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Abstract
Randomized sketching has been used in offline
kernel learning, but it cannot be applied directly to
online kernel learning due to the lack of incremen-
tal maintenances for randomized sketches with
regret guarantees. To address these issues, we
propose a novel incremental randomized sketch-
ing approach for online kernel learning, which
has efficient incremental maintenances with theo-
retical guarantees. We construct two incremental
randomized sketches using the sparse transform
matrix and the sampling matrix for kernel ma-
trix approximation, update the incremental ran-
domized sketches using rank-1 modifications, and
construct a time-varying explicit feature mapping
for online kernel learning. We prove that the pro-
posed incremental randomized sketching is statis-
tically unbiased for the matrix product approxi-
mation, obtains a 1 + ε relative-error bound for
the kernel matrix approximation, enjoys a sublin-
ear regret bound for online kernel learning, and
has constant time and space complexities at each
round for incremental maintenances. Experimen-
tal results demonstrate that the incremental ran-
domized sketching achieves a better learning per-
formance in terms of accuracy and efficiency even
in adversarial environments.

1. Introduction
Online kernel learning must rise to the challenge of incre-
mental maintenance in a low computational complexity with
accuracy and convergence guarantees at each round. Online
gradient descent is a judicious choice for online kernel learn-
ing due to its efficiency and effectiveness (Bottou, 2010;
Shalev-Shwartz et al., 2011). However, the kernelization
of the online gradient descent may cause a linear growth
with respect to the model size and increase the hypothesis
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updating time significantly (Wang et al., 2012). To solve the
problem, budgeted online kernel learning has been proposed
to maintain a buffer of support vectors (SVs) with a fixed
budget, which limits the model size to reduce the computa-
tional complexities (Crammer et al., 2003). Several budget
maintenance strategies were introduced to bound the buffer
size of SVs. Dekel et al. (2005) maintained the budget by
discarding the oldest support vector. Orabona et al. (2008)
projected the new example onto the linear span of SVs in
the feature space to reduce the buffer size. But the buffer of
SVs cannot be used for kernel matrix approximation directly.
Besides, it is difficult to provide a lower bound of the buffer
size that is key to the theoretical guarantees for budgeted
online kernel learning.

Unlike the budget maintenance strategies of SVs, sketches
of the kernel matrix have been introduced into online kernel
learning to approximate the kernel incrementally. Engel et al.
(2004) used the approximate linear dependency (ALD) rule
to construct the sketches for kernel approximation in kernel
regression. But the kernel matrix approximation error is not
compared with the best rank-k approximation. Sun et al.
(2012) proved that the size of sketches constructed by ALD
rule grows sublinearly with respect to the data size when
the eigenvalues decay fast enough. Recently, randomized
sketches of kernel matrix were used as surrogates to perform
the offline kernel approximation with finite sample bounds
(Sarlós, 2006; Woodruff, 2014; Raskutti & Mahoney, 2015),
but few efforts have been made to formulate suitable ran-
domized sketches for online kernel learning. Existing online
kernel learning approaches using randomized sketches usu-
ally adopted a random sampling strategy. Lu et al. (2016)
applied the Nyström approach for kernel function approxi-
mation and constructed the explicit feature mapping using
the singular value decomposition, but it fixed the random-
ized sketches after initialization, which is equivalent to the
offline Nyström approach using uniform sampling that may
suffer from a low approximation accuracy in adversarial en-
vironments due to the non-uniformity structure of the data
(Kumar et al., 2009). Calandriello et al. (2017b) assumed
that the kernel function can be expressed as an inner product
in the explicit feature space, and proposed a second order
online kernel learning approach using online sampling strat-
egy, but the construction of the explicit feature mapping
needs to be further explored. Calandriello et al. (2017a)
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formulated an explicit feature mapping using a Nyström
approximation, and performed effective second-order up-
dates for hypothesis updating, which enjoys a logarithmic
regret and has a per-step cost that grows with the effective
dimension.

In this paper, we propose an incremental randomized sketch-
ing approach for online kernel learning. The proposed in-
cremental randomized sketching inherits the efficient incre-
mental maintenance for matrix approximations and explicit
feature mappings, has a constant time complexity at each
round, achieves a 1 + ε relative-error for kernel matrix ap-
proximation, and enjoys a sublinear regret for online ker-
nel learning, therefore presenting an effective and efficient
sketching approach to online kernel learning.

2. Notations and Preliminaries
Let [A]∗i and [A]i∗ denote the i-th column of the matrix
A and the column vector consisting of the entries from the
i-th row ofA respectively, ‖A‖F and ‖A‖2 the Frobenius
and spectral norm of A respectively, and A† the Moore-
Penrose pseudoinverse of A. Let [M ] = {1, 2, . . . ,M},
S = {(xi, yi)}Ti=1 ⊆ (X × Y)T be the sequence of T
instances, where X ⊆ RD and Y = {−1, 1}. We denote
the loss function by ` : Y × Y → R+ ∪ {0}, the kernel
function by κ : X × X → R and its corresponding kernel
matrix by K = (κ(xi,xj)) ∈ RT×T , the i-th eigenvalue
of K by λi(K), λ1(K) ≥ λ2(K) ≥ · · · ≥ λT (K), and
the reproducing kernel Hilbert space (RKHS) associated
with κ byHκ = span{κ(·,x) : x ∈ X}.

