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Abstract
We present Circuit-GNN, a graph neural network
(GNN) model for designing distributed circuits.
Today, designing distributed circuits is a slow pro-
cess that can take months from an expert engi-
neer. Our model both automates and speeds up
the process. The model learns to simulate the
electromagnetic (EM) properties of distributed
circuits. Hence, it can be used to replace tradi-
tional EM simulators, which typically take tens
of minutes for each design iteration. Further, by
leveraging neural networks’ differentiability, we
can use our model to solve the inverse problem –
i.e., given desirable EM specifications, we propa-
gate the gradient to optimize the circuit parame-
ters and topology to satisfy the specifications. We
exploit the flexibility of GNN to create one model
that works for different circuit topologies. We
compare our model with a commercial simulator
showing that it reduces simulation time by four
orders of magnitude. We also demonstrate the
value of our model by using it to design a Ter-
ahertz channelizer, a difficult task that requires
a specialized expert. The results show that our
model produces a channelizer whose performance
is as good as a manually optimized design, and
can save the expert several weeks of topology
and parameter optimization. Most interestingly,
our model comes up with new designs that differ
from the limited templates commonly used by en-
gineers in the field, hence significantly expanding
the design space.

1. Introduction
Distributed circuit design refers to designing circuits at
high frequencies, where the wavelength is comparable to
or smaller than the circuit components. It is increasingly
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Figure 1. Examples distributed circuits templates based on square
resonators. Each template has multiple control parameters like xi.

important since new 5G and 6G communication technolo-
gies keep moving to higher and higher frequencies. Unlike
lower frequencies, where there are relatively fast tools and
a large literature on design guidelines, designing distributed
circuits is a slow and onerous process. The process goes
as follows. An expert engineer comes up with an initial
design based on desired specifications (e.g., design a band-
pass filter at 300 GHz, with a bandwidth of 30 GHz). To do
so, typically the engineer picks an initial template and opti-
mizes its parameters. Fig. 1 shows common templates used
in the literature (Hong, 2011). The engineer then spends
extensive effort optimizing the parameters of the template
(the xi’s in Fig. 1) so that the circuit satisfies the desired
specifications. The optimization is done iteratively. In every
iteration, the engineer sets the parameters in the template
to some values, simulates the design, and compares the
output of the simulation to the specifications. Each simula-
tion takes tens of minutes during which the simulator runs
mainly a brute-force numerical solution of the Maxwell EM
equations. This iterative effort may turn out to be useless
if the chosen template topology cannot satisfy the desired
specifications, and a new template must be tried and opti-
mized using a new set of iterations. The process can take
days, weeks, or months.

In this paper, we introduce a learning model that speeds
up and automates this process. Our model addresses both
the forward and inverse design problems. The forward task
takes a circuit design and produces the resulting s21 func-
tion, which relates the signal on the circuit’s output port
to the signal at its input port. Said differently, the forward
task produces the output of the EM simulator but using a
neural network. The inverse task on the other hand takes
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the specifications, i.e., a desired s21 function, and produces
a circuit that obeys the desired specifications. To solve the
inverse task, we leverage that neural networks are differen-
tiable. Thus, given a desirable s21 and an initial circuit, we
back-propagate the gradient to optimize the circuit design
so that it satisfies the desired specifications.

Designing a neural network model for distributed circuit
design is challenging. The straightforward approach needs
to train a different network for each template. This would
be inefficient as clearly there is much shared information
across templates. Furthermore, such an approach limits the
design space to a specific set of templates, and prevents the
model from attempting to design new templates.

