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Abstract

Strong worst-case performance bounds for
episodic reinforcement learning exist but fortu-
nately in practice RL algorithms perform much
better than such bounds would predict. Algo-
rithms and theory that provide strong problem-
dependent bounds could help illuminate the key
features of what makes a RL problem hard and
reduce the barrier to using RL algorithms in prac-
tice. As a step towards this we derive an algorithm
and analysis for finite horizon discrete MDPs with
state-of-the-art worst-case regret bounds and sub-
stantially tighter bounds if the RL environment
has special features but without apriori knowl-
edge of the environment from the algorithm. As
a result of our analysis, we also help address an
open learning theory question (Jiang & Agarwal,
2018) about episodic MDPs with a constant upper-
bound on the sum of rewards, providing a regret
bound function of the number of episodes with no
dependence on the horizon.

1. Introduction

In reinforcement learning (RL) an agent must learn how to
make good decision without having access to an exact model
of the world. Most of the literature for provably efficient
exploration in Markov decision processes (MDPs) (Jaksch
et al., 2010; Osband et al., 2013; Lattimore & Hutter, 2014;
Dann & Brunskill, 2015; Dann et al., 2017; Osband & Roy,
2017; Azar et al., 2017; Kakade et al., 2018) has focused
on providing near-optimal worst-case performance bounds.
Such bounds are highly desirable as they do not depend on
the structure of the particular environment considered and
therefore hold for even extremely hard-to-learn MDPs.
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Fortunately in practice reinforcement learning algorithms of-
ten perform far better than what these problem-independent
bounds would suggest. While we may observe better or
worse performance empirically on different MDPs, we
would like to derive a more systematic understanding of
what types of decision processes are inherently easier or
more challenging for RL. This motivates our interest in
deriving algorithms and theoretical analyses that provide
problem-dependent bounds. Ideally, such algorithms will
do as well as RL solutions designed for the worst case if
the problem is pathologically difficult and otherwise match
the performance bounds of algorithms specifically designed
for a particular problem subclass. This exciting scenario
might bring considerable saving in the time spent design-
ing domain-specific RL solutions and in training a human
expert to judge and recognize the complexity of different
problems. An added benefit would include the robustness
of the RL solution in case the actual model does not belong
to the identified subclass, yielding increased confidence to
deploying RL to high-stakes applications.

Towards this goal, in this paper we contribute with a new
algorithm for episodic tabular reinforcement learning which
automatically provides provably stronger regret bounds in
many domains which have a small variance of the optimal
value function (in the infinite horizon setting, this variance
has been called the environmental norm (Maillard et al.,
2014)). Indeed, there is good reason to believe that some
features of the range or variability of the optimal value
function should be a critical aspect of the hardness of rein-
forcement learning in a MDP. Many worst-case bounds for
finite-state MDPs scale with a worst case bound on the range
/ magnitude of the value function, such as the diameter D for
an infinite-horizon setting and the horizon H in an episodic
problem. Note that here both D and H arise in the analyses
as upper bounds on the (range of the) optimistic value func-
tion across the entire MDP!. As more samples are collected,
one would hope that the agent’s optimistic value function
converges to the true optimal value function. Unfortunately
this is not the case, see for example (Jaksch et al., 2010;
Bartlett & Tewari, 2009; Zanette & Brunskill, 2018) for a

"Many RL algorithms with strong performance bounds rely
on the principle of optimism under uncertainty and compute an
optimistic value function.
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discussion of this. As a result, most prior analyses bounded
the optimistic value function by generic quantities like D or
H regardless of the actual behaviour of the optimal value
function.

While the majority of formal performance guarantees has
focused on bounds for the worst case, there have been sev-
eral contributions of algorithms and/or theoretical analyses
focused on MDPs with particular structure. Such contri-
butions have focused on the infinite horizon setting, which
involves a number of subtleties that are not present in the
finite horizon setting we consider, which is likely a cause
of the less strong results in this setting which can require
stronger input knowledge on a tighter range on the possible
value function (Bartlett & Tewari, 2009; Fruit et al., 2018),
or do not match in dominant terms strong bounds for the
worst case setting (Maillard et al., 2014). We defer more
detailed discussion of related work to Section 7, except to
briefly highlight likely the most closely related recent result
from (Talebi & Maillard, 2018). Like us, Talebi and Mail-
lard provide a problem-dependent regret bound that scales
as a function of the variance of the next state distribution.
However, like the aforementioned references, their focus is
on the infinite horizon setting. In this setting the authors
achieve their resulting regret bound under an assumption
that the mixing time of the MDP is such that all states are
visited at a linear rate in expectation regardless of the agent’s
chosen policies. This mixing rate, that could be exponen-
tial in certain MDPs, appears in the regret bound. In our,
arguably simpler finite horizon setting, we do not use an
assumption on the mixing rate of the MDP and we instead
pursue a different proof technique to obtain strong results
for this setting.