2.1. Kernel Matrix Approximation

Given a kernel matrixK ∈ RT×T , the sketched kernel ma-
trix approximation problem in the offline setting is described
as follows (Wang et al., 2016):

Ffast = arg min
F∈RB×B

‖Sᵀ(CFCᵀ −K)S‖2F,

from which we can obtain the approximate kernel matrix
Kfast = CFfastC

ᵀ ≈ K, where S ∈ RT×s is a sketch
matrix, C ∈ RT×B and s,B > 0 are the sketch sizes.
The Nyström approach uses the column selection matrix
P as the sketch matrix (Williams & Seeger, 2001), i.e.,
S = P ∈ RT×B , and formulate C as C = KP , which
yields the approximate kernel matrix Kny = CW †Cᵀ,
where W = P ᵀKP ∈ RB×B . While S = IT ∈ RT×T ,
the modified Nyström approach (also called the prototype
model) (Wang & Zhang, 2013) is obtained as

Kmod = CFmodC
ᵀ ≈K,

where Fmod = C†K (Cᵀ)
†, which is more accurate but

more computationally expensive than the standard Nyström.
But in the context of online kernel learning, the size of

the kernel matrix increases over time, a scenario for which
the offline kernel matrix approximation approaches do not
readily apply due to the lack of efficient incremental main-
tenances with regret guarantees.

2.2. Randomized Sketches

Randomized sketches via hash functions can be described
in general using hash-based sketch matrices. Without
loss of generality, we assume that the sketch size s is
divisible by d. Let h1, . . . , hd be hash functions from
{1, . . . , n} to {1, . . . , s/d}, and σ1, . . . , σd the other d
hash functions. We denote the hash-based sketch submatrix
by Sk ∈ Rn×(s/d) and the hash-based sketch matrix by
S = [S1,S2, . . . ,Sd] ∈ Rn×s, where [Sk]i,j = σk(i) for
j = hk(i) and [Sk]i,j = 0 for j 6= hk(i), k = 1, . . . , d.
The randomized sketch of A ∈ RT×n is denoted by
AS ∈ RT×s. Sketch matrices of different randomized
sketches can be specified by different parameters s, d and
functions {σk}dk=1 as follows.
Count Sketch Matrix (Charikar et al., 2004): d = 1 and
σ1(i) ∈ {−1,+1} is 2-wise independent hash function.
Sparser Johnson-Lindenstrauss Transform (SJLT)
(Kane & Nelson, 2014): For the block construction of SJLT,
σk(i) ∈ {−1/

√
d,+1/

√
d} is O(log T )-wise independent

hash function for k = 1, . . . , d, where d is the number of
blocks. SJLT is a generalization of the Count Sketch matrix.

3. Novel Incremental Randomized Sketching
In this section, we propose a novel incremental randomized
sketching approach. Specifically, we construct the incremen-
tal randomized sketches for the kernel matrix approximation,
formulate the incremental maintenance for the incremental
randomized sketches, and build a time-varying explicit fea-
ture mapping. In the online setting, at round t + 1, a new
example xt+1 arrives and the kernel matrixK(t+1) can be
represented as a bordered matrix as follows:

K(t+1) =

[
K(t) ψ(t+1)

ψ(t+1)ᵀ ξ(t+1)

]
∈ R(t+1)×(t+1),

where ξ(t+1) = κ(xt+1,xt+1) and

ψ(t+1) = [κ(xt+1,x1), κ(xt+1,x2), . . . , κ(xt+1,xt)]
ᵀ
.

To approximate the kernel matrix incrementally, we in-
troduce a sketch matrix S(t+1)

p to reduce the complexity
of the problem (2) and another sketch matrix S(t+1)

m to
reduce the size of the approximate kernel matrix, where
S

(t+1)
p ∈ R(t+1)×sp is an SJLT (defined in Section 2.2)

and S(t+1)
m ∈ R(t+1)×sm is a sub-sampling matrix. Using

the two sketch matrices, we first formulate the incremental
randomized sketches ofK(t+1) as follows:

Φ(t+1)
pm = S(t+1)ᵀ

p C(t+1)
m and Φ(t+1)

pp = S(t+1)ᵀ
p C(t+1)

p ,
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where

C(t+1)
p = K(t+1)S(t+1)

p and C(t+1)
m = K(t+1)S(t+1)

m .

ThenK(t+1) can be approximated by

K
(t+1)
sk = C(t+1)

m F
(t+1)
sk C(t+1)ᵀ

m ≈K(t+1), (1)

where F (t+1)
sk ∈ Rsm×sm is obtained by solving the follow-

ing sketched matrix approximation problem at round t+ 1

F
(t+1)
sk = arg min

F

∥∥∥S(t+1)ᵀ
p E

(t+1)
F S(t+1)

p

∥∥∥2
F

=
(
Φ(t+1)

pm

)†
Φ(t+1)

pp

(
Φ(t+1)ᵀ

pm

)†
,

(2)

where E(t+1)
F = C

(t+1)
m FC

(t+1)ᵀ
m −K(t+1).