To address these challenges, we develop a Graph Neural
Network (GNN) model that works across a broad class of
templates. We leverage that distributed circuits are typi-
cally designed using resonators as their building blocks.
For example, it is common to use square resonators as in
Fig. 1 (Hong & Lancaster, 1996), or ring resonators (Hong,
2011). By manipulating the number of resonators, their in-
ternal parameters, their relative distances, and orientations,
one can design different circuits (Hong, 2011). Our ap-
proach leverages this property. We model the resonators in
each circuit as nodes in a graph, and their electromagnetic
coupling as edges between the nodes. This allows us to
design a unified model that applies across templates. Apart
from sharing information across templates, this design al-
lows the network to produce new templates beyond the ones
commonly used in the field. Designing a valid circuit how-
ever by back-propagation is non-trivial because nodes have
to fit in a planner space and cannot overlap. To deal with
these constraints we develop a novel multi-loop gradient
descent algorithm with local re-parameterization.

This paper makes the following contributions:

• This paper is the first to present a deep learning model
for circuit design that works across circuits with differ-
ent templates, i.e., circuits that differ in the topology
and number of basic components. All past papers train
a separate neural network per template (Cao et al.,
2009; Feng et al., 2016; 2017).

• The paper also presents the first deep learning model
that solves the inverse distributed circuit design prob-
lem. Only (Zhang et al., 2018a) tried to solve the
inverse problem, but their scheme works only for cir-
cuits with one parameter, and hence is not practical.∗

• The paper introduces a novel approach for solving in-
verse optimizations over GNNs, where valid solutions
have to maintain a planner graph with non-overlapping

∗The authors of (Zhang et al., 2018a) propose to map the spec-
ifications to an intermediate analytical representation called the
”coupling matrix”, but there is no general solution that maps a
coupling matrix to an actual distributed circuit design.

nodes. We do so via the re-parameterization in sec-
tion 3.2.2. We believe this setup applies beyond circuit
design to other graphs where nodes have a geometric
and physical meaning.

• Finally, the paper proposes an alternative approach for
combining the feature maps of the nodes to generate
the feature map for the whole graph in a GNN. Un-
like past work on GNN where the graph is represented
using the sum or pooling operation, we propagate the
information from the internal nodes to the input and
output nodes, and represent the graph as a concatena-
tion of the feature maps of the input and output nodes.
We believe this is more suitable for graphs that interact
with the rest of the world via specific inputs and out-
puts (e.g., circuits which has input and output ports). It
also empirically works better for our GNN.

We believe the paper makes an important leap towards learn-
ing circuit design by providing a practical solution that
addresses relatively complex real-world circuit design prob-
lems.

2. Related Work
2.1. Learning-Based Circuit Design

Prior work on using machine learning for circuit design
focuses on lumped design, where the circuit is represented
as connections between lumped components: resistance,
capacitance, inductance, transistor, etc. Such an approach
however does not apply to high-frequency circuits, which
require a distributed design. Further, these solutions train
a separate model for each template and cannot work with
unseen templates that were not used for training (Colleran
et al., 2003; Liu et al., 2009; Lyu et al., 2018a;b;c; Wang
et al., 2014; He et al., 2018). Some prior work has tried
to do circuit optimization across topologies using genetic
programming (McConaghy et al., 2011; Lourencco & Horta,
2012). These papers are different from ours both in terms
of technical design and the fact that they target lumped cir-
cuits. They also face challenges including low convergence
rate, slow optimization speed, and a difficulty in producing
meaningful designs (Sorkhabi & Zhang, 2017).

Prior attempts at learning distributed circuit design have key
limitations (Cao et al., 2009; Feng et al., 2016; 2017). On
the one hand, each of their trained models works only with
a particular template and parameter setting, while our GNN
works across templates. On the other hand, unlike our model
which directly predicts the values of the transfer function,
s21, for different frequencies, they predict a parameterized
version of the s21 function. Specifically, they leverage that
the transfer function can be approximated as s21(ω) =∑N

i=1
ai

jω−bi , where ω is the frequency and ai and bi are
complex parameters. Thus,instead of predicting the function
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Figure 2. Illustration of the forward and inverse models.

s21(ω), they train a neural network to predict the parameters
ai and bi. This approach has several limitations. First, given
a particular template even without any parameter setting,
it is not clear how many parameters, ai and bi, one needs
to have for a good representation of the transfer function.
Thus, past work, for each template, trains multiple neural
networks. Second, during inference, it is not clear how to
pick the best network for a particular template. Thus, past
work trains an additional model that selects which network
to use from the set of networks associated with that template.