More precisely, in this paper we derive an algorithm for
finite horizon discrete MDPs and associated analysis that
yields state-of-the art worst-case regret bounds of order
O(VHSAT) in the leading term while improving if the
environment has next-state value function variance (i.e.,
small environmental norm) or bounded total possible reward.
Compared to the existing literature, our work

e Maintains state of the art worst-case guarantees (Azar
et al., 2017) for episodic finite horizon settings,

e Improves the regret bounds of (Zanette & Brunskill, 2018)
when deployed in the same settings,

e Provides demonstration that characterizing problems us-
ing environmental norm (Maillard et al., 2014) can yield
substantially tighter theoretical guarantees in the finite
horizon setting,

e Identifies problem classes with low environmental norm
which are of significant interest, including determinis-
tic domains, single-goal MDPs, and high stochasticity
domains, and

e Helps address an open learning theory problem (Jiang &
Agarwal, 2018), showing that for their setting, we obtain
a regret bound that scales with no dependence on the
planning horizon in the dominant terms.

The paper is organized as follows: we recall some basic def-
initions in Section 2 and describe the algorithm in Section 3.
We state and comment the main result in Section 4, discuss
how this helps address an open learning theory problem in
Section 5 and then describe selected problem-dependent
bounds in Section 6. The analysis is sketched in Section 4.1.
Due to space constraints, most proofs are in the full report
available at:
https://arxiv.org/abs/1901.00210.

2. Preliminaries and Definitions

In this section we introduce some notation and defini-
tions. We consider undiscounted finite horizon MDPs
(Sutton & Barto, 1998), which are defined by a tuple
M = (S, A p,r, H), where S and A are the state and
action spaces with cardinality S and A, respectively. We
denote by p(s’ | s, a) the probability of transitioning to state
s’ after taking action « in state s while r(s,a) € [0,1] is
the average instantaneous reward collected. We label with
nk (s, a) the visits to the (s, a) pair at the beginning of the k-
th episode. The agent interacts with the MDP starting from
arbitrary initial states in a sequence of episodes k € [K](
where [K] = {j € N: 1 < j < K}) of fixed length H
by selecting a policy 7, which maps states s and timesteps
t to actions. Each policy identifies a value function for
every state s and timestep ¢ € [H| defined as V™" (s;) =
E(s,a)~ie Zlet r(s,a) which is the expected return until
the end of the episode (the conditional expectation is over
the pairs (s, a) encountered in the MDP upon starting from
st). The optimal policy is indicated with 7* and its value
function as V;” . We indicate with Kfjlk and V:jlk, re-
spectively, a pointwise underestimate, respectively, overes-
timate, of the optimal value function and with py(- | s, a)
and 7(s, a) the MLE estimates of p(- | s,a) and r(s,a).
We focus on deriving a high probability upper bound on the

REGRET(K) € ¥, 1 (v;f* (s) — v{fk(sk)) to mea-

sure the agent’s learning performance. We use the O()
notation to indicate a quantity that depends on (-) up to
a polylog expression of a quantity at most polynomial in
S, AT, K, H, %. We also use the <, 2, ~ notation to mean

<, >, =, respectively, up to a numerical constant and indi-
cate with || X ||2,,, the 2-norm of a random variable® under p,

. de de . .
ie. | X|2p < VE, X2 Y /S p(8)X2(5) if p(-) is

its probability mass function.

2To be precise, this is a norm between classes of random vari-
ables that are almost surely the same
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3. EULER

We define the maximum per-step conditional variance (con-
ditioning is on the (s, a) pair) for a particular MDP as Q*:

QX max (Var R(s,a)+ Var

st ~p(s.a) Vtil(ﬁ)) @
where R(s, a) is the reward random variable in (s, a). This
definition is identical to the environmental norm (Maillard
et al., 2014) but here we will generally refer to it as the
maximum conditional value variance, in order to connect
with other work which explicitly bounds the variance.

