.

Claim 1. For M = aλmax(BSBT ), when centroids
ci ∈ B ∀ i, φΣK (x, c = (c1, . . . , cK)) as a function
of x is Lipschitz on B(

√
M, c0), with Lipschitz constant

4
√
M

λmin(BSBT )
.

Now using the above result, we can easily extend
φΣK (x, c = (c1, . . . , cK)) to a Lipschitz function on the
entire domain. For the particular choice of a,∣∣∣∣ ∫
B(
√
M,c0)

φ(Σ)K (x, c)(g(x)− f(x))dx
∣∣∣∣

≤
2
√
aλmax(BSBT )

λmin(BSBT )
sup

‖l‖Lip≤1

∣∣∣∣ ∫ l(x)(g(x)− f(x))dx
∣∣∣∣

≤
2
√
aλmax(BSBT )

λmin(BSBT )
W1(g, f)

≤
2
√
aλmax(BSBT )

λmin(BSBT )

√
(K − 1)ε0.

(8)

In the above, ‖l‖Lip denotes the Lipschitz constant of the
function l(·). The second inequality in the above equation
follows from Kantorovich-Rubinstein duality while for the
last inequality, we use the definition of the Wasserstein
distance and take (X,µ) as the coupling with densitiesX ∼
g and µ ∼ f marginally (cf. (Villani, 2008)). Then, for any
upper bound M1 on the variance of ‖X−µ‖2 , W2(g, f) ≤
M1, and we use the fact that

√
(K − 1)ε0 forms such an

upper bound.

Now, for the noise level ε0 > 0 sufficiently small, there
exists ε > 0, which is dependent on ε0, such that the open in-

terval
(
C ′

(K−1)λ2
max(BSBT )
ε ,

λ2
min(BSBT )

λmax(BSBT )(K−1)ε0
ε2/16

)
is non-empty for any fixed constant C ′. Whenever a is
chosen in this range, |QφBSBT (·, c) − PφΣK (·, c)| ≤ ε.

Note that we can choose ε = O(ε
1/3
0 ) and a = O(ε

−1/3
0 ) to

satisfy the above condition.

Step 3: In this step, we show that objective function val-
ues for k-means corresponding to that of the population
distributions of xi’s and µi’s are close. Notice that the
bounds obtained in Step 2 are uniform over c ∈ B. For
ease of writing, we denote Rq(c) = QφBSBT (·, c) and
Rp(c) = PφΣK (·, c). Also, let argminRp(c) = cp and
argminRq(c) = cq. Then, for ε0 sufficiently small, it fol-
lows from the discussion above that

|Rq(cp)−Rq(cq)|
= |Rq(cp)−Rp(cp) +Rp(cq)−Rq(cq) +Rp(cp)−Rp(cq)|

≤ |Rq(cp)−Rp(cp) +Rp(cq)−Rq(cq)| = O(ε
1/3
0 ).

(9)

Step 4: In this step, we show that ‖ argminc PφΣK (·, c)−
argmincQφBSBT (·, c)‖2 → 0 as ε0 → 0. The intuition
behind this is that since the functions QφBSBT (·, c) and
Rp(c) = PφΣK (·, c) are point-wise close, and their mini-
mized values are also close to one another, therefore, the
points of minima must also be close. By a standard strong
convexity argument, employing condition (a.2), for ε0 suffi-
ciently small, we get,

‖ argmin
c

PφΣK (·, c)− argmin
c

QφBSBT (·, c)‖2

= O

(√
ε
1/3
0 /λ0

)
. (10)

Step 5 : Finally, the error bound for the simplex vertices
follows from a continuous mapping theorem’s argument in
a similar manner to that of the proof for Theorem 1.

Claim 1. For M = aλmax(BSBT ), when centroids
ci ∈ B ∀ i, φΣK (x, c = (c1, . . . , cK)) as a function
of x is Lipschitz on B(

√
M, c0), with Lipschitz constant

4
√
M

λmin(BSBT )
.

Proof of Claim 1.

|φΣK (x, c = c1, . . . , cK)− φΣK (y, c = c1, . . . , cK)|
‖x− y‖

≤ max
i∈{1,...,K}

|‖x− ci‖ΣK − ‖y − ci‖ΣK |
‖x− y‖2

≤ sup
2‖x− y‖

λmin(BSBT )
≤ 4

√
M

λmin(BSBT )
.

(11)
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2. Consistent estimation of concentration
parameter

In this section we first provide several easy calculations
required for the estimating equations for some commonly
used noise distributions.

Lemma 1. Depending on the data generating distribution,
the covariance matrix of the DSN model is given as follows.

(a) Gaussian data: Σ = BS(α)BT + σ2Id, provided that
xi|µi ∼ N (µi, σ

2ID).