Next, we design the incremental maintenance for the in-
cremental randomized sketches. We partition the sketch
matrices into block matrices as

S(t+1)
p =

[
S(t)ᵀ
p , s(t+1)

p

]ᵀ
, S(t+1)

m =
[
S(t)ᵀ
m , s(t+1)

m

]ᵀ
,

where s(t+1)
m ∈ Rsm is a sampling vector, s(t+1)

p ∈ Rsp is a
vector that contains d nonzero entries determined by d differ-
ent hash mappings in SJLT. Then we can update the sketch
Φ

(t+1)
pm ∈ Rsp×sm incrementally by rank-1 modifications

Φ(t+1)
pm = Φ(t)

pm + ∆(t+1)
pm ,

where ∆
(t+1)
pm = R

(t+1)
pm + R

(t+1)ᵀ
mp + T

(t+1)
pm consists of

the following three rank-1 matrices

R(t+1)
pm = s(t+1)

p ψ(t+1)ᵀS(t)
m ,

R(t+1)
mp = s(t+1)

m ψ(t+1)ᵀS(t)
p ,

T (t+1)
pm = ξ(t+1)s(t+1)

p s(t+1)ᵀ
m .

Similarly, we update the sketch Φ
(t+1)
pp ∈ Rsp×sp by rank-1

modifications as follows:

Φ(t+1)
pp = Φ(t)

pp + ∆(t+1)
pp ,

where ∆(t+1)
pp = R

(t+1)
pp +R

(t+1)ᵀ
pp + T

(t+1)
pp and the mod-

ifications are performed using two rank-1 matrices

R(t+1)
pp = s(t+1)

p ψ(t+1)ᵀS(t)
p ,

T (t+1)
pp = ξ(t+1)s(t+1)

p s(t+1)ᵀ
p .

Figure 1 illustrates the kernel matrix approximation using
the incremental randomized sketching.

Finally, we construct the time-varying explicit feature map-
ping using the incremental randomized sketches. We decom-
pose Φ

(t+1)
pp via the rank-k singular value decomposition

(SVD) as follows:

Φ(t+1)
pp ≈ V (t+1)Σ(t+1)V (t+1)ᵀ, (3)

( )tK= ( )
p

tS

)
pp
(tΦ

( )
p

tS ᵀ

( 1)
pp
t+Δ

( 1)t +K

( )tK ≈

( 1)
m

t +C
( 1)
m

t +C ᵀ( )†1
pm
( ) t +Φ )

pp
( 1t +Φ ( ))

pm

†( 1t +Φ ᵀ

( 1)t +ψ

( 1)tξ +( 1)t +ψ ᵀ

)
pm
( 1t +Φ

=

)
pp
( 1t +Φ

=

)
pm
(tΦ

)
pp
(tΦ

+

+

( )
p

tS

( +1)
p

tS

( )
m

tS

( +1)
m

tS

( 1)
p
t +s ᵀ ( 1)

m
t +s ᵀ

( 1)
pm
t+Δ ， ，

( 1)tξ +

( 1)t +ψ

，

( )t
aS

( +1)
p

tS

( 1)
p
t +s ᵀ

， ，

( 1)tξ +

( 1)t +ψ

144424443
( 1)

sk
t +F

)
pm
(tΦ

( )
m

tS= ( )tK( )
p

tS ᵀ

Figure 1. The proposed incremental randomized sketching for
kernel matrix approximation at round t + 1, where K(t+1)

sk =

C
(t+1)
m F

(t+1)
sk C

(t+1)ᵀ
m is the approximate kernel matrix, Φ(t+1)

pm

and Φ
(t+1)
pp are two incremental randomized sketches for construct-

ing F (t+1)
sk , ∆(t+1)

pp can be seen as a modification function with
input variables ξ(t+1), ψ(t+1), S

(t+1)
p , and ∆

(t+1)
pm uses an addi-

tional input variable S(t+1)
m . Since the incremental randomized

sketches retain the key information with the efficient rank-1 modi-
fications, our incremental randomized sketching can be computed
in constant time and space complexities and enjoys a sublinear
regret while applied to online kernel learning (see Section 5).

where V (t+1) ∈ Rsp×k, Σ(t+1) ∈ Rk×k and rank k ≤ sp.

Then F (t+1)
sk in (2) is approximated by

F
(t+1)
sk ≈ Qt+1Q

ᵀ
t+1,

where

Qt+1 =
(
Φ(t+1)

pm

)†
V (t+1)

(
Σ(t+1)

) 1
2

,

which yields the approximate kernel matrix from (1)

K
(t+1)
sk ≈

(
C(t+1)

m Qt+1

)(
C(t+1)

m Qt+1

)ᵀ
.

Further, the time-varying explicit feature mapping can be
updated at round t+ 1 by

φt+2(·) = ([κ(·, x̃1), . . . , κ(·, x̃sm)]Qt+1)
ᵀ
, (4)

where {x̃i}smi=1 are the sampled examples obtained by
S

(t+1)
m , by which the kernel function value between the

examples xi and xj can be approximated by κ(xi,xj) ≈
〈φt+2(xi),φt+2(xj)〉.
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4. Application to Online Kernel Learning
Using the time-varying explicit feature mapping φt(·), we
formulate the hypothesis ft(xt) for prediction at round t,
which is an approximation of the optimal hypothesis on the
first t− 1 instances1:

ft(xt) = 〈wt,φt(xt)〉 ≈
∑

i∈[t−1]

