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Abstract
The likelihood model of high dimensional data
Xn can often be expressed as p(Xn|Zn, θ), where
θ := (θk)k∈[K] is a collection of hidden features
shared across objects, indexed by n, and Zn is
a non-negative factor loading vector with K en-
tries where Znk indicates the strength of θk used
to express Xn. In this paper, we introduce ran-
dom function priors for Zn for modeling correla-
tions among its K dimensions Zn1 through ZnK ,
which we call population random measure em-
bedding (PRME). Our model can be viewed as
a generalized paintbox model (Broderick et al.,
2013) using random functions, and can be learned
efficiently with neural networks via amortized
variational inference. We derive our Bayesian
nonparametric method by applying a representa-
tion theorem on separately exchangeable discrete
random measures.

1. Introduction
Let X = [X1, . . . , XN ] be a group of exchangeable high
dimensional observations, where Xn ∈ Rd. In this paper,
we assume X is generated by the model

p(X) =

∫
p(X,Z, θ) dZdθ

=

∫
p(Z)p(θ)

∏
n∈[N ]

p(Xn|Zn, θ) dZdθ, (1)

where p(Xn|Zn, θ) is a likelihood model conditioned on
latent features θ := (θk)k∈[K] that are shared across the
population. Zn := [Zn1, . . . , ZnK ] is a non-negative vector
for the nth observation, where Znk determines the extent
to which θk is used to express Xn. For example, in topic
models (Blei et al., 2003), Zn is a discrete distribution over
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topics, where Znk represents the proportion of words in
document n sampled from topic k. In sparse factor mod-
els (Griffiths & Ghahramani, 2011), Zn is a binary vector
such that latent feature θk contributes to the likelihood if
and only if Znk = 1. We generically refer to Zn as a “non-
negative feature loading vector.” For exchangeable X , it
is often assumed the Zn are exchangeable as well. If we
take Z as a feature loading matrix with Zn as its rows, then
Z is row exchangeable. By de Finetti’s theorem, we can
represent

p(Z) =

∫ ∏
n∈N

p(Zn|ζ)p(ζ)dζ, (2)

for some random object ζ . (We let N =∞ in order to apply
de Finetti’s theorem.) The goal of this paper is to model
complex correlations among entries of Zn. Following a
common practice, we put an independent prior on θ, p(θ) =∏
k p(θk) and focus on modeling p(Z).

A straightforward way to model correlation structure is to
let p(Zn|ζ) be a parametric exponential family model. By
defining the mean/natural parameters for the model, one
can handle correlations to various degrees. For example,
Zn may follow a log-normal distribution (Lafferty & Blei,
2006), where correlations are modeled through a covariance
matrix. However, exponential family models (Wainwright
et al., 2008) can be rigid, since the number of free parame-
ters is fixed for a certain K. To get a more flexible model, it
is tempting to consider higher-order moments E[Z⊗Mn ] for
a large M up to K, where u⊗M denotes an M-th order outer
product of a vector u. but in this case the number of free
parameters increases exponentially, leading to intractable
inference.

In this paper, we use an alternative Bayesian nonparametric
method to model Zn as an outcome of random functions,
which can handle complex correlations even when K and
M go to infinity. Moreover, those random functions can be
learned efficiently through inference/decoder networks via
amortized variational inference (Kingma & Welling, 2013).
In principle, arbitrarily complex neural networks can be
applied to model correlations in our setting.

To give intuition why random function priors are power-
ful, we first show in Figure 1 an existing feature paintbox
model for binary Zn that illustrates how to model arbitrarily
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Figure 1. Example of two equivalent representations: (left) Paint-
box model for [Zn1, Zn2, Zn3] by partitioning a unit square into
eight regions, one for each distinct value. (right) Factorize the
paintbox into three feature paintboxes, one each for a latent feature.
Three examples of un that determine Zn are demonstrated as dots
in the partition paintbox, and as lines across feature paintboxes.

complex correlations using binary random functions (Brod-
erick et al., 2013). For simplicity, let K = 3. First, select
a compact set S in Euclidean space, on which we can de-
fine a uniform distribution. For example let S = [0, 1]2.
Then randomly partition S into eight regions. Each partition
represents a possible value for Zn = [Zn1, Zn2, Zn3], as
shown in Figure 1. Given the partition, we uniformly sample
a point un ∼ U(S) and assign Zn be the value defined by
the region in which un falls. Thus, we translate the problem
of modeling distributions on Zn to modeling the random
partition of S. Following the classic analogy, we call this a
partition paintbox model (Kingman, 1978; Pitman, 2006).
One can further factorize the partition paintbox into “feature
paintboxes” (Broderick et al., 2013). According to Figure
1, each feature paintbox for the k-th feature is randomly
partitioned into two regions denoted as Sk (black) and Sck
(white). Let Znk = 1(un ∈ Sk). One can check that the
feature paintbox model is the equivalent to the partition
paintbox model for arbitrary finite K. (Note that here Zn is
a random indicator function.)