2.2. Graph Neural Networks for Relation Modeling

Graph neural network (GNN) is a well-known architecture
for modeling relations. Researchers have used GNN to
model interaction between physical objects (Watters et al.,
2017; Zheng et al., 2018; Battaglia et al., 2016), chemical
bonds between atoms (Jin et al., 2017; 2018), and social
networks (Perozzi et al., 2014). GNN has also been used
in computer vision for modeling the human skeleton for
activity recognition (Zhang et al., 2018b) and person re-
identification (Shen et al., 2018). We are inspired by these
prior work; however we apply GNN to a new domain where
the nodes in the graph are circuit components, and the rela-
tionships between them stem from electrical and magnetic
coupling. We leverage our domain knowledge to customize
GNN to our problem and ensure the model capture the un-
derlying electromagnetics and produces valid circuits.

3. Learning Distributed Circuit Design
Figure 2 provides a high-level abstraction of our model. In
the forward direction, the model maps a given circuit to the
corresponding transfer function (i.e. s21). In the inverse
direction, the model uses gradient descent to optimize the
circuit topology and parameters to produce a desired s21.

In the context of distributed circuit design, circuits have
a geometric representation as illustrated in the left panel
of Figure 2 or the templates in Figure 1. Typically, these
circuits are compositions of a parametrizable building block.
Common building blocks include square resonators (Hong
& Lancaster, 1996) like the ones in Figure 1, ring res-
onators (Hong, 2011), or bar resonators (Levy et al., 2002).
The behavior of the circuit, i.e., its transfer function, de-
pends on how each resonator is parametrized, the distance
between the resonators, and their relative orientation. For
example, the square resonators in Figure 1 may have slightly

different sizes. They also have a slit that can be facing up,
down, left, or right. Further, they are separated by different
gaps which affect their coupling behavior. For clarity, we
will describe our design in the context of square resonators,
as the key building block. Our approach, however, is gen-
eral and applies to circuits built using other resonators or
building blocks.

3.1. Forward Model

The goal of the forward model is to allow the circuit designer
to quickly obtain the transfer function of his/her design. It
takes as input the geometric representation of the circuit,
and outputs a complex-valued vector that provides a discrete
representation of the circuit transfer function s21.

3.1.1. MODEL

Figure 3 shows a detailed description of the forward model.
The figure shows that the model has four steps, which we
describe below.

STEP 1: From Circuit to Graph. In the first step, we
map the circuit geometric representation to a graph, where
each node refers to a resonator and each edge refers to the
interaction (i.e., the electromagnetic coupling) between a
pair of resonators.

A circuit having N square resonators has N raw parame-
ter vectors. Each square resonator has a parameter vector
[x, y, a, θ]T as shown in Figure 4(a), where (x, y) is the
center position of the square, a is the side length of the
square, and θ is the angular position of the slit. From this
raw input, we generate a graph circuit representation with
node attributes and edge attributes. Node i has attributes
ni containing [ai, θi]

T which is a subset of the raw parame-
ters. Notice that the resonator center position information
are not provided to the node because the absolute positions
of the circuit is meaningless. Edge attributes eij between
node i and node j contain [θi, θj , xi−xj , yi−yj , gij , sij ]T
where xi − xj and yi − yj are the relative position of the
two components. gij and sij indicate the length of the gap
and shift between two square resonators as demonstrated
in Figure 4(b). Gap and shift informations are included
in the edge attributes because they are important to infer
the coupling coefficient between two resonators (Hong &
Lancaster, 1996). Note that not all pairs of nodes in the
graph have an edge. Since electromagnetic coupling decays
with distance, we leverage the data in (Hong, 2011) to set a
threshold on distance beyond which two resonators do not
share an edge. (See graphs in Figure 5.)