We introduce the algorithm Episodic Upper Lower Explo-
ration in Reinforcement learning (EULER) which adopts
the paradigm of “optimism under uncertainty” to conduct
exploration. Recent work (Dann & Brunskill, 2015; Dann
et al., 2017; Azar et al., 2017) has demonstrated how the
choice of the exploration bonus is critical to enabling tighter
problem-independent performance bounds. Indeed minimax
worst case regret bounds have been obtained by using a
Bernstein-Friedman-type reward bonus defined over an em-
pirical quantity related very closely to the conditional value
variance Q*, plus an additional correction term necessary
to ensure optimism (Azar et al., 2017).

Similarly, in our algorithm we use a bonus that combines
an empirical Bernstein type inequality for estimating the
Q* conditional variance, coupled with a different correction
term which explicitly accounts for the value function un-
certainty. We provide pseudocode for EULER which details
the main procedure in Figure 1. Notice that EULER has the
same computational complexity as value iteration.

4. Main Result

Now we present our main result, which is a problem-
dependent high-probability regret upper bound for EULER
in terms of the underlying max conditional variance Q* and
maximum return. Crucially, EULER is not provided with
Q* and the value of the max return. We also prove a worst-
case guarantee that matches the established (Osband & Van
Roy, 2016; Jaksch et al., 2010) lower bound of Q(v/ HSAT)
in the dominant term. We introduce the following definition:
Definition 1 (Max Return). We define as G € R the max-
imum (random) return in an episode upon following any
policy w from any starting state Sy, i.e., the deterministic
upper bound to:

H
Y Rlsi,m(s) <G, Vm,so. 0)

t=1

where the states s, . .., Sy are the (random) states gener-
ated upon following the trajectory identified by the policy ™
from sg.

Theorem 1 (Problem Dependent High Probability Regret
Upper Bound for EULER). With probability at least 1 — §
the regret of EULER is bounded for any time T' < K H by
the minimum between

O (VO'SAT + VESAH* (VS + V) ) 3)

and

0] ( %ZSAT +VSSAH*(VS + Vﬁ)) : @)

jointly for all episodes k € [K].

While the maximum conditional variance Q* is always up-
per bounded by G if rewards are positive and bounded, we
include both forms of regret bound for two reasons. First,
the second bound is tighter than naively upper bounding
Q* < G2 by a factor of H. Second, we will shortly see that
both quantities can provide insights into which instances of
MDP domains can have lower regret.

In addition, since the rewards are in [0, 1], we immediately
have that G2 < H?, and thereby obtain a worst-case regret
bound expressed in the following corollary:

Corollary 1.1. With probability at least 1 — ¢ the regret of
EULER is bounded for any time T < K H by

O (\/HSAT +VSSAH2(VS + \/ﬁ)) . 6)

This matches in the dominant term the minimax regret
problem independent bounds for tabular episodic RL set-
tings (Azar et al., 2017). Therefore, the importance of
our theorem 1 lies in providing problem dependent bounds
(equation 3,4) while simultaneously matching the existing
best worst case guarantees (equation 5). We shall shortly
show that our results help address a recent open question
on the performance dependence of episodic MDPs on the
horizon (Jiang & Agarwal, 2018).

4.1. SKketch of the Theoretical Analysis

We devote this section to the sketch of the main point of the
regret analysis that yields problem dependent bounds. Read-
ers that wish to focus on how our results yield insight into
the complexity of solving different problems may skip ahead
to the next section. Central to the analysis is the relation
between the agent’s optimistic MDP and the “true” MDP. A
more detailed overview of the proof is given in section C
of the appendix, while the rest of the appendix presents the
detailed analysis under a more general framework.