The feature paintbox model is redundant but flexible. The
arbitrary order moment E[

∏
k∈J Znk] = E[vol(∩k⊂JSk)]

for any J ⊂ [K] can be modeled once we have enough
freedom for Sk. We summarize the generative process for
the feature paintbox model in Algorithm 1 for arbitrary K,
including K =∞.

We propose a model that can be treated as a generalization
of the feature paintbox model from binary to non-negative
Z according to a function Znk = fn(ϑk). There are two
key differences between our model and the feature paintbox
model. First, we use data-specific random functions fn,
instead of points un, to represent each observation. Sec-
ond, we use points ϑk from a Poisson process, instead of
Sk, to index each latent feature. A nice property of our
model compared to the paintbox model is that we can use
deep learning to model fn through inference and decoder
networks (Kingma & Welling, 2013), allowing for efficient
amortized variational inference.

Algorithm 1 Feature paintboxes model
1: for k ∈ [K] do
2: Generate a random subset Sk ⊂ S.
3: end for
4: Guarantee that

∑
k∈[K] vol(Sk) <∞ almost surely.

5: for n = 1, 2, . . . do
6: Independently generate un ∼ U(S).
7: Let Zn=[Zn1, . . . , ZnK ]. Set Znk=1(un ∈ Sk).
8: end for

In what follows, Section 2 sets up the problem of modling
Z from a random matrix point of view. In Section 3, we
embed Z as a random measure and derive the functional
form of Znk = fn(ϑk) through a representation theorem.
In Section 4, we present a concrete example for Bayesian
nonparametric topic modeling together with its amortized
variational inference algorithm, and show empirical results
in Section 5. Finally, we discuss related work in Section 6
and conclude in Section 7.

2. Z as a random matrix?
We will rely on representation theorems to derive the func-
tional form of our models. This usually works out by finding
an infinite dimensional random object paired with an ex-
chanegability assumption on that random object. The choice
of random objects is the key step, and we will see below that
it can be hard to derive an interesting model when choosing
a bad random object.

Consider modeling Z as a random matrix. Equation (2)
above is one example that derives a mixture representation
by assuming row exchangeability of Z. However, Equation
(2) is uninformative in that, first, it does not tell us what
random object ζ is, and second, it does not determine the
connection between Zn and ζ through p(Zn|ζ). Our dis-
cussion in Section 1 will show that this provides too much
freedom to choose ζ and p(Zn|ζ).

We further restrict Z by assuming it is column exchangeable
as well. This requires allowing both N and K to equal infin-
ity. We call Z separately exchangeable if it is both row and
column exchangeable. Once K = ∞, we need to guaran-
tee series convergence for rows. That is,

∑
k∈N Znk <∞

with probability 1, for any n ∈ N. Row sum convergence
is always considered necessary. (For example, in a topic
model we want to normalize Zn.) However, the following
proposition says that when Z is separately exchangeable,
we will get an empty model even for a binary Z.

Proposition 1. An infinite binary matrix Z (i) is separately
exchangeable, and (ii) has finite row sums almost surely, if
and only if Z = 0 almost surely.

Proof (Sketch). One can prove that Z is a graphon model if
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Figure 2. Decoupling a separately exchangeable discrete random measure ξ into two parts.

it is separately exchangeable (Hoover, 1979; Aldous, 1985;
Orbanz & Roy, 2015). A graphon model satisfies finite row
sums if and only if Z = 0.

When choosing a bad random object, one can either get a
vacuous or an empty model through representation theorems.
In the next section, we fix this problem by introducing a nice
random object ξ generated by embedding Z as a random
measure. Then we apply representation theorems on ξ.

3. Z as a random measure
3.1. Population random measure embedding

In this section, we embed the random matrix Z as a dis-
crete random measure ξ =

∑
n,k Znkδτn,σk

on an infinite
strip [0, 1]× R+, where (τn)n∈N ⊂ [0, 1] distinguishes ob-
jects and (σk)k∈N ⊂ R+ distinguishes latent features. Both
(τn)n∈N and (σk)

k∈N are random as well, and are not neces-
sarily ordered. Note that ξ preserves the matrix structure as
demonstrated in Figure 2; the intersection points of horizon-
tal/vertical dashed lines indexed by (τn)n∈N and (σk)k∈N
form an “equivalent class” of matrix Z up to a re-ordering
of rows and columns. The infinite strip is an abstract space
introduced solely for applying representation theorems.