α∗i κ(xt,xi),

where wt is the weight vector and {α∗i }i∈[t−1] is the set
of the optimal coefficients of the optimal hypothesis over
the first t − 1 instances. When applying the hypotheses
{ft}t∈[T ] to online kernel learning, the learning procedure
consists of the following two stages. At the first stage,
we use a buffer Vt to store the examples with nonzero
losses, restrict the size of the buffer under a fixed budget B
(sp, sm < B � T ), and perform the Kernelized Online Gra-
dient Descent (KOGD) (Kivinen et al., 2001) until the size
of Vt reaches the budget B. Assuming that T0 rounds have
passed while the budget has been reached, let S(T0)

m be the
uniform sampling matrix, we sample {x̃i}smi=1 using S(T0)

m

and initialize the sketches Φ(T0)
pp , Φ(T0)

pm andQT0
. Then we

obtain φT0+1(·) and initialize the hypothesis wT0+1 such
that

wᵀ
T0+1φT0+1(xT0

) =
∑

xi∈VT0

αiκ(xT0
,xi),

which yields

wᵀ
T0+1 =

∑
xi∈VT0

αiκ(xT0
,xi)

φT0+1(xT0
)ᵀ

‖φT0+1(xT0
)‖22

,

where α = [α1, α2, . . . , αB ]ᵀ is obtained by KOGD. At
the second stage, we update the hypothesis using Online
Gradient Descent (OGD) (Zinkevich, 2003). Denote the
hypothesis at round t using the updated explicit feature
mapping φt+1(·) by

f̄t(xt) = 〈w̄t,φt+1(xt)〉 . (5)

We can obtain w̄t by setting f̄t(xt) = ft(xt), which yields

w̄ᵀ
t = ft(xt)φt+1(xt)

† =
ft(xt) · φt+1(xt)

ᵀ

‖φt+1(xt)‖22
.

Then we update the hypothesis f̄t(·) = 〈w̄t,φt+1(·)〉 in (5)
as follows:

wt+1 = w̄t − η∇Lt(w̄t), (6)

where `t(w̄t) = `t(f̄t) := `(f̄t(xt), yt) and Lt(w̄t) :=
`t(w̄t) + λ

2 ‖w̄t‖
2
2.

1It follows from the representer theorem that it is sufficient
to approximate the optimal hypothesis of the linear combination
form.

To avoid the unbounded sizes of ψ(t+1), S(t+1)
p and S(t+1)

m ,
we fix the sampled examples {x̃i}smi=1 in φt(·), t = T0 +
1, . . . , T, and adopt a periodic updating strategy for Qt.
Specifically, we updateQt in (4) once for every ρ examples
at the second stage, where ρ ∈ [T −B] is the update cycle.
To reduce the time complexity of the matrix decomposition,
we adopt the randomized SVD (Halko et al., 2011) for (3).
Besides, we also use the randomized SVD for computing the
Moore-Penrose pseudoinverse of Φ(t+1)

pm . Finally, we sum-
marize the above stages into Algorithm 1, called sketched
online gradient descent (SkeGD).

Algorithm 1 SkeGD Algorithm
Require: sketch sizes sp and sm, stepsize η, rank k, budget B,

update cycle ρ, number of blocks d, regularization parameter λ
1: Initialize f1 = 0 and V1 = ∅
2: for t = 1, . . . , T do
3: Receive new example xt
4: Predict ŷt = sgn(ft(xt))
5: if |Vt| < B then
6: Vt+1 = Vt ∪ {xt} whenever the loss is nonzero
7: Update ft by kernelized online gradient descent
8: else
9: if |Vt| = B then

10: Initialize T0 = t
11: Initialize Φ

(T0)
pp , Φ(T0)

pm andQT0

12: Initialize φT0+1(·) andwT0+1

13: else
14: if t mod ρ = 1 then
15: Update Φ

(t)
pp and Φ

(t)
pm using rank-1 modifications

16: ComputeQt using Φ
(t)
pp and Φ

(t)
pm

17: φt+1(xt) = ([κ(xt, x̃1), . . . , κ(xt, x̃sm)]Qt)
ᵀ

18: w̄ᵀ
t = ft(xt)φt+1(xt)

ᵀ/‖φt+1(xt)‖22
19: else
20: Qt = Qt−1,Φ

(t)
pp = Φ

(t−1)
pp ,Φ

(t)
pm = Φ

(t−1)
pm

21: w̄t = wt
22: end if
23: wt+1 = w̄t − η∇Lt(w̄t)
24: end if
25: end if
26: end for

5. Theoretical Analysis
In this section, we demonstrate that the proposed incremen-
tal randomized sketching satisfies the low-rank approxima-
tion property, analyze the regret for online kernel learning
and give the complexity analysis for SkeGD. The detailed
proofs can be found in the supplementary material. For
convenience, we denote S(T )

p , S
(T )
m ,C

(T )
m , F

(T )
sk andK(T )

by Sp, Sm, Cm, Fsk andK, respectively.

5.1. Low-Rank Approximation Property

We first present the bias and variance analysis for approxi-
mating the matrix product using Sp in the proposed incre-
mental randomized sketches, which shows that our sketched
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kernel matrix approximation problem (2) is an unbiased esti-
mate of the modified Nyström kernel matrix approximation
problem.

Lemma 1 (Matrix Product Preserving Property). LetA ∈
RT×m and Sp ∈ RT×sp . Then,

E
[
‖Sᵀ

pA‖2F
]

= ‖A‖2F, Var
[
‖Sᵀ

pA‖2F
]
≤ 2

sp
‖A‖4F.