Regret Decomposition Denote with E(, )5, the expec-
tation taken along the trajectories identified by the agent’s
policy 7. A standard regret decomposition is given below
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Algorithm 1 EULER for Stationary Episodic MDPs

Var 4SAT ASAT AL n 4SAT n 4SAT
¢ gt 7 = 10,05 (5,0) = RS | TR ) = |G ST i
Bp:H‘/vaU: */MJZM-
2: fork=1,2,... do
3: fort=H,H—-1,...,1do
4 for s € Sdo
5: fora € Ado
6 p= P
7: bzv = ¢(ﬁ(8, a), Vt+1) + \/nzs,a) (\;i:(]j:) + Bv”VtJrl — KtJrl |2}ﬁ)
8: Q(a) = min{H — t, 7 (s, Tk(s,t)) + b (s,a) + pT Vg1 + 00"}
9: end for
10: 7r(s,t) = argmax, Q(a)
11: Vi(s) = Q7 (s, t))
= b = op(s (s, 1), Vi) + \/n(s,;rk(s,t)) (\/nj(itfji’?t)) BV = Vt*”’ﬁ)
13: V,(s) = max{0, P (s, T (s, t)) — b (s, T (s,t)) + TV, g — B}
14: end for
15:  end for
16:  Evaluate policy 7 and update MLE estimates p(-, -) and 7 (-, -)
17: end for

(see (Dann et al., 2017; Azar et al., 2017)):

b

ke[K]
te[H|
(s,a)eSxA

. T
—pe(-|s,a)) Vi

TRANSITION
DyYNAMICS
OPTIMISM

(-|s.a) = p(-| 5,0)" Vi,

TRANSITION
DYNAMICS
ESTIMATION

+ @l 1s,0) = p(- | s,0) " (Vo = Vi) ) (©)

LOWER
ORDER
TERM

REGRET(K) < E(s,a)~7 ( i (s,a) —r(s,a)
—

REWARD
ESTIMATION
AND OPTIMISM

+ (ﬁk( | S’a)

+ (Px

Here, the “tilde” quantities 7 and p represent the agent’s
optimistic estimate. Of the terms in equation 6, the “Tran-
sition Dynamics Estimation” and ‘“Transition Dynamics
Optimism” are the leading terms to bound as far as the re-
gret is concerned. The former is expressed through MDP
quantities (i.e, the true transition dynamics p(- | s, a) and
the optimal value function V;Tj:l) and hence it can be readily
bounded using Bernstein Inequality, giving rise to a prob-
lem dependent regret contribution. More challenging is to
show that a similar simplification can be obtained for the
“Transition Dynamics Optimism” term which relies on the

agent’s optimistic estimates p(- | s,a) and V:jl k-

Optimism on the System Dynamics Said term

Pk | s,a) — pr(- | s,a))TV:ilk represents the dif-
ference between the agent’s imagined (i.e., optimistic)
transition pg(- | s,a) and the maximum likelihood transi-
tion Py (- | s,a) weighted by the next-state optimistic value
. T . .. .
function V.. By construction, this is the exploration
bonus which incorporates an estimate of the conditional
variance over the value function. This bonus reads:

DOMINANT TERM
OF EXPLORATION BONUS

TRANSITION  EXPLO- Var8~ﬁk(-\s,a) Vitik H
DYNAMICS — RATION =
OPTIMISM ~ BONUS nk(s,a) ni(s,a)
EMPIRICAL BERNSTEIN EVALUATED
WITH EMPIRICAL VALUE FUNCTION
(7
ﬁ'k R
+ ||Vt+1k: Vt+1k||pk("5aa) H (8)
ni(s,a) ni(s,a)

CORRECTION BONUS
In the above expression the “Correction Bonus” is needed
to ensure optimism because the “Empirical Bernstein” con-
s . . s . Tk
tribution is evaluated with the agent’s estimate V', , as
opposed to the real V7. If we assume that ||V:j1k -
Vs 5.) shripks q}lickly enough, then the. “Domi-
nant Term” in equation 7 is the most slowly decaying term



Tighter Problem-Dependent Regret Bounds

with a rate 1/4/n. If that term involved the true transition
dynamics p(- | s, a) and value function Vi ™", (as opposed to

the agent’s estimates py(- | s,a) and V; 1) then problem
dependent bounds would follow in the same way as they
could be proved for the “Transition Dynamics Estimation”.
Therefore we wish to study the relation between such “Dom-
inant Term” evaluated with the agent’s MDP estimates vs
the MDP’s true parameters.