STEP 2: Graph Encoding. In this step, we use GNN to
extract the nodes’ and edges’ features. We process the graph
circuit input using a k-layer graph neural network. The tth

GNN layer has two sub-nets node processor f tn and edge
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Figure 3. Forward Model. Step 1 maps circuit geometry to a graph; step 2 performs graph encoding using a GNN; step 3 generates a
global representation of the original circuit, finally step 4 predicts the circuit’s complex-valued transfer function.
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Figure 4. Data contributing to node and edge attributes. (a)
shows a resonator which is described by 4 parameters: its center
position (x, y), the angular position of its open slit θ, and its edge
length a; (b) shows the definition of gap and shift in our setting.
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Figure 5. Graph examples. Figure shows two circuits and the
resulting graphs. Note that the edge between node 0 and node 3
disappears when they are too far from each other.

processor f te . The input node features ηt−1
i are transformed

to outputs as follows. First we compute the coupling effect
that every resonator receives from its neighbors. We use
εtij to denote the coupling effect imposed on resonator i by
its nearby resonator j. For this edge effect εtij , we call i
and j the receiver node and sender node respectively. We
use the edge processor f te to learn this effect. Its input is
the concatenation of receiver node features, sender node
features and the edge attributes. Mathematically, we can
calculate the edge effect from node j to node i as follows,
εtij = f te(ηt−1

i ,ηt−1
j , et−1

ij ). Second we sum all the edge ef-
fects at each node as its total received coupling effect. Then
the node processor is used to update the node features based
on its current node features and the total coupling effect this
node received. Thus the new features for node i, ηt

i can
be calculate as ηt

i = f tn(ηt−1
i ,

∑
j ε

t
ij). In implementation,

we model node and edge processors f tn, f
t
e as Multilayer

perceptrons (MLP) with LeakyReLU activations.

STEP 3: Graph Summarization. In this step, we trans-
form all graph node features into a fixed length global graph
features g. To do so, we concatenate the features of two
special nodes that represent the components that connect
the circuit to the input and output ports. Mathematically,
g , [ηk

0 ,η
k
1 ] since we have manually indexed the square

resonators connected to input/output ports as 0 and 1.

(a) 4-resonator (b) 5-resonator
Figure 6. Visualization of the allowed moving ranges for each
resonator in the circuit during one optimization step. The cyan box
indicates the area where the resonator could move, and the cyan
arrow shows the sampled direction during that optimization step.

STEP 4: Prediction. Finally, in the last stage, we use the
prediction network to predict the circuit’s transfer function.
The prediction network outputs the prediction ŷ of the s21

parameter for the circuit graph g. Since the transfer function
is complex-valued we design the prediction network as a
multi-layer fully connected network with residual links and
complex-valued weights. The output is a complex-valued
vector ŷ that provides a discrete representation of the circuit
transfer function, i.e., ŷ , [s21(ω1), · · · , s21(ωm)]T where
{ωi}mi=1 indicates the frequency samples from the circuit
working frequency Ω , [ωmin, ωmax].

The model represented by the above four steps is a compo-
sition of neural networks, and hence it can be represented
as an end-to-end neural network. Denoting the raw circuit
parameter as r ∈ RN×4, our model is taught to capture the
relationship ŷ(r) between circuit parameters r and the true
(discretized) transfer function y ∈ Cm.

3.1.2. TRAINING

We use the conventional supervised learning paradigm to
train our model. During training, l1 loss are used. The
loss function is L(θ) , E(r,y)∼D‖<(ŷ(r; θ) − <(y)‖1 +
‖=(ŷ(r; θ)−=(y)‖1, where D is the dataset containing all
traing samples (r,y).