(b) Poisson data: Σ = BS(α)BT +Diag(
∑
iBi/K), pro-

vided that xij |µi
ind∼ Poi(µij), where Bi denotes the

ith column of B and Diag(a) is a diagonal matrix with
the ith diagonal element denoting the ith element of
the vector a. Here, µi = (µi1, . . . , µiD).

(c) Multinomial data: Σ = (1 − 1
N )BS(α)BT +

1
N Diag(

∑
iBi/K) − 1

N (
∑
iBi/K)(

∑
iBi/K)T ,

provided that xi|µi ∼ Multinomial(N,µi1, µiD).
Here, µi = (µi1, . . . , µiD) is a probability vector. (N
resembles the number of words per document in the
LDA model).

Proof. We compute Cov(xi) for each of the models.
Note that Cov(Xi) = E(Cov(xi|µi)) + Cov(E(xi|µi))
from the tower property of conditional covariance, and
Cov(E(xi|µi)) = BS(α)BT for all the models. There-
fore we just need the computation for E(Cov(xi|µi)) for
each of the models.

For the Gaussian model, E(Cov(xi|µi)) = σ2ID.

For the Poisson model, E(Cov(xi|µi)) = E(µi) =
BE(θi) = Diag(

∑
iBi/K), where the second equality

follows as µi = Bθi by the model, and the last equality
follows because θi ∼ Dir(α).

For the multinomial model, E(Cov(xi|µi)) =
1
NE(Diag(µi))− 1

NCov(µiµ
T
i ) = 1

N (Diag(
∑
iBi/K)−

BS(α)BT ) from which the result follows.

Equation (6) in the main text, for estimating α uses the
data covariance matrix, Σ̂n. While this gives the correct
estimating equation in the noiseless scenario, but for the
noisy version we need to use Σ̃n instead where Σ̃n is a
consistent estimator forBS(α)BT . The estimator estimator
for different noise distributions can be obtained via the
above lemma.

2.1. Proof of consistency

The proof of consistency of the proposed estimate for the
Dirichlet concentration parameter is given as follows.

Theorem 3. Assume that function ϕ(α̃) = γ(α̃)2

K(Kα̃+1) is
monotonically increasing in α̃, where γ(α̃) is the extension
parameter corresponding to α̃. Let α0 ∈ C be the true
concentration parameter for some compact set C . Let α̂n =
argminα∈C ‖B̂(γ(α))S(α)B̂(γ(α))T − Σ̃n‖, where Σ̃n is
a consistent estimator of BS(α)BT . Then,

‖α̂n − α0‖
P−→ 0. (12)

Proof. Notice that ‖Σ̃n − BS(α0)BT ‖ = oP (1).
Also, ‖B̂(γ(α)) − B(γ(α))‖ = OP (n−1/2) for all
α ∈ C . Therefore ‖B̂(γ(α))S(α)B̂(γ(α))T −
B(γ(α))S(α)B(γ(α))T ‖ = OP (n−1) for all α ∈
C . By monotonicity of the function ϕ, BS(α0)BT −
B(γ(α))S(α)B(γ(α))T as a function of α is injective for
all α ∈ C . Therefore, ‖B̂(γ(α0))S(α0)B̂(γ(α0))T −
Σ̃n‖ = oP (1), by triangle inequality. The statement of
the theorem then follows by employing a subsequence argu-
ment.

2.2. Identifiability of the concentration parameter

In the statement of Theorem 3, we require a condition which
amounts to a identifiability condition of the parameter α. In
this section, we provide empirical evidence that the DSN
model with unknown concentration parameter α is identifi-
able from second moments.

As we shall see, the identifiability of α boils to the invert-
ibility of a scalar function. Recall the covariance matrix of
a Dir(α) distribution is

S(α) =
IK − PK
K(Kα+ 1)

,

where PK = 1
K1K1TK is the projector onto span{1K}. Let

B(γ) = γ(C−µ)+µ be the γ-extension of the (scaled) K-
means centroids C from the center of the DSN µ = 1

KB1K .
The question of the identifiability of the concentration pa-
rameter boils down to whether there are distinct α1 and α2

such that

B(γ(α1))S(α1)B(γ(α1))T

= B(γ(α2))S(α2)B(γ(α2))T ,
(13)

where γ(α) is the extension parameter that corresponds to
concentration parameter α. As long as C has full column
rank, we may pre and post-multiply (13) by C† and (C†)T

respectively to see that (13) is equivalent to

(γ(α1)(IK − PK) + PK)S(α1)(γ(α1)(IK − PK) + PK)

= (γ(α2)(IK − PK) + PK)S(α2)(γ(α2)(IK − PK) + PK).

Recalling S(α) is a scalar multiple of IK − 1
K1K1TK , we

see that (13) is equivalent to whether there are distinct α1
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and α2 such that

γ(α1)2

K(Kα1 + 1)
=

γ(α2)2

K(Kα2 + 1)
.