Convergence of the System Dynamics in the Dominant
Term of the Exploration Bonus Theorem 10 of (Maurer
& Pontil, 2009) gives the high probability statement:

Var V[~ Var V"
‘\/kua) \/ua) o

to quantify the rate of convergence of the empirical variance
using the true value function (this leads to the empirical
version of Bernstein’s inequality). Next, two basic computa-
tions yield:

H

<2
~ ng(s,a)

9)

Var Vt+1k

Pr(-]s,a)

‘ Var

pr(:ls, a)

— T

< ||Vt+1k Vt+1||pk (ls,a) < Hvt—i-lk Vﬁm”ﬁk(-\s,a)

(10)

Together, equation 9 and 10 quantify the rate of convergence
of Varep, (-|s.a) Vig1k 10 VaTswp(.[s.a) V5. yielding the
following upper bound for the dominant term of the explo-
ration bonus:

B \/Vafm(ws,a) Vit —

EXPLORATION — =~
BONUS N (3 ) a) ~

DOMINANT

Vary(.js.a) Vi

nk(s,a)

GIVES PROBLEM
DEPENDENT BOUNDS

H + va-&-lk V?—tlk”ﬁk(ﬁs,a)

- nk(s, a) ng(s,a)

(1)

SHRINKS FASTER

In words, we have decomposed the “Dominant Term of the
Exploration Bonus” (which is constructed using the agent’s
available knowledge) as a problem-dependent contribution
(that is equivalent to Bernstein Inequality evaluated as if the
model was known) and a term that accounts for the distance
between the the true and empirical model, expressed as
(computable) upper and lower bounds on the value function.
This additional term shrinks faster that the former. It is
precisely this “Correction Bonus” that we use in equation 7
and in the definition of the Algorithm itself.

What gives rise to problem dependent bounds? Our
analysis highlights EULER uses a Bernstein inequality

on the empirical estimate of the conditional variance of

the next state values, with a correction term ||V:J’;1 E—
V7% eIk (-1s.a) function of the inaccuracy of the value func-
tion estimate at the next-step states re-weighted by their
relative importance as encoded in the experienced transi-
tions Py (- | s, a). Said correction term is of high value only
if the successor states do not have an accurate estimate for
the value function and they are going to be visited with
high probability. A pigeonhole argument guarantees that
this situation cannot happen for too long ensuring fast de-
cay of ||V:_ﬁ1k - Z?_tlk ll 51 (-]s,a) and therefore of the whole
“Correction Bonus” of eq. 7.

Our primary analysis yields a regret bound that scales
directly with the (unknown to the algorithm) problem-
dependent Q* max conditional variance of the next state
values. We further extend this to a bound directly in terms of
the max returns G by using a law of total variance argument.

Notice that such considerations and results would not be
achievable by a naive application of an Hoeffding-like in-
equality as the latter would put equal weight on all successor
states, but the accuracy in the estimation of V +1( ) only
shrinks in a way that depends on the visitation frequency of
said successor states as encoded in pi (- | s,a). The key to
enable problem dependent bound is, therefore, to re-weight
the importance of the uncertainty on the value function of
the successor states by the corresponding visitation proba-
bility, which Bernstein Inequality implicitly does.

There exist other algorithms (e.g. (Dann & Brunskill, 2015;
Azar et al., 2017)) which are based on Bernstein’s inequality
but to our knowledge they have not been analyzed in a way
that provably yields problem dependent bounds as those
presented here.

5. Horizon Dependence in Dominant Term

In this section we show that our result can help address a
recently posed open question in the learning theory commu-
nity (Jiang & Agarwal, 2018). The question posed centers
on the whether there should exist a necessary dependence
of sample complexity and regret lower bounds on the plan-
ning horizon H for episodic tabular MDP reinforcement
learning tasks. Existing lower bound results for sample
complexity (Dann & Brunskill, 2015) depend on the hori-
zon, as do the best existing minimax regret bounds under
asymptotic assumptions (Azar et al., 2017). However, such
results have been derived under the common assumption of
reward uniformity, that per-time-step rewards are bounded
between 0 and 1, yielding a total value bounded by 0 and
H. Jiang & Agarwal (2018) instead pose a more general
setting, in which they assume that the rewards are positive
and Zthl rn, € [0, 1] holds almost surely: note the stan-
dard setting of reward uniformity can be expressed in this
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setting by first normalizing all rewards by dividing by H.
The authors then ask that if in this new, more general setting
of tabular episodic RL there is necessarily a dependence
on the planning horizon in the lower bounds. Note that
in this setting, the prior existing lower bounds on the sam-
ple complexity (Dann & Brunskill, 2015) would yield no
dependence on the horizon.