3.2. Inverse Optimization

We describe how we use the forward neural network model
to solve the inverse problem and obtain a circuit design that
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satisfies a given transfer function.

3.2.1. OPTIMIZATION OBJECTIVE

Our model’s ability to solve inverse design problem is auto-
matically gained by the differentiable nature of the neural
network. For any differentiable objective function J (ŷ)
over the transfer function ŷ, we can apply gradient descent
methods to optimize the input parameters of the neural net-
work. In particular, consider a designer who wants to obtain
a circuit geometry that satisfies a desired transfer function
y∗. We can define the objective function as the l2-norm of
the difference between the desired transfer function and that
delivered by our design, i.e. J (ŷ) , ‖ŷ(x) − y∗‖2. The
choice of the objective function can also change depending
on the design. For example, when designing a band-pass
filter, the goal is to allow signals in specific frequency bands
to pass through, and block signals outside the desired bands.

In this case, we set the objective function to be the squared
distance between the circuit transfer function and an ideal
one as shown in Eqn. 1.

J (ŷ) =
∑

i:ωi∈Ω∗

(|ŷi| − 1)2 +
∑

i:ωi /∈Ω∗

|ŷi|2 (1)

Here, Ω∗ indicates the union of all pass-bands. An ideal
transfer function would satisfies |y(ω)| = 1[ω∈Ω∗] i.e.
blocking all signals outside the pass-band Ω∗.

3.2.2. RE-PARAMETERIZATION

Unfortunately, solving the inverse problem simply by back
propagating the gradient may lead to an invalid circuit de-
sign. The feasible set of the solution space (the space for
all valid circuits) is not convex. For example, in a circuit,
Component A could be on the left of Component B or the
right of Component B. But if we interpolate the two cases,
component A and Component B will overlap resulting in an
invalid circuit. Thus, we need to design a gradient projec-
tion mechanism to make sure that during the optimization
the circuit will never be outside the space of valid circuits.
Or, alternatively, we can re-parameterize the circuit such
that all solutions in the new parameter space are guaranteed
to be valid.

Among all raw input parameters, only the change of res-
onator center positions may cause an invalid circuit. To
address this issue, we introduce a novel re-parameterization
to the center positions {pi = (xi, yi)}Ni=1. First, we
make a constraint that in each optimization step, a res-
onator can move along only one of the four directions: left,
right, up and down. To do this, we uniformly sample a
direction vector di for each resonator from the space {(-
1,0),(1,0),(0,-1),(0,1)}. Second, we compute the maximum
distance mi that a resonator can move along the chosen
direction. The maximum distance is decided to ensure that

x1 x2

x3

x4

x5

x6

Figure 7. The schematic of a THz channelizer. It is designed by
an human expert using weeks. It contains 3 submodule filters at
different frequencies.

no two resonators collide even if all resonators move the
furthest allowed. We then re-parameterize the center posi-
tion of a resonator pi by the parameter qi ∈ R as follows,
pi = p∗i + σ(qi)midi where σ(·) is the sigmoid func-
tion and p∗i is the original center position of the resonator.
Since the sigmoid function is limited between 0 and 1, this
re-parameterization ensures that the center position of a
resonator does not move by more than the maximum allow-
able distance mi in the direction di. Figure 6 shows two
random examples of acceptable moving ranges for all res-
onators in the circuit during one optimization step. Notice
that although in each optimization step the resonator can
only move in one direction, in the longer run, a resonator is
still able to go everywhere by zig-zaging.