Next, we assume ξ is separately exchangeable. That is,
ξ(T1(A)×T2(B)) =d ξ(A×B) for any measure-preserving
transformations T1, T2 on [0, 1] and R+ separately for ar-
bitrary Borel sets A,B. Even though the notion of sep-
arate exchangeability is different for ξ than for random
matrix Z, they are conceptually similar, since interchanging
row/column indices will not affect the joint distribution. It
turns out that we can represent ξ precisely as follows:

Proposition 2. A discrete random measure ξ on [0, 1]×R+

is separately exchangeable if and only if

ξ =
∑
n,k

fn(ϑk)δτn,σk
+
∑
m,k

gm(ϑk)δρmk,σk
, (3)

almost surely for some random measurable functions
fn, gm ≥ 0 on R2

+, a unit rate Poisson process {(ϑk, σk)}
on R2

+, and independent U(0, 1) arrays (τn) and (ρmk).

Proof. This follows from the general representation the-
orem for separately exchangeable random measures on
[0, 1]×R+ (Kallenberg, 2006) by removing the non-atomic
parts. Details are given in the appendix.

We briefly look at the two parts of this representation:

1.
∑
n,k fn(ϑk)δτn,σk

: This is the part we are interested
in. Correlations are learned through coupling of ran-
dom functions fn with a Poisson process.

2.
∑
m,k gm(ϑk)δρmk,σk

: This part is less important
since the double index in ρmk means each row (ob-
ject) slice ξ({ρmk}, ·) contains at most one atom. We
drop this part in our model.

Thus, we can represent ξ =
∑
n,k fn(ϑk)δτn,σk

as a cou-
pling of a 2d Poisson process (ϑk, σk) and random functions
fn. As mentioned in Section 1, we derive Znk = fn(ϑk).
Since we model the entire population through Z by a ran-
dom measure embedding, we call our model population
random measure embedding (PRME).

3.2. Construction via completely random measures

Once we have a representation for Znk, we still need to
guarantee series convergence

∑
k Znk =

∑
k fn(ϑk) <∞.

This is not obvious, since ϑk spans uniformly on R+. One
remedy is to introduce a transformation ϑ̃k = T (ϑk) that
maps almost every ϑ̃k close to zero, leaving only finite
number of ϑ̃k above any positive threshold. The method to
introduce such a transformation T is via completely random
measures (CRM) (Kingman, 1967). In the appendix, we
show the construction of T via CRMs. In addition, we show
that the well-known Indian buffet process (Ghahramani &
Griffiths, 2006; Griffiths & Ghahramani, 2011), its exten-
sions (Teh & Gorur, 2009), hierarchical Dirichlet processes
(HDP) (Teh et al., 2005) and the discrete infinite logistic nor-
mal distribution (DILN) (Paisley et al., 2012b) are instances
of population random measure embeddings. However, these
models have restrictions in their model capacity. For exam-
ple, (Paisley et al., 2012b) relies on a linear kernel to model
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correlations and there is no obvious extension to complex
kernels. As we will show, a PRME can be more flexible by
using nonlinear object-specific functions fn such as deep
neural networks.

4. An illustration on topic modeling
4.1. The model

In a topic model, we use Zn to represents an un-normalized
discrete distribution over topics, where Znk is the strength
of topic k for document n. We use a PRME to model Znk,
with the following construction,

Znk ∼ Gamma(βpk, exp(f(hn, `k))),

pk = Vk

k−1∏
k′=1

(1− Vk′), Vk ∼ Beta(1, α),

hn ∼ N (0, aI), `k ∼ N (0, bI),

f(hn, `k) ∼ N (µf (hn, `k), σ2
f (hn, `k)). (4)

We now explain how Equation (4) relates to the original
PRME equation Znk = fn(ϑk), via four steps.

1. fn(ϑk) → f(hn, ϑk)

We use a parametric function f(hn, ·) to represent
fn(·), where f is a random function, and hn is an
observation-specific random vector. This decomposi-
tion is necessary, since we model f as a normal distri-
bution parameterized by decoder networks µf , σ2

f , and
hn as the output of an inference network.

2. f(hn, ϑk) → f(hn, ϑ̃k)

We transform ϑ̃k = T (ϑk) by transforming the origi-
nal Poisson process (θk, σk) to a hierarchical Gamma
process (Teh et al., 2005; Wang et al., 2011). Then
we use a stick-breaking construction over ϑ̃k (Sethu-
raman, 1994), where ϑ̃k ∼ Gamma(βpk, 1). β is a
hyperparameter and pk is generated by the second line
of Equation (4).