For our work, the setting of Jiang and Agarwal immediately
implies that

0< V7 (s) <G <1, V(s,t) €S x [H]. (12)

Further, since V;™ (s) < 1 and 7(s,a) > 0 we must have
r(s,a) € [0, 1], which is the assumption of this work. There-
fore our main result (theorem 1) applies here. Recalling that
T = K H, we obtain an upper bound on regret as

o (\/SAK+\/§SAH2(\/§+ \/ﬁ)). (13)

Note that the planning/episodic horizon H does not appear
in the dominant regret term which scales polynomially with
the number of episodes® K, and only appears in transient
lower order terms that are independent of K.

In other words, up to logarithmic dependency and tran-
sient terms, we have an upper bound on episodic regret
that is independent of the horizon H. This result answers
part of Jiang and Agarwal’s open question: for their setting,
the regret primarily scales independently of the horizon.

Surprisingly, while EULER uses a common problem-
agnostic bound on the maximum possible optimal value
function (H), it does not need to be provided with informa-
tion about the domain-dependent maximum possible value
function to attain the improved bound in the setting of the
COLT conjecture of Jiang & Agarwal (2018).

It remains an open question whether we could further avoid
either a dependence on the planning horizon in the transient
terms as well as obtaining a PAC result. In Appendix B
we further discuss this direction. However, these results
are promising: they suggest that the hardness of learning in
sparse reward, and long horizon episodic MDPs may not be
fundamentally much harder than shorter horizon domains if
the total reward is bounded.

6. Problem dependent bounds

We now focus on deriving regret bounds for selected MDP
classes that are very common in RL. We emphasize that such
setting-dependent guarantees are obtained with the same
algorithm that is not informed of a particular MDP’s values
of Q* and G. Although the described settings share common
features and are sometimes subclasses of one another, they
are in separate subsections due to their important relation to

3This is stronger than scaling polynomially with the time T

the past literature and their practical relevance. Importantly,
they are all characterized by low Q.

6.1. Bounds using the range of optimal value function

To improve over the worst case bound in infinite horizon RL
there have been approaches that aim at obtaining stronger
problem dependent bounds if the value function does not
vary much across different states of the MDP. If rng V™" is
smaller than the worst-case (either H or D for the fixed
horizon vs recurrent RL), the reduced variability in the
expected return suggests that performance can benefit from
constructing tighter confidence intervals. This is achieved
by Bartlett & Tewari (2009) by providing this range to their
algorithm REGAL, achieving a regret bound:

O(®SVAT) (14)

where ® > rng V™ is an overestimate of the optimal value
function range and is an input to the algorithm described in
that paper. This means that if domain knowledge is available
and is supplied to the algorithm the regret can be substan-
tially reduced. This line of research was followed in (Fruit
et al., 2018) which derived a computationally-tractable vari-
ant of REGAL. However, they still require knowledge of a
value function range upper bound ® > rng V™" . Specifying
a too high value for ® would increase the regret and a too
low value would cause the algorithm to fail.

Our analysis shows that, in the episodic setting, it is possible
to achieve at least the same but potentially much better level
of performance without knowing the optimal value function
range. This follows as an easy corollary of our main regret
upper bound (Theorem 1) after bounding the environmental
norm, as we discuss below.

Let S; ,, be the set of immediate successor states after one
transition from state s upon taking action a there, that is, the
states in the support of p(- | s, a) and define

Douee @ max g V(%) (15)
5 s+€8; 4
as the maximum value function range when restricted to
the immediate successor states. Since the variance is upper
bounded by (one fourth of) the square range of a random
variable we have that:

QY max(Var (R(s, a) | (s,a)) + +Va(r )thl(s+))
s,a, st~p(s,a
S Ina)t( (1 + ( rng ‘/;57;*1(8+))2) S 1 + (I)iucc'

stESs

This immediately yields:

Corollary 1.2 (Bounded Range of V™" Among Successor
States). With probability at least 1 — 6, the regret of EULER
is bounded by:

O(® e VSAT + VSSAH?*(VS +VH)).  (16)
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A few remarks are in order:

e EULER does not need to know the value of @, .. or of
the environmental norm or of the value function range
to attain the improved bound;

e ®,,.. can be much smaller than rng V™ because
it is the range of V™ restricted to few successor
states as opposed to across the whole domain, and
therefore it is always smaller than ®, in other words:
O >mgV™ > Dy

e (Bartlett & Tewari, 2009; Fruit et al., 2018) consider
the more challenging infinite horizon setting, while our
results holds for fixed horizon RL.