4. Experimental Evaluations
4.1. Distributed Circuits

Templates with square resonators. We experiment with a
broad class of distributed circuits templates based on open-
loop square resonators. Each such circuit is a composition
of a number of square resonators with different width, rel-
ative location, and orientation. As illustrated in Figure 4,
each resonator is characterized by four parameters, its cen-
ter position (x, y), the angular position of its open slit θ,
and the square width a. These templates are designed and
simulated on the metal layers of an integrated chip based
on the IHP SG13G2 process (IHP, 2018), a real world high
frequency IC platform. The operation frequency of these
circuits varies between 200 GHz to 400 GHz. In our ex-
periments, during the data generation stage, we force all
the resonators in one circuit to have an equal width a. The
range of a is set to [50µm, 75µm]. Resonator center posi-
tion (xi, yi) is sampled in a manner that fulfill the constraint
that the gap between two nearby resonators should be in
a reasonable range such as [ ai

80 ,
ai

5 ]. The slit position θ of
each resonator is independently sampled from U [0, 2π). As
for the circuit topology, it is sampled from some predefined
topology patterns. An overview of all topologies in our
dataset† is visualized in supplementary.

†For more dataset details, please see our project website:
https://circuit-gnn.csail.mit.edu.

https://circuit-gnn.csail.mit.edu
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Table 1. Performance of forward learning on circuits with dif-
ferent number of resonators. Number of training samples are
also listed here. Three-resonator and six-resonator circuits are only
included in testset. The table shows that the model generalizes
well even to circuit topologies and sizes that never seen in training.

# of Resonators # of Samples Training Error Test Error
3 5790 - 1.423 dB
4 46423 0.923 dB 1.386 dB
5 37488 1.097 dB 1.785 dB
6 5859 - 2.552 dB

THz channelizer. Designing a Terahertz circuit is very chal-
lenging. We consider a real-world THz channelizer, which
is used for a 100-Gbps-level chip-to-chip communication
IC. The channelizer is designed by a senior Ph.D. student
in the Terahertz research group in our department. This
design took him weeks and involved simulations on a su-
percomputer. It is designed on the same IC plateform as
we are using. The channelizer operates from 200 GHz to
400 GHz and has three channels centered at 235, 275 and
315 GHz, each having a bandwidth of 30 GHz. As shown
in figure 7, the channelizer has 3 sub-modules that corre-
spond to the three channels. In this work, we are going to
show our model can actually design a THz chanelizer using
square resonators which outperforms the human design for
the desired specifications.

4.2. Dataset and Training Protocol

To train our network, we generate labeled examples using
the CST STUDIO SUIT (CST official website, 2018), a
commercial EM simulator. Generally, it takes about 10
to 50 CPU minutes to simulate one circuit. We generate
about 100,000 circuit samples made of 3 to 6 resonators on
a distributed computing cluster with 800 virtual CPU cores.
We train on 80% of the data with 4 and 5 resonators, and
test on the rest, including the data with 3 and 6 resonators
which are 100% reserved for testing. Training uses the
Adam optimizer (Kingma & Ba, 2014) and a batch-size of
64. In total, the model is trained 500 epochs. The learning
rate is initialized as 10−4 and decayed every 200 epochs by
a factor of 0.5.

One may wonder whether training on simulated circuits can
capture the real-world circuits. Unlikely simulators in other
fields, circuits simulators are highly accurate for two reasons.
First, the manufacturing process can generate a circuit that
accurately matches the simulated geometry and material.
Second, the simulator solves the Maxwell equations which
capture the exact physics with no approximation.

4.3. Evaluation of the Forward Task

We train our model on circuits with 4 and 5 resonators
and test on circuits with 3, 4, 5, and 6 resonators. For
each test case, we compute the error as the mean value

of the absolute difference between the magnitude of the
predicted s21 parameter ŷ and the ground truth y in dB, i.e.
εdb(ŷ,y) , 1

m

∑m
i=1 |20 log10(|yi|) − 20 log10(|ŷi|)|. As

common in circuit literature, we express the error in the dB
domain.

Table 1 shows the evaluation results of the forward model
prediction. The table shows that our model achieves a mean
training error of 0.92dB, and 1.10dB on circuits with four
and five resonators respectively. Such an error is fairly small,
indicating that a single model is able to fit the data and
captures the electromagnetic properties of both 4-resonator
and 5-resonator circuits.