Proof Sketch. We first partition Sp into d hash-based sketch
submatrices, and demonstrate the expectation and variance
while approximating the inner product by Sp, which yields
the unbiasedness for the matrix product approximation.
Then we derive the expectation of ‖Sᵀ

pA‖4F and obtain the
variance of ‖Sᵀ

pA‖2F.

By Lemma 1, we can prove that the proposed incremental
randomized sketching is nearly as accurate as the modified
Nyström for kernel matrix approximation, which is more
accurate than the standard Nyström approach.

Theorem 1 (Low-Rank Approximation Property). LetK ∈
RT×T be a symmetric matrix, ε0 ∈ (0, 1). Fsk ∈ Rsm×sm ,
Cm ∈ RT×sm are matrices defined in (1). Set τ = sm/sp
and d = Θ

(
log3(sm)

)
forSp ∈ RT×sp . LetUm ∈ RT×sm

be a matrix with orthonormal columns, U⊥m ∈ RT×(T−sm)

be a matrix satisfying UmU
ᵀ
m + U⊥m (U⊥m )ᵀ = IT and

Uᵀ
mU

⊥
m = O, and

sp = Ω
(
sm polylog

(
smδ

−1
0

)
/ε20
)
,

then with probability at least 1− δ0 all singular values of
Sᵀ
pUm are 1± ε0, and with probability at least 1− δ

‖CmFskC
ᵀ
m −K‖2F ≤ (1 + ε)‖CmFmodC

ᵀ
m −K‖2F,

where

√
ε = 2τ

√
T

δ1δ2
+

√
2τ

δ2

(
ε20 + 2ε0 + 2

)
, (7)

δi is the failure probability of matrix product preserving as

Pr

{
‖BiAi −BiSpSp

ᵀAi‖2F
‖Bi‖2F‖Ai‖2F

>
2

δisp

}
≤ δi, i = 1, 2,

A1 = Um, B1 = IT , A2 = U⊥m (Um
⊥)

ᵀ
K, B2 = Uᵀ

m,
and δ = δ0 + δ1 + δ2.

Proof Sketch. Let A ∈ RT×m, B ∈ Rp×T . By Lemma 1
and the Markov’s inequality, we derive the error bound for
approximatingBA byBSpSp

ᵀA, which yields the bound
of the kernel matrix approximation error combined with
the singular values of SpUm. Then we bound the singular
values of SpUm and obtain the final upper bound of the
approximation error.

Remark 1. Theorem 1 shows that the proposed incremental
randomized sketching achieves a relative-error bound for
kernel matrix approximation, for the modified Nyström is a
1 + ε′ relative-error approximation with respect to the best
rank-k approximation (Wang & Zhang, 2013). The kernel
approximation error of the modified Nyström approach is
determined by sm. Thus, larger sm leads to a tighter kernel
approximation error bound. Besides, from (7) we can obtain√
τ = Θ(T−

1
4 ε

1
4 ). Clearly, small τ can guarantee the

approximation error ε. Finally, the choice of sp depends on
τ and sm, i.e., sp = sm/τ .

5.2. Regret Analysis

Let KB,ρ ∈ R(B+b(T−B)/ρc)×(B+b(T−B)/ρc) be the inter-
section matrix of K which is constructed by B + b(T −
B)/ρc examples, µ(KB,ρ) be the coherence ofKB,ρ as

µ(KB,ρ) =
B + b(T −B)/ρc

rank(KB,ρ)
max
i
‖(UB,ρ)i,:‖22 ,

where UB,ρ is the singular vector matrix of KB,ρ. Obvi-
ously, µ(KB,ρ) is independent of T when ρ = Θ(T −B).
We demonstrate the regret bound for online kernel learning
using our incremental randomized sketching as follows2.

Theorem 2 (Regret Bound). Let K ∈ RT×T be a kernel
matrix with κ(xi,xj) ≤ 1, k (k ≤ sp) be the rank in
the incremental randomized sketches, ε0 ∈ (0, 1) and δi
(i = 0, 1, 2) be the failure probabilities defined in Theorem 1.
Set the update cycle ρ = bθ(T − B)c, θ ∈ (0, 1), d =
Θ
(
log3(sm)

)
and

sp = Ω
(
sm polylog(smδ

−1
0 )/ε20

)
,

sm = Ω(µ(KB,ρ)k log k),

for Sp ∈ RT×sp and Sm ∈ RT×sm . Assume `t(·) is a
convex loss function that is Lipschitz continuous with Lip-
schitz constant L, and the eigenvalues of K decay poly-
nomially with decay rate β > 1. Let wt, t ∈ [T ] be
the sequence of hypotheses generated by (6), satisfying
|ft(xt)| = |〈wt,φt(xt)〉| ≤ Cf , t ∈ [T ]. Then, for the op-
timal hypothesis f∗ that minimize λ

2 ‖f‖
2
Hκ + 1

T

∑T
t=1 `t(f)

in the original reproducing kernel Hilbert spaceHκ, with
probability at least 1− δ

Rreg(T, f∗) ≤ ‖w
∗
Z‖22

2θη
+
ηL2T

2
+

√
1 + ε

λ
O(
√
B)+

C2
f

2θη
+

1

λ(β − 1)

(
3

2
− B + 1/θ

T

)
,

whereRreg(T, f∗) =
∑T
t=1 (Lt(wt)− Lt(f∗)), δ = δ0 +

δ1 + δ2, ε is defined in (7), w∗t is the optimal hypothesis

2In the theoretical analysis, we assume T0 = B and omit
KOGD used at the first stage that enjoys a O(

√
B) regret bound.
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on the incremental randomized sketches over the first t in-
stances and Z = arg maxi∈[T ] ‖w∗i ‖2.