6.2. Bounds on the next-state variance of V™ and
empirical benchmarks

The environmental norm also can empirically characterize
the hardness of RL in single problem instances. This was
one of the key contributions of the work that introduced the
environmental norm (Maillard et al., 2014), which evalu-
ated the environmental norm for a number of common RL
benchmark simulation tasks including mountain car, pin-
ball, taxi, bottleneck, inventory and red herring In these
domains the environmental norm is correlated with the com-
plexity of reinforcement learning in these environments, as
evaluated empirically. Indeed, in these settings, the environ-
mental norm is often much smaller then the maximum value
function range, which can itself be much smaller than the
worst-case bound D or H. Our new results provide solid
theoretical justification for the observed empirical savings.

This measure of MDP complexity also intriguingly allows
us to gain more insight on another important simulation do-
main, chain MDPs like that in Figure 1. Chain MDPS have
been considered a canonical example of challenging hard-
to-learn RL domains, since naive strategies like € greedy
can take exponential time to attain satisfactory performance.
By setting for simplicity N ) g — HEuLER provides an
upper regret bound of O(v/ NAK +. .. ) that is substantially
tighter than a worst case bound O(vV N3AK +...), at least
for large K. This is intriguing because it suggests patholog-
ical MDPs may be even less common than expected. More
details about this example are in appendix A.1l.
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Figure 1. Classical hard-to-learn MDP
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6.3. Stochasticity in the system dynamics

In this section we consider two important opposite classes
of problems: deterministic MDPs and MDPs that are highly
stochastic in that the successor state is sampled from a fixed
distribution. These bounds are also a direct consequence of
Theorem 1 and can be deduced from Corollary 1.2.

Deterministic domains Many problems of practical inter-
est, for example in robotics, have low stochasticity, and this
immediately yields low value for Q*. As a limit case, we
consider domains with deterministic rewards and dynamics
models. An agent designed to learn deterministic domains
only needs to experience every transition once to reconstruct
the model, which can take up to O (SA) episodes with a
regret at most O(SAH)(Wen & Van Roy, 2013).

Note in deterministic domains Q* = 0. Therefore if EULER
is run on any deterministic MDP then the regret expression
exhibits a log(T") dependence. This is a substantial improve-
ment over prior RL regret bounds for problem-independent
settings all have at least a v/7' dependence. Further, a re-
fined analysis (Appendix Section H.3) shows EULER is
close to the lower bound except for a factor in the horizon
and logarithmic terms:

Proposition 1. If EULER is run on a deterministic MDP
then the regret is bounded by O(SAH?).

Highly mixing domains Recently, (Zanette & Brunskill,
2018) show that it is possible to design an algorithm that can
switch between the MDP and the contextual bandit frame-
work while retaining near-optimal performance in both with-
out being informed of the setting. They consider mapping
contextual bandit to an MDP whose transitions to different
states (or contexts) are sampled from a fixed underlying
distribution over which the agent has no control.

The Bandit-MDP considered in Zanette & Brunskill (2018)
is an environment with high stochasticity (the MDP is highly
mixing since every state can be reached with some probabil-
ity in one step). Since the transition function is unaffected
by the agent, an easy computation yields rng Vf* <1,
as replicated in Appendix A.2. A regret guarantee in the
leading order term of order O(v/SAT) for EULER which
matches the established lower bound for tabular contextual
bandits (Bubeck & Cesa-Bianchi, 2012) follows from corol-
lary 1.2. This is useful since in many practical applications
it is unclear in advance if the domain is best modeled as
a bandit or a sequential RL problem. Our results improve
over (Zanette & Brunskill, 2018) since EULER has better
worst-case guarantees by a factor of v/H. Our approach is
also feasible with next-state distributions that have zero or
near zero mass over some of the next states: in contrast to
prior work, the inverse minimum visitation probability does
not show up in our analysis.
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7. Related Literature

In infinite horizon RL, prior empirical evaluation of Q* in
(Maillard et al., 2014) has shown encouraging performance
in a number of common benchmarks that Q* has small
value and its size relates to the hardness of solving the RL
task. The theoretical results provides a regret bound whose

leading order term is 0] (pioDS \/Q*AT) (where pq is the

minimum (non-zero) transition probability), and generally
does not improve over worst case analysis for the infinite
horizon setting. Our algorithm operates in an easier setting
(finite horizon) where it can improve over the worst case, but
it is an open question whether an improvement is possible
in infinite horizon.