In terms of generalization, we consider both the model’s
ability to generalize to circuits with the same number of
resonators as those it trained on (4, and 5 resonators), and
circuits with different numbers of resonators that the model
never seen (3 and 6 resonators). We refer to these two
cases as same-topology-size and different-topology-size.
The table shows that for topologies of 4 and 5 resonators,
the test error is 1.40dB and 1.79dB. While these errors are
larger than the training errors, they are still reasonably good.
We believe that the difference in error between training and
testing is due to limited data. With a larger training dataset,
the error can be smaller.

A key characteristic of our GNN mode is its ability to gener-
alize to new topologies with a different number of resonators
than those used in training. Table 1 shows that error on three-
resonator circuits are about the same as the errors on four or
five-resonator circuits, while the error of six-resonator cir-
cuits is slightly higher than that of four and five resonators.
Since an error of a few dB at such high frequencies is still
reasonable, we believe our model does learn the relational
effects between resonators and has the ability to generalize
to new circuits templates unseen in the training.

For qualitative evaluation, we visualize randomly sampled
prediction results for all kinds of circuits in Figure 8. Every
row in the figure corresponds circuits with the same number
of resonators. In each raw, we display two circuits with
different topologies to illustrate that our model is robust
to topology variations. As we can see, the model predicts
accurate s21 parameter. Some tiny error appears in the less
important frequency range in the stopband which are far
from the passband of the filter. Prediction results on six
resonator circuits is the most difficult. Although not exactly
recovering the s21, our model still accurately predicts the
peak position and the filter cut-offs.

In terms of the run-time for prediction, our model con-
ducts one prediction in 50 milliseconds on a single NVIDIA
1080Ti GPU which is four orders of magnitude faster than
running one simulation using CST on a modern desktop.

Finally, we show example cases where the model fails and
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Figure 8. Qualitative results of the forward model: In each of the eight plots, the circuit is drawn on the left and the s21 are plotted on
the right. The dashed lines and solid lines indicate the ground truth and our prediction respectively. In the circuit pictures, the position of
input/output ports are indicated by two yellow arrows. We use black dashed lines to highlight the resonator pairs that are close enough to
have relatively strong coupling effects.

generates large prediction error. For further analysis, we
visualize some bad examples in Figure 9. In these cases,
our model outputs the right trend of the s21 parameters,
but mistakenly predicts the position of peaks (upside and
downside) or predicts a wrong peak value.

Overall we believe these results show a significant leap in
learning distributed circuit design. They enable engineers to
quickly simulate their designs to ensure that they are within
a few dB of the desired specifications. If more accuracy is
desired, the engineers may then fine tune the final design
using a commercial simulator. We will next show that the
model can be used to automatically generate new circuit
designs and expand the design space.

4.4. Evaluation of the Inverse Optimization

We evaluate our model’s ability to solve the inverse design
problem by comparing it with both a human expert and
commercial software.

4.4.1. COMPARISON WITH HUMAN EXPERT

We compete with a human expert on the task of designing
the Terahertz channelizer described in section 4.1. We de-
sign each sub-modules of the channelizer individually as the
human expert did. To design a sub-module which basically

is a uni-band filter, we employ the filter design objective
function introduced in Eqn. 1. We start from 200 random
initialized circuits with different number of resonators and
topologies. We then iteratively apply the local reparameter-
ization and gradient descent steps 5000 times to optimize
those circuits in parallel. At the end, we pick the circuit
that produces the best objective value as our inverse design
result. The whole process is fast and completes in less than
2 minutes on a single GPU.