Proof Sketch. We first decompose Lt(wt) − Lt(w∗) into
two terms as follows:

Lt(wt)− Lt(w∗t )︸ ︷︷ ︸
Optimization error

+Lt(w∗t )− Lt(w∗)︸ ︷︷ ︸
Estimation error

,

where w∗ is the optimal hypothesis on the incremental ran-
domized sketches in hindsight. Then we bound the errors
and complete the proof.

Remark 2. The assumption of polynomial decay for eigen-
values of the kernel matrix is a general assumption, met for
shift invariant kernels, finite rank kernels and convolution
kernels (Liu & Liao, 2015; Belkin, 2018), that is ∃β > 1
such that λi(K) = O(i−β). Since the regret bound con-
tains the term 1/θ and the term−1/θ while SkeGD requires
an additionalO(θ−2) runtime for updating (see Section 5.3),
a suitable update cycle ρ = bθ(T −B)c needs to be tuned,
which is analyzed in the experiments in adversarial environ-
ments. From Remark 1, smaller τ leads to a tighter kernel
matrix approximation error bound, which yields a tighter
regret bound. Besides, the lower bounds of the sketch size
sp and sm are independent of the number of rounds T .

In Theorem 2, we can obtain a O(
√
T ) regularized regret

bound by setting η = 1/
√
T , and achieve a O(

√
T ) unreg-

ularized regret bound by setting η, λ = 1/
√
T . The exist-

ing regret bound of first-order online kernel learning with
Nyström is O(

√
T ) while requiring the budget B = O(T )

(Lu et al., 2016), but the proposed SkeGD does not need
this requirement. Under the same assumption that the eigen-
values decay polynomially with decay rate β > 1, the regret
bound of existing second-order online kernel learning via
adaptive sketching is O(T 1/β log2 T ) (Calandriello et al.,
2017a), which is tighter than our bound when β � 2. But
this second-order approach has a O(T 2/β) time complexity
at each round, while our SkeGD has a constant time com-
plexity at each round with respect to T (see Section 5.3).

5.3. Complexity Analysis for SkeGD

The running time of SkeGD is mainly consumed by the
matrix decomposition and multiplication while updating the
incremental randomized sketches. Table 1 summarizes the
computational complexities of SkeGD at each round3. At
the first stage (t ≤ T0), SkeGD has constant time and space
complexities per round. At the second stage (t > T0), the
time complexity of SkeGD at each updating round (Qt is
updated) is O

(
ν + s2p + spsm

)
, and the space complexity

of SkeGD is O
(
s2p + spsm + ν

)
, where ν = B + b(T −

3Since we set k, d < sm < sp in the experiments, we omit k
and d in the complexity analysis for SkeGD.

B)/ρc = B + bθ−1c when ρ = bθ(T − B)c (0 < θ < 1).
SinceQt is updated once for every ρ examples, SkeGD has
a constant space complexity, and a O(sm) time complexity
at each round except for bθ−1c updating rounds which are
in O

(
B + s2p + spsm

)
time complexity. Thus, the overall

time complexity of SkeGD at the second stage is

O

(
Tsm +

⌊
T −B
ρ

⌋ (
ν + s2p + spsm

))
.

Table 1. The computational complexities of SkeGD at each round,
where ν = B + bθ−1c when ρ = bθ(T −B)c (0 < θ < 1).

Item Round Operation Time Space
KOGD t < T0 – O(B) O(B)

Φ(T0)
pp t = T0 Initialization O(Bsp) O(Bsp)

Φ(T0)
pm t = T0 Initialization O(Bsm) O(Bsm)

Φ(t)
pp t > T0 Updating O(ν) O(s2p + ν)

Φ(t)
pm t > T0 Updating O(sm) O(spsm)

Φ(t)
pp t > T0 Decomposition O(s2p) O(s2p)

Φ(t)
pm t > T0 Decomposition O(spsm) O(spsm)

Qt t > T0 Multiplication O(spsm) O(spsm)

φt+1(x) t > T0 Multiplication O(sm) O(sm)

6. Experiments
In this section, we evaluate the effectiveness and efficiency
of the proposed incremental randomized sketching for ker-
nel approximation and online kernel learning.

6.1. Experimental Setups

All experiments are performed on a machine with 4-core In-
tel Core i7 3.60 GHz CPU and 16GB memory. We compare
our SkeGD with the state-of-the-art online kernel learning
algorithms on the well-known classification benchmarks4.
We merge the training and testing data into a single dataset
for each benchmark, which covers the number of instances
ranging from 1, 000 to 581, 012. All the experiments are
performed over 20 different random permutations of the
datasets. The stepsizes η of all the gradient descent based
algorithms are tuned in 10[−5:+1:0], and the regularization
parameters λ are tuned in 10[−4:+1:1]. Besides, we use
the Gaussian kernel κ(x,x′) = exp

(
−‖x− x′‖22/2σ2

)
,

where the set σ ∈ {2[−5:+0.5:7]} are adopted as the candi-
date kernel set. Since kernel alignment (KA) is computation-
ally efficient and independent of learning algorithms (Cortes
et al., 2012; Ding et al., 2018), which is suitable for kernel
selection of online kernel learning (Zhang & Liao, 2018),
we select the optimal kernels using KA for each dataset.