This is equivalent to the invertibility of the function

ϕ(α) =
γ(α)2

K(Kα+ 1)
. (14)

Figure 1 shows this function for K = 10 over a range of
reasonable values of α. We see that the function is in fact
invertible.

0 1 2 3 4 5

0.1

0.15

0.2

0.25

0.3

Figure 1: Empirical study of α identifiability.

Although Figure 1 suggests (14) is invertible, we do not have
a rigorous proof. The main challenge is obtaining precise
control on the growth of (13). Inspecting Figure 1 shows that
ϕ(α) is almost flat as soon as α exceeds 5

2 . Intuitively, this
is a consequence of the hardness of distinguishing between
DSNs with large α’s (and correspondingly large extension
parameters). Mathematically, it is hard to obtain precise
control on the growth of ϕ(α) because it is not possible to
evaluate γ(α) explicitly. Although it is possible to show
that

γ(α) =
1− 1

K∫
Vk
eTk θpα(x)dx− 1

K

, (15)

where Vk = {θ ∈ ∆K−1 : argmax{θl : l ∈ [K]} = k}
is the k-th Voronoi cell in a centroidal Voronoi tessellation
of ∆K−1, ek is the kth canonical basis vector and pα is the
Dir(α) density, it is hard to evaluate the integral. We defer
an investigation of the identifiability of the concentration
parameter to future work.

3. Computational cost of VLAD
In this section, we tally up the computational cost of VLAD.
The dominant cost it that of computing the top K singular

factors of the centered data matrix X̄ . This costs O(DKn)
floating point operations (FLOP’s). The cost of the sub-
sequent clustering step is asymptotically negligible com-
pared to the cost of the SVD. Assuming each step of the
K-means algorithm costs O(Kn) FLOP’s and the algo-
rithm converges linearly, we see that the cost of obtaining
an O( 1

n )-suboptimal solution is O(Kn log n). We discount
the cost of Monte Carlo estimates of the extension parameter
because it can be tabulated. Thus the computational cost
of the algorithm is dominated by the cost of computing the
SVD.

4. Experimental details and additional results
Additional results for convergence behavior We com-
plement the results presented in Fig. 2 of the main text with
the corresponding plots of the likelihood evaluated on a set
of held out data. These results are summarized in Fig. 2.
For all plots, the smaller value is better. We see that VLAD
shows performance as good as HMC and Gibbs sampler at a
much lower computational time. This supports our findings
in the main text.

Additional results for geometry of the DSN Again, we
further support our results of Fig. 3 of the main text with
the corresponding held out data likelihood scores. Fig. 3
summarizes the results - VLAD shows competitive perfor-
mance.

Additional results for varying Dirichlet prior In Figure
4 we demonstrate held out data likelihood corresponding to
experiments of Fig. 4 of the main text with. We see that
VLAD performs well in the whole range of analyzed values
and likelihood kernels.

Data generation for simulations studies For all experi-
ments, unless otherwise specified, we set D = 500,K =
10, α = 2, n = 10000 (for LDA vocabulary size D =
2000). To generate DSN extreme points, for Gaussian
data we sample β1, . . . , βK ∼ N (0,K); for Poisson data
β1, . . . , βK ∼ Gamma(1,K1); for the LDA β1, . . . , βK ∼
DirD(η) with η = 0.1. To ensure skewed geometry we
further rescale extreme points towards their mean by uni-
form random factors between 0.5 and 1. To do so first
compute the mean of extreme points C = 1

K

∑
k βk and

then rescale each one with βk = C + ck(βk − C), where
ck ∼ Unif(cmin, 1). Except for the DSN geometry experi-
ment, we set cmin = 0.5.

Then we sample weights θi ∼ DirK(α) and data mean
µi =

∑
k θikβk. For Gaussian data xi|µi ∼ N (µi, σ

2ID),
σ = 1; for Poisson data xi|µi ∼ Pois(µi); for LDA we
follow standard generating process (Blei et al., 2003) with
3000 words per document. All experiments were run for 20
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Figure 2: Held out data performance for increasing sample size n
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Figure 3: Held out data performance for varying DSN geometry

repetitions and mean was used in the plots along with half
standard deviation error bars.

Baseline methods and algorithms setups We consid-
ered four separability based NMF algorithms: Xray (Ku-
mar et al., 2013) with code from https://github.
com/arbenson/mrnmf; MVES (Chan et al., 2009) with
code from http://www.ee.nthu.edu.tw/cychi/
source_code_download-e.php; Sequential Projec-
tion Algorithm (Gillis & Vavasis, 2014) that we imple-
mented in Python; RecoverKL (Arora et al., 2013) for
the LDA case with code from https://github.com/
MyHumbleSelf/anchor-baggage.