We compare the transfer function produced by our model
with the transfer function of the channelizer designed by the
human expert using the CST simulator. Figure 10 shows
the transfer functions for both designs. Recall that the chan-
nelizer is required to have three bandpass filters, which we
highlight with the shaded regions in the figure. Generally,
the frequency region where the transfer function is over
−6dB is considered as the pass-band of the circuit. By com-
paring the expert design with the automated design from
our model, we see that both designs are centered perfectly
in the desired frequency bands. Further, by looking at the
area above the -6dB line, we see that the filter designed by
our model has better insertion loss –i.e., it delivers more
power in the desired bands. In the supplementary material,
we show the circuit designed by the model, which is differ-
ent from the human picked circuit shown in Figure 7. This
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Figure 9. Failure examples: These examples have relatively large
error, however, they still capture the trend of the s21 curve.

Figure 10. The transfer function of our optimized channelizer vs.
the channelizer designed by the human expert. The yellow area
indicate the desired pass-bands. Generally, the frequency region
where the transfer function is over −6dB is considered as the
pass-band. The difference from 0dB is the insertion loss.

shows that the model has figured out a new circuit design
that differs from the one produced by the human expert.

Finally, we note that the human expert spent several weeks
optimizing the parameters in the channelizer’s template to
obtain his design, This indicates that the model could save
the expert weeks of work. Even if the expert may not use the
output of the model as is, starting from such a close design
can save the expert much time and effort and this method is
always fail-safe.

4.4.2. COMPARISON WITH COMMERCIAL SOFTWARE

Commercial circuit simulators provide automatic parameter
tuning tools that engineers may use to tune their design. In
this section, we compare our model with CST parameter tun-
ing, for the task of designing a uni-band bandpass filter. The

(a) CDF of Pass-band IOU (b) CDF of Insertion Loss
Figure 11. Our model versus commercial software (CST) for cir-
cuit design. Our model (in red) has higher pass-band IOU and
lower insertion loss than CST (in blue).

filter bandwidth and center frequency are randomly chosen
in [20, 40] GHz and [235, 315] GHz respectively. CST is al-
lowed to run 450 simulations to search for a suitable design
using the particle swarm method. In total, each CST design
takes about 8 hours. In contrast, our model proposes only
10 design candidates. Running simulations to verify the
candidates and pick the best one takes around ten minutes.

To evaluate the resulting filters, we use two metrics corre-
sponding to two crucial filter properties: Pass-band IOU
is used to measure how close the pass-band of the circuit
is to the target band. Specifically, the pass-band of a cir-
cuit is defined as the frequency region where the transfer
function magnitude is higher than its maximum magnitude
minus 3db. Assume the circuit’s pass-band is Ω = [ωL, ωR]
and the pass-band wanted is Ω∗, the pass-band IOU is the
intersection over union between Ω and Ω∗, i.e |Ω∩Ω∗|

|Ω∪Ω∗| . In-
sertion Loss is defined as the negative of the maximum
transfer function magnitude. The smaller the insertion loss
is, the more power the circuit delivers in the desired bands,
and hence the better the circuit is.

The results shown in figure 11 demonstrate that the circuits
produced by our model have better pass-band IOU and
insertion loss. On average across all 60 design tasks, the
circuits produced by our model have 0.80 pass-band IOU
and 4.13db insertion loss while the circuits delivered by
CST have 0.73 pass-band IOU and 4.92db insertion loss.

5. Conclusion
We present a powerful graph neural network model that
can be used both for simulating distributed circuits, and
automating the design process. The key property of the
model is its ability to capture various circuits that differ
in their topologies and sizes. We show that the model can
reduce circuit simulation time by four orders of magnitude,
while maintaining reasonable accuracy. We believe engi-
neers can use the model to quickly hone in on a good design.
They may then leverage a commercial simulator for final
tuning. We also show that the model generates new circuit
designs to match desired specifications. Interestingly these
generated circuits are intrinsically different from the regu-
lar standard templates which confine today’s designs. This
capability is helpful for both automating circuit design and
also expanding the design space.
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