6.2. Kernel Approximation

First, we evaluate the performance of the proposed incre-
mental randomized sketching (IRS) in terms of kernel ap-

4https://www.csie.ntu.edu.tw/∼cjlin/libsvm
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proximation. The kernel values are approximated using the
explicit feature mapping (4) in our IRS. We compare with
the incremental Nyström (INys) approach (Lu et al., 2016),
which constructs the fixed intersection matrix using the first
B examples in the sequence of T instances. For our IRS, we

Table 2. Results of kernel approximation using IRS and INys.

Approach
german (B = 100) german (B = 200)

Relative error Time (s) Relative error Time (s)
INys 0.078± 0.012 0.054 0.047± 0.006 0.081
IRS 0.059± 0.008 0.047 0.031± 0.003 0.066

Approach
svmguide3 (B = 100) svmguide3 (B = 200)
Relative error Time (s) Relative error Time (s)

INys 0.037± 0.001 0.083 0.031± 0.001 0.092
IRS 0.018± 0.001 0.065 0.012± 0.002 0.077

set sp = 3B/4, sm = B/2, k = 0.2B and d = 4. Table 2
shows the relative error ‖K̃(T ) −K‖2F/‖K‖2F and running
time on german and svmguide3 with different budget
B, where K̃(T ) is the approximate kernel matrix after T
rounds. We can observe that IRS outperforms the INys in
terms of the relative approximation error on both datasets.
Besides, our IRS performs a randomized SVD and only
needs to sample sm = B/2 examples while updating the
incremental randomized sketches, hence is more efficient.

6.3. Online Learning under a Fixed Budget

To demonstrate the performance of SkeGD for online ker-
nel learning, we compare SkeGD with the existing sketch-
ing and budgeted online kernel learning algorithms un-
der a fixed budget B, including RBP (Cavallanti et al.,
2007), Forgetron (Dekel et al., 2005), Projectron and Pro-
jectron++ (Orabona et al., 2008), BPA-S (Wang & Vucetic,
2010), BOGD (Zhao et al., 2012), and NOGD (Lu et al.,
2016). The compared algorithms are obtained from the
LIBOL v0.3.0 toolbox and LSOKL toolbox5. For all the
algorithms, we adopt the hinge loss function, set B = 100
for small datasets (T ≤ 10, 000) and B = 200 for other
datasets. Besides, we set τ = 0.2, sp = 3B/4, sm = τsp,
d = 4 and ρ = 0.3T in our SkeGD if not specially specified,
and the rank k = 0.1B for NOGD and SkeGD. The mistake
rate is used to evaluate the accuracy of online kernel learn-
ing, which is computed by

∑T
t=1 I(ytft(xt) < 0)/T ×100.

Experimental results from Table 3 show that SkeGD con-
sistently performs better than the other algorithms in terms
of the mistake rate of online kernel learning. For most
datasets, SkeGD is more efficient than the other algorithms
under the same budget B, because the time complexity per
round of SkeGD is O(sm) (sm < B) for most rounds as
shown in complexity analysis, while the compared algo-

5http://libol.stevenhoi.org/
http://lsokl.stevenhoi.org/

rithms are in Ω(B) time complexity at each round. Then,
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Figure 2. The average mistake rates and average running time w.r.t.
the budget B on cod-rna.

we set sp = 3B/4, sm = B/2 and study the influence of
the budgetB. From Figure 2, we observe that the increasing
budget B yields lower mistake rate but leads to higher com-
putation time cost. This is because larger budget B means
that more examples are preserved to construct the explicit
feature mapping and a higher computation cost is needed
to obtain a better approximation quality. For fixed budget
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Figure 3. (a), (b): average mistake rate, average running time w.r.t.
τ = sm/sp on cod-rna; (c), (d): average mistake rate and aver-
age running time w.r.t. the number of blocks d on spambase.

(B = 200, 300, 400), we set sp = 3B/4, sm = τsp and
vary τ from 0.2 to 0.8. From Figure 3 (a), (b) we can see
that SkeGD with smaller τ yields better empirical perfor-
mance in terms of the average mistake rate and the average
running time, which conforms to the theoretical results. For
different B, we set sp = 3B/4, sm = B/2, and explore
the influence of d that is the number of blocks in the sketch
matrix Sp. The results in Figure 3 (c), (d) verify that large
d can significantly improve the accuracy of online kernel
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Table 3. Comparisons among RBP, Forgetron, Projectron, Projectron++, BPA-S, BOGD, NOGD and our SkeGD w.r.t. the mistake
rates (%) and the running time (s).