Bayesian NMF approaches often assume positive weights
without the simplex constraint imposed by the Dirichlet
prior on weights. Incorporating the simplex constraint com-
plicates the inference (Paisley et al., 2014) as Dirichlet distri-
bution is not conjugate to popular choices of data likelihood
such as Gaussian or Poisson. Therefore we are not aware
of any implementation for DSN type of models outside of
the LDA scenario. We instead chose to compare to auto-
mated Bayesian inference methods. We implemented DSN
inference with Poison and Gaussian likelihoods in Stan (Car-
penter et al., 2017) and considered all three supported esti-
mation procedures: HMC with No U-Turn Sampler (Hoff-
man & Gelman, 2014), MAP optimization and (Kucukelbir
et al., 2017) Automatic Differentiation Variational Infer-

ence. MAP optimization and ADVI performed poorly and
we did not report their performance. HMC was always
trained with true value of α and with knowledge of σ = 1
for the Gaussian scenario. Number of iterations was set to
80 for n < 3000, 60 for n = 3000 and 40 for n > 3000.
We had to restrict number of iterations due to prohibitively
long running time (40 iterations for n = 30000 took 3.5
hours for Gaussian likelihood and 14 hours for Poisson like-
lihood; VLAD took 7 seconds in both cases). For the LDA,
we used Gibbs sampler (Griffiths & Steyvers, 2004) from
https://github.com/lda-project/lda trained
for 1000 iterations (1000 iterations for n = 30000 took
3.6 hours; VLAD took 3min). Gibbs sampler was trained
with true values of α and η. We used Stochastic Variational
Inference (Hoffman et al., 2013) implementation from scikit-
learn (Pedregosa et al., 2011) and trained it with true values
of α and η.

For the Geometric Dirichlet Means (Yurochkin & Nguyen,
2016) we used implementation from https://github.
com/moonfolk/Geometric-Topic-Modeling
with 8 K-means restarts and ++ initialization.

VLAD was implemented in Python using numpy SVD pack-
age and scikit-learn (Pedregosa et al., 2011) K-means clus-
tering with 8 restarts and ++ initialization. The code is avail-
able at https://github.com/moonfolk/VLAD.

For the NYT data https://archive.ics.uci.

https://github.com/arbenson/mrnmf
https://github.com/arbenson/mrnmf
http://www.ee.nthu.edu.tw/cychi/source_code_download-e.php
http://www.ee.nthu.edu.tw/cychi/source_code_download-e.php
https://github.com/MyHumbleSelf/anchor-baggage
https://github.com/MyHumbleSelf/anchor-baggage
https://github.com/lda-project/lda
https://github.com/moonfolk/Geometric-Topic-Modeling
https://github.com/moonfolk/Geometric-Topic-Modeling
https://github.com/moonfolk/VLAD
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://archive.ics.uci.edu/ml/datasets/bag+of+words
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Figure 4: Held out data performance for increasing α

edu/ml/datasets/bag+of+words we trained
Gibbs sampler with α = 0.1 and η = 0.1 for 1000
iterations and SVI with default settings. For the stock data
we trained HMC for 100 iterations with α = 0.05.

5. On asymmetric Dirichlet prior
In our work we assumed that θi ∼ DirK(α), where α ∈ R+.
When α is a scalar, the corresponding Dirichlet distribution
is referred to as symmetric. More generally, α ∈ RK+ is
a vector of parameters. Our algorithmic guarantees, such
as alignment of CVT centroids of B, extreme points and
centroid of B and equivalence of extension parameters for
all extreme points directions, fail for the general asymmet-
ric case. Wallach et al. (2009) showed that more careful
treatment of the parameter α can improve the quality of
the LDA topics. Geometric treatment of the asymmetric
Dirichlet distribution remains to be the question of future
studies. To facilitate the discussion, here we visualize the
problem using toy D = 3,K = 3 example (similar to Fig.
1 of the main text) with α = (0.5, 1.5, 2.5). Results of the
four different algorithms are shown in Fig. 5. Note that for
VLAD (Fig. 5d) we only show the directions of the line
segments of the obtained sample CVT centroids and the data
center, since we do not have a procedure for extension pa-
rameter estimation in the asymmetric Dirichlet case. We see
that all of the algorithms fail with various degrees of error
and notice that the directions obtained by VLAD no longer
appear consistent, however do not deviate drastically from
the truth. We propose to call such toy triangle experiment
a triangle test and hope to "pass" the asymmetric Dirichlet
triangle test in the future work.

https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://archive.ics.uci.edu/ml/datasets/bag+of+words
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Figure 5: Asymmetric Dirichlet toy simplex learning: n = 5000, D = 3,K = 3, α = (0.5, 1.5, 2.5)
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