Our connection with (Bartlett & Tewari, 2009; Fruit et al.,
2018; Zanette & Brunskill, 2018) has already been de-
scribed. Here we focus on the remaining literature. We
again note that the infinite horizon setting offers a number
of important complexities and comparisons to the finite hori-
zon setting (as considered here) cannot be directly made;
however, as some of the closest related work lies in the
infinite horizon setting, we briefly discuss it here.

e Bounds that depend on gap between policies: In the infi-
nite horizon setting, (Even-Dar et al., 2006) has bounds
dependent on the minimum gap in the optimal state ac-
tion values between the best and second best action, and
UcRL2 (Jaksch et al., 2010) has bounds as function of the
gap in the difference in the average reward between the
best and second best policies. Such gaps reflect an inter-
esting alternate structure in the problem domain: note that
in prior work as these gaps become arbitrarily small, the
bound approaches infinity: even in such settings, if the
next state variance is small, our bound will stay bounded.
An interesting future direction is to consider bounds that
consider both forms of structure.

e Regret bounds with value function approximation: In
finite horizon settings, (Osband & Roy, 2014) uses the
Eluder dimension as a measure of the dimensionality of
the problem and (Jiang et al., 2017) proposes the Bellman
rank to measure the learning complexity. Such measures
capture a different notion of hardness than ours and do
not match the lower bound in tabular settings.

e Infinite horizon results with additional properties of the
transition model: the most closely related work to ours
is (Talebi & Maillard, 2018) who also develop tighter
regret bounds as a function of the next-state variance, but
for infinite horizon settings. Exploration in such settings
is nontrivial and the authors leverage an important as-
sumption of ergodicity (which has also been considered
in (Auer & Ortner, 2006). Specifically the agent will visit
every state regardless of the current policy, and the rate
of this mixing appears in the regret bound. An interesting

and nontrivial question is whether our results can be ex-
tended to this setting without additional assumptions on
the mixing structure of the domain.

A natural additional question is whether prior algorithms
also inherit strong problem dependent rounds. Indeed, re-
cent work by (Dann & Brunskill, 2015; Azar et al., 2017)
has also used the variance of the value function at the next
state in their analysis, though their final results are expressed
as worst case bounds. However, the actual bonus terms used
in their algorithms are distinct from our bonus terms, per-
haps most significantly in that we maintain and leverage
point-wise upper and lower bounds on the value function.
While it is certainly possible that their algorithms or oth-
ers already attain some form of problem dependent perfor-
mance, they have not been analyzed in a way that yields
problem dependent bounds. This is a technical area, and
performing such analyses is a non-trivial deviation from a
worst-case analysis. For example, the current worst case
bounds from Azar et al. (2017) yield a regret bound that
scales as O(vVHSAT + v H?T + S2AH?) and it is a non-
trivial extension to analyze how each of these terms might
change to reflect problem-dependent quantities. One of our
key contributions is an analysis of the rate of convergence of
the empirical quantities about properties of the underlying
MBDP to the real ones in determining the regret bound.

8. Future Work and Conclusion

In this paper we have proposed EULER, an algorithm
for episodic finite MDPs that matches the best known
worst-case regret guarantees while provably obtaining much
tighter guarantees if the domain has a small variance of
the value function over the next-state distribution Q* or
a small bound in the possible achievable reward. EULER
does not need to know these MDP-specific quantities in
advance. We show that Q* is low for a number of important
subclasses of MDPs, including: MDPs with sparse rewards,
(near) determinisitic MDPs, highly mixing MDPs (such as
those closer to bandits) and some classical empirical bench-
marks. We also show how our result helps answer a recent
open learning theory question about the necessary depen-
dence of regret results on the episode horizon. Possible
interesting directions for future work would be to examine
problem-dependent bounds in the infinite horizon setting,
incorporate a gap-dependent analysis, or see if such ideas
could be extended to the continuous state setting.
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