3. f(hn, ϑ̃k) → f(hn, ϑ̃k, `k)

We augment ϑ̃k to (ϑ̃k, `k) to introduce extra random-
ness via `k. This operation is equivalent to augmenting
the original 2d Poisson process (θk, σk) to a higher
dimensional Poisson process (θk, σk, `k).

4. f(hn, ϑ̃k, `k) → ϑ̃k · exp(f(hn, `k))

We represent f(hn, ϑ̃k, `k) as ϑ̃k · exp(f(hn, `k)) and
assign priors for hn and `k (line 3 in Equation (4)). We
get Equation (4) by absorbing exp(f(hn, `k)) into the
Gamma scale parameter.

In our construction, series convergence
∑∞
k=1 Znk < ∞

can be achieved by bounding µf and σ2
f through a truncation

layer in the decoder network. Given Zn, we sample words
in a document, Xnm for m ∈ [Mn], by first sampling its
topic assignment Cnm∼Disc( Zn·∑

k Znk
), and then sampling

the word from that topic, Xnm ∼Disc(θCnm
), with topic

prior θk∼Dir(γ0). We recall that in topic models, θk (topic
k) is a discrete distribution over the vocabulary.

4.2. Amortized variational inference

Assume we haveN documents and the posterior is truncated
to K topics. The joint likelihood is

p(`, V, θ, h, Z,C,X) =

K∏
k=1

p(`k)p(Vk)p(θk)

N∏
n=1

[
p(hn)

K∏
k=1

p(Znk|V, hn, `k)

Mn∏
m=1

p(Cnm|Zn)p(Xnm|Cnm, θ)

]
. (5)

We use variational inference to approximate the model pos-
terior by optimizing the variational objective function

max
q
L = max

q
Eq
[

ln
p(`, V, θ, h, Z,C,X)

q(`, V, θ, h, Z,C)

]
, (6)

where we restrict q to the factorized family

q(`, V, θ, h, Z,C) =

K∏
k=1

q(`k)q(Vk)q(θk)

N∏
n=1

[
q(hn|Xn)

K∏
k=1

q(Znk)

Mn∏
m=1

q(Cnm)

]
. (7)

Further, for global variables we let

q(`k) = δ̂̀
k
, q(Vk) = δV̂k

, q(θk) = Dir(γk). (8)

For local variables, we introduce an inference network g
and let q(hn|Xn) = δg(Xn). For the remaining variables

q(Znk) = Gam(ank, bnk), q(Cnm) = Disc(φnm). (9)

We use coordinate ascent to update q. Each of these updates
is guaranteed to improve the objective when the gradient
descent step size is small enough (Nesterov, 2013). More
details are given in the appendix.

For q(Znk), we maximize a lower bound for L similar
to Paisley et al. (2012b), giving updates

ank = βp̂k +

Mn∑
m=1

φnm(k),

bnk = 1/
(
E
[

exp(−f(hn, `k))
]

+
Mn

εn

)
, (10)

where εn =
∑K
k=1 E[Znk].
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Figure 3. (a) Graphical representation of our proposed model. Solid arrows represent the generative process and dashed arrows show
the VAE part of the posterior. We organize local parameters that belong to a document/word into boxes and remove all sub-indices. We
use stochastic natural gradient ascent for θ and use stochastic gradient ascent for [`, V, g, f ] (b) Left: The architecture we used in our
experiments. Right: Various layer designs.

For q(Cnm) and q(θ), we have respective updates

φnm(k) ∝ exp
(
E[ln θk,Xnm

] + E[lnZnk]
)
, (11)

γkd = γ0 +

N∑
n=1

Mn∑
m=1

φnm(k) · 1(Xnm = d). (12)

For [`, V, g, f ], we do gradient ascent on L. Batch varia-
tional inference can be done via coordinate ascent by itera-
tively updating the above variables. Dependencies among
variables are shown in Figure 3(a).