Algorithm
german svmguide3 spambase a9a

Mistake rate Time Mistake rate Time Mistake rate Time Mistake rate Time
RBP 38.924± 1.754 0.071 34.091± 1.230 0.080 35.533± 0.769 0.391 28.297± 0.115 15.338
Forgetron 38.387± 1.345 0.089 35.023± 1.161 0.119 36.082± 0.692 0.502 28.977± 0.380 19.503
Projectron 37.008± 1.232 0.069 34.172± 0.989 0.081 33.627± 1.531 0.381 21.376± 0.315 15.310
Projectron++ 35.396± 1.262 0.162 28.902± 0.650 0.161 32.424± 0.932 0.928 18.702± 0.389 23.525
BPA-S 35.345± 1.119 0.072 28.948± 0.765 0.081 33.359± 1.351 0.392 21.840± 0.391 15.304
BOGD 33.985± 2.013 0.085 30.013± 1.109 0.088 33.112± 0.692 0.447 29.614± 0.244 15.569
NOGD 29.881± 0.510 0.075 22.891± 0.043 0.085 34.332± 1.671 0.396 18.843± 0.366 15.416
SkeGD 27.932± 0.481 0.076 21.388± 0.122 0.082 31.301± 0.531 0.322 18.524± 0.283 11.736

Algorithm
w7a ijcnn1 cod-rna covtype.binary

Mistake rate Time Mistake rate Time Mistake rate Time Mistake rate Time
RBP 5.246± 0.034 17.753 16.702± 0.120 11.887 19.359± 0.114 46.182 41.321± 0.024 217.216
Forgetron 5.552± 0.045 18.579 17.092± 0.203 13.648 18.874± 0.048 54.248 41.334± 0.076 299.276
Projectron 4.749± 0.455 17.639 12.231± 0.020 11.682 16.138± 0.452 50.473 32.748± 0.424 226.050
Projectron++ 4.236± 1.042 17.101 9.588± 0.012 17.930 12.743± 0.560 162.823 30.749± 0.311 466.637
BPA-S 3.204± 0.010 17.937 11.368± 0.035 11.610 13.967± 0.235 47.952 36.538± 0.409 215.262
BOGD 3.482± 0.133 17.969 12.064± 0.079 11.993 13.818± 0.049 53.349 41.858± 0.014 223.180
NOGD 2.903± 0.009 17.923 9.540± 0.003 11.984 12.393± 0.583 56.845 34.021± 0.617 216.327
SkeGD 2.782± 0.001 7.452 9.348± 0.001 8.034 11.638± 0.050 25.918 30.493± 1.063 142.739

learning with little sacrifice of the time efficiency, where d
is equivalent to the number of nonzero entries in each row
of Sp.

6.4. Online Learning in Adversarial Environments

In this experiment, we compare SkeGD with NOGD,
FOGD (Lu et al., 2016) and PROS-N-KONS (Calandriello
et al., 2017a) in adversarial environments. We set the budget
B = 100 for SkeGD and NOGD, and use identical parame-
ters to those used in Section 6.3. Besides, we use the same
experimental settings for FOGD (feature dimension = 4B)
and PROS-N-KONS as provided in the original papers. In-
spired by the adversarial settings in (Calandriello et al.,
2017a; Wang et al., 2018), we build adversarial datasets
using the benchmark german. We decompose the online
learning game into kb blocks, where each block includes
kr rounds. At each round of the same block, we receive
the same instance sampled from german. Moreover, the
revealed labels are flipped at each even block by multiply-
ing −1. Thus, the sample size of the adversarial dataset is
kb × kr. We set kb = 500, kr = 10 in german-1, and
kb = 500, kr = 20 in german-2.

From Table 4, we can observe that SkeGD is significantly
more accurate than other algorithms in adversarial environ-
ments, which demonstrates the effectiveness of our incre-
mental randomized sketches. We also notice that SkeGD is
much more efficient than the second-order algorithm PROS-
N-KONS, and has the time costs comparable to the other
first-order algorithms. Additionally, too large or too small
values of the update cycle may lead to an increased loss that
conforms to Remark 2, and ρ ≈ 0.005T performs well in
terms of accuracy while having a comparable efficiency.

Table 4. Comparison of online kernel learning algorithms in adver-
sarial environments w.r.t. the mistake rates (%) and the running
time (s), where ρ = bθ(T −B)c is the update cycle of SkeGD.

Algorithm
german-1 german-2

Mistake rate Time Mistake rate Time
FOGD 37.493± 0.724 0.140 32.433± 0.196 0.265
NOGD 30.918± 0.003 0.405 26.737± 0.002 0.778
PROS-N-KONS 27.633± 0.416 33.984 17.737± 0.900 98.873
SkeGD (θ = 0.1) 17.320± 0.136 0.329 7.865± 0.059 0.597
SkeGD (θ = 0.01) 17.272± 0.112 0.402 7.407± 0.086 0.633
SkeGD (θ = 0.005) 16.578± 0.360 0.484 7.266± 0.065 0.672
SkeGD (θ = 0.001) 16.687± 0.155 1.183 6.835± 0.136 1.856

7. Conclusion
In this paper, we have proposed the novel incremental ran-
domized sketching for online kernel learning, which main-
tains the incremental randomized sketches using efficient
rank-1 modifications and constructs a time-varying explicit
feature mapping that is suitable for adversarial environments.
The proposed sketching approach preserves the kernel ma-
trix approximation accuracy with a 1 + ε relative-error, has
the lower bounds of the sketch sizes independently of the
number of rounds, and enjoys a sublinear regret bound for
online kernel learning. Under the same assumptions about
kernel eigenvalue decay, in contrast to the second-order
online kernel learning via sketching that has per-round com-
putational complexities depending on the number of rounds,
our sketching has constant computational complexities at
each round, independently of the number of rounds. The the-
oretical formulation and algorithmic implementation may
provide a sketch scheme for both online and offline large-
scale kernel learning.
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