For stochastic inference, in each global iteration we sam-
ple a subset Nt ⊂ [N ] and compute the noisy variational
objective

Lt=E
[

ln p(`, V, θ)
]
+

N

|Nt|
∑
n∈Nt

E
[

ln p(hn, Zn, Cn, Xn)
]

+ H
[
q(θ)

]
+

N

|Nt|
∑
n∈Nt

H
[
q(Zn, Cn)

]
. (13)

Optimizing local variables Z,C can be done via closed-
form updates exactly as in the batch case. For the other
parameters we use stochastic gradient methods. Let ρ(t) ∝
(t0 + t)−κ be the step size with some constant t0 and
κ ∈ (0.5, 1]. We apply the stochastic natural gradient
method (Hoffman et al., 2013) for θ

γ̃
(t)
kd = γ0 +

∑
n∈Nt

Mn∑
m=1

φnm(k) · 1(Xnm = d),

γ
(t)
kd = (1− ρ(t))γ(t−1)kd + ρ(t)γ̃

(t)
kd . (14)

and stochastic gradient method for the rest,

[`, V, g, f ](t) = [`, V, g, f ](t−1)+ρ(t)∇[`,V,g,f ]Lt. (15)

Since in each iteration we only do one gradient step, the
cost is low. Note that through the variational autoencoder
(VAE) (Kingma & Welling, 2013) we transfer local up-
dates for hn to global update for g, which will significantly
speed-up inference. We summarize the stochastic inference
algorithm in Algorithm 2.

Algorithm 2 Stochastic inference algorithm
1: for t = 1, 2, . . . do
2: Sample a subset Nt ⊂ [N ]
3: Update local variables
4: while not converge do
5: Closed-form update q(Zn) for n ∈ Nt. Eq. (10)
6: Closed-form update q(Cn) for n ∈ Nt. Eq. (11)
7: end while
8: Update global variables
9: Noisy natural gradient step for q(θ). Eq. (14)

10: Noisy gradient step for `, V, g, f . Eq. (15)
11: end for

4.3. Network architectures

The flexibility of our model comes from the inference and
decoder networks g and f . As we show in the experiments,
these allow us to learn complex non-linear “paintboxes” in
order to capture complex topic correlations. Since optimiz-
ing over deep neural networks is still a challenging problem
in theory, we design our networks with architectures that
work well in practice. Rather than directly applying mul-
tilayer perceptrons (Rumelhart et al., 1985), we instead
use more complex layer designs such as batch normaliza-
tion (Ioffe & Szegedy, 2015) and deep residual networks
(ResNet) (He et al., 2016) to speed-up training. For infer-
ence network g, we use the bag-of-words representation of
Xn as the input feature. For decoder network f , we concate-
nate hn = g(Xn) and `k as inputs. Detailed architecture
design is shown in Figure 3(b).

5. Experiments
5.1. Batch experiments

We show empirical results on three text datasets: a 5K subset
of New York Times, 20Newsgroups, and NeurIPS. Their
basic statistics are shown in Table 2. For each test document
Xn, we do a 90%/10% split into training words Xn,TR and
testing words Xn,TS . The perplexity is calculated based on
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Table 1. Perplexity result for text data sets with different dictionary sparsity levels controlled by γ0.

Model New York Times 20Newsgroups NeurIPS
γ0 =0.2 γ0 =0.4 γ0 =0.6 γ0 =0.8 γ0 =0.2 γ0 =0.4 γ0 =0.6 γ0 =0.8 γ0 =0.2 γ0 =0.4 γ0 =0.6 γ0 =0.8

HDP 2436.51 2464.74 2482.61 2501.82 5317.68 5845.90 6294.68 6665.68 1973.39 1962.90 1981.83 2009.58
DILN 2231.16 2295.12 2418.16 2509.24 5164.93 5732.12 6143.64 6389.99 1853.89 1902.88 1944.90 1947.94
PRME 2203.00 2247.25 2299.60 2338.38 5102.08 5531.04 5878.39 5975.12 1753.61 1850.37 1917.21 1953.85

Table 2. Dataset description.
Corpus # train # test # vocab # tokens

New York Times 5,000 500 8,000 1.4M
20Newsgroups 11,269 7,505 53,975 2.2M

NeurIPS 2,183 300 14,086 3.3M

Table 3. Network layer configurations for New York Times dataset.

Depth Inference Network Decoder Network

2 layers [8000× dh]
[(dh + d`)× 80]

[80× 2]

4 layers [8000× 1000]
[1000× dh]

[(dh + d`)× 80]
[80× 80]
[80× 2]

6 layers
[8000× 1000]
[1000× 1000]
[1000× dh]

[(dh + d`)× 80]
[80× 80]
[80× 80]
[80× 2]

8 layers

[8000× 1000]
[1000× 1000]
[1000× 1000]
[1000× dh]

[(dh + d`)× 80]
[80× 80]
[80× 80]
[80× 80]
[80× 2]

the prediction of Xn,TS given the model and Xn,TR,

perplexity=exp
(
−

∑
m∈Xn,TS

ln p(Xnm|Xn,TR)

|Xn,TS |

)
. (16)

Lower perplexity means better predictive performance.

In Table 1, we compare three Bayesian nonparametric
models: hierarchical Dirichlet process (HDP) (Teh et al.,
2005), discrete infinite logistic normal (DILN) (Paisley et al.,
2012b), and our population random measure embedding
(PRME) using 4-layer MLP with batch normalization.1 We
tune γ0 and fix the truncation level K = 100 and set the
a = 1, b = 1, α = 1, β = 5 for fair comparisons. All
gradient updates are done via Adam (Kingma & Ba, 2014)
with learning rate 10−4. As Table 1 shows, PRME consis-
tently perform better than HDP and DILN. Where DILN
was designed to outperform HDP by learning topic correla-
tion structure, PRME improves upon DILN by learning a
more complex kernel structure.

Since PRME encodes complex correlation patterns with a
neural network, we further consider the influence of network
architecture on perplexity for the New York Time dataset.

1The number of layers includes inference network and decoder
network. We ignore the last layer of the decoder network.

Table 4. Perplexity result for various network depths.

Depth MLP MLP+BN ResNet ResNet+BN
2 layers 2325.84 2327.81 N/A N/A
4 layers 2228.62 2203.00 2214.02 2195.72
6 layers 2219.06 2184.44 2202.79 2194.74
8 layers 2196.35 2195.68 2199.07 2184.56

Table 5. Perplexity result for various size of hn/`k.
Hidden Size MLP MLP+BN ResNet ResNet+BN
dh=d`=2 2287.40 2258.97 2265.53 2256.84
dh=d`=5 2245.43 2243.26 2231.54 2225.64
dh=d`=10 2220.82 2217.65 2227.04 2199.73
dh=d`=20 2228.62 2203.00 2214.02 2195.72

We compare four layer designs: multilayer perceptron
(MLP), MLP with batch normalization (MLP+BN), ResNet,
and ResNet with batch normalization (ResNet+BN); see
Figure 3(b) for details. In Table 4 and Table 5, we separately
tune the depth of each network and the hidden size of h/`
while holding other parameters fixed. The details of layer
sizes can be found in Table 3. We observe that the perplex-
ity result tend to be better when we scale up the network
depth/width. Batch normalization and ResNet both improve
performance.

5.2. Online experiments

For the larger one million New York Times dataset, we
show “topic paintboxes” learned with stochastic PRME in
Figure 4.2 In Figure 4, each paintbox corresponds to one
topic whose top words are displayed inside the box. The
color of a pixel (x, y) in the k-th paintbox ranges from
blue (small value) to red (large value) and represents mean
topic strength E[Z(x,y),k] = βp̂kE[exp(f(h(x,y), `k))] as
a function of h(x,y) for topic k. To define h(x,y) for 2d
visualization, we collect the empirical embeddings H =
[h1, . . . , hN ]> = [g(X1), . . . , g(XN )]> on a subset of data,
subtract their mean mh, and use the SVD to select the
two most informative directions h̃1, h̃2 with singular values
s1, s2. Then we plot each paintbox as the function value
E[Z(x,y),k] = βp̂kE[exp(f(mh + xs1h̃1 + ys2h̃2, `k))] by
tuning (x, y) ∈ [−0.2, 0.2]2.

The correlation between topics can be read out from the
paintboxes. Those paintboxes that have overlapping salient
regions tend to be more correlated. For example, topic 13
[music, concert, orchestra], topic 20 [film, movie, films],

2We set t0 = 100, κ = 0.75 and use a 6-layer MLP.



Random Function Priors for Correlation Modeling

“Blasts Kill 21 at a Cafe in North Iraq” 

BAGHDAD — Two bombers wearing suicide vests  
blew themselves up in a popular cafe crowded with  
young people … 

embedding via  
inference network 

“NBA League Pass Fans Think They’re Paying More  
for Less” 

Thanks to the N.B.A. lockout, the regular season is 20 
percent shorter this season. As part of the new collective 
bargaining agreement … 

embedding via  
inference network 

“Any Novel can be Shaped into a Movie” 

''The English Patient'' proves that any novel can be  
successfully filmed, though it isn't easy. Much of the  
novel focuses on Hana, whose father has been killed  
in the war, … 

embedding via  
inference network 

Figure 4. A paintbox demonstration of salient topics learned from the one million New York Times dataset. In each paintbox on the LHS,
pixel (x, y) represents the topic strength Z(x,y),k as a function of h(x,y) for a particular topic k. We also show embeddings of three
articles in the same space, as well as their projection onto selected paintboxes. Each article is connected to its most-used topics.

and topic 47 [book, books, publishing] share a salient region,
which gives a third-order positive correlations over those
topics. In principle, the paintbox can explain arbitrary order
correlations as the neural network complexity increases. We
observe that each paintbox in Figure 4 consists of multiple
contiguous salient regions. This is due to the smoothness
of neural networks, since g(Xn1

) ≈ g(Xn2
) when Xn1

and
Xn2

share similar words. Also, the various “modes” in
each paintbox demonstrate the greater flexibility of neural
networks in explaining different contexts of a topic.

In Figure 4, we also display three documents with their
embeddings hn projected onto the 2d paintbox space. Each
embedding hits salient regions of several paintboxes. Thus,
each document can be interpreted as a mixture of these
corresponding topics. We again note that we only display the
paintbox in 2d via post-processing, but the actual paintbox
is in 20 dimension; a higher-dimensional paintbox can be
more complex than what is shown.

We can compare the difference between paintboxes for
PRME in Figure 4 and paintboxes for binary random mea-
sures in Figure 1. First, the paintbox for PRME is real-
valued, so it is natural to use smooth functions to model
it. In the binary case the paintbox is zero/one valued; in
this case one can apply a threshold function over the PRME

paintbox to binarize it. Second, in contrast to the binary
paintbox, each PRME paintbox is unbounded. We control
the area of this salient region through regularization.

Figure 5(a) demonstrates the perplexity of DILN and PRME
with various decay speed κ on a held-out test set of size 3K.
PRME converges after seeing one million documents, and it
performs better than DILN. Also, online learning is much
more efficient than batch learning with various training data
size, as shown in Figure 5(b). In Figure 5(c), we compare
run times for updating local parameters ([Z,C] for PRME)
and global parameters ([θ, `, V, g, f ] for PRME) with batch
size 500. Since the cost is very imbalanced between local
and global, for demonstration purpose we compare the cost
between five local iterations and one global iteration. In our
experiments, local updates requires around 20 iterations to
converge. Compared with DILN, PRME costs much less
in local and costs more in global updates, since it uses the
VAE to transfer local updates for hn into global updates for
g. The extra global cost (∼0.35s) is significantly smaller
than the reduced local cost (∼4s), even when using a deep
network architecture. Finally, Figure 5(d) demonstrates
the usage proportion for all topics. PRME tends to use a
subset of the 100 available topics in the truncated posterior,
indicating use by the model of this nonparamteric feature.



Random Function Priors for Correlation Modeling

Figure 5. (a) Online performance comparisons between DILN and PRME. (b) Online versus batch. (c) Time cost comparison between
updating local and global variables. (d) Ranked topic usage proportions in the posterior, indicating nonparametric functionality.

6. Discussion
6.1. Connections with other random objects

Another view is to treat (Znk)n∈[N ],k∈[K] as a bipartite
graph over objects [N ] and atoms (features) [K] with
edge strength Znk. An important topic in random graph
theory is to study the total strength of edges |E| =∑
n∈[N ],k∈[K] E[Znk] asymptotically as a function of N .

There has been extensive work on random graphs, networks,
and relational models (Roy et al., 2008; Miller et al., 2009;
Caron, 2012; Lloyd et al., 2012; Veitch & Roy, 2015; Cai
et al., 2016; Lee et al., 2016; Crane & Dempsey, 2017;
Caron & Rousseau, 2017; Caron & Fox, 2017), but these
methods mainly focus on dense graphs where |E| ∼ O(N2),
and sparse graphs where |E| ∼ O(N1+α) with 0 < α < 1
or |E| ∼ O(N logN). Our method offers a new solution to
extremely sparse hidden graphs where |E| ∼ O(N), by cou-
pling random functions and a Poisson process. Our solution
cannot be trivially derived from previous representations
in sparse/dense graphs. There is a developed probability
theory building connections between exchangeable binary
random measures and functions on combinatorial structures
among atoms (Pitman, 1995; 2006; Broderick et al., 2013;
2015; Heaukulani et al., 2016; Campbell et al., 2018).

Our topic model construction is motivated by previous re-
search on dependent random measures (Zhou et al., 2011;
Paisley et al., 2012b; Chen et al., 2013; Foti et al., 2013;
Zhang & Paisley, 2015; 2016). Our focus is to place mild ex-
changeability assumptions on a population random measure
ξ and derive a very general random function model through
representation theorems. Hence our use of neural networks
to achieve this task. We mention that our method can also
be adapted to non-exchangeable settings.

6.2. Deep hierarchical Bayesian models
One can scale up model capacity by stacking multiple one-
layer Bayesian nonparametric models such as Dirichlet pro-
cesses (Teh et al., 2005), beta processes (Thibaux & Jordan,
2007), and Gamma processes (Zhou et al., 2015; Zhou,
2018). Population random measure embedding uses a differ-
ent strategy by constructing random measures as a coupling

of random functions with a single Poisson process. In this
way, we transfer all the model complexity into random func-
tions fn. Using amortized variational inference, we transfer
posterior inference of discrete random measures into opti-
mizing neural networks, which is much more efficient.

6.3. Posterior inference bottleneck
Efficient posterior inference is essential in Bayesian non-
parametric methods where conjugacy often does not
hold (Broderick et al., 2014; Zhang et al., 2016). In prin-
ciple, one can apply a simple prior on Z and still rely on
accurate posterior inference to resolve the structure. How-
ever, posterior inference for random measures is not simple
because complex correlations among atoms leads to slow
MCMC mixing. Instead, one can approximate the posterior
using variational methods (Blei et al., 2017) and try to learn
a q distribution with good approximation quality (Paisley
et al., 2012a; Hoffman & Blei, 2015; Ranganath et al., 2016;
Tran et al., 2017). Our method introduced a structured prior
to regularize variational inference. Empirical results showed
that we get an interpretable posterior.

7. Conclusion and Future Work
We presented random function priors to handle complex cor-
relations among features via a population random measure
embedding. We further derived a new Bayesian nonpara-
metric topic model to demonstrate the effectiveness of our
method for learning topic correlations through deep neural
networks with amortized variational posterior inference. In
future work, we will consider the more challenging task of
removing the non-differentiable Poisson process and mak-
ing our model fully differentiable.
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Appendix
Proof of Proposition 1.

Proof. From (Aldous, 1985; Hoover, 1979; Orbanz &
Roy, 2015), we can represent every separately exchange-
able infinite binary matrix Z = (Znk) if and only if it
can be represented as follows: There is a random function
W : [0, 1]2 → [0, 1] such that

(Znk)
d
= (1(Rnk < W (Un, Vk))). (17)

Thus, one can reconstruct Z by first sample W, (Un), (Vk)
and then sample Znk|W, (Un), (Vk) ∼ Bernoulli(WUnVk

)
through independent coin flips. It is straightforward to prove
that the finite row sum assumption can only be satisfied
when

∫
[0,1]2

W (u, v)dudv = 0. When that happens, Z = 0

almost surely.

Proof of Proposition 2.

Proof. The representation theorem in Proposition 2 is imme-
diate from a more general result of separately exchangeable
random measures. We temporarily reload notations hk, βn.
Theorem 1 (Kallenberg, 2006). A random measure ξ on
[0, 1]×R+ is separately exchangeable if and only if almost
surely

ξ =
∑
n,k

fn(ϑk)δτn,σk
+
∑
m,k

gm(ϑk)δρmk,σk︸ ︷︷ ︸
point masses

+
∑
k

hk(ϑk)(λ⊗ δσk
) +

∑
n

βn(δτn ⊗ λ)︸ ︷︷ ︸
line measures

+ γλ2︸︷︷︸
diffuse measure

, (18)

for some measurable functions fn, gm, hk ≥ 0 on R2
+, a

unit rate Poisson process {(ϑk, σk)} on R2
+, some indepen-

dent U(0, 1) arrays (τn) and (ρmk), an independent set of
random variables βn, γ ≥ 0, and the Lebesgue measure λ.
The latter can then be chosen to be non-random if and only
if ξ is extreme.

The representation theorem consists of three parts: point
masses, line measures, and a diffuse measure. We select
the point masses part for discrete separately exchangeable
random measures. Decomposition of the entire measure ξ
is demonstrated in Fig 6.

Discussion on Section 3.2. Existing models as special
cases of PRME model.

Let ξ =
∑
n,k fn(ϑk)δτn,σk

be our PRME model. We focus
on a specific object n, remove the redundant τn, and directly
work on random measures on Θ. This transformation let
us be on the same page of other research on completely
random measures.

We have ξn =
∑
k fn(ϑk)δθk be a population random

measure embedding model, where (ϑk, θk) is a Pois-
son process on R+ × Θ with mean measure p(θ)dϑdθ.
The according CRM is λ =

∑
k ϑ̃kδθk with Lévy mea-

sure ν(dϑ̃, dθ) = µ(ϑ̃)p(θ)dϑ̃dθ. Assume the tail func-
tion T (ϑ̃) = ν((ϑ̃,∞),Θ) is invertible. One can do a trans-
formation between atoms by (ϑk, θk)→ (T−1(ϑk), θk) =

(ϑ̃k, θk). The following examples are just special cases of
this transformation, as we shall see.

IBP AND EXTENSIONS

The Indian buffet process (IBP) take a particular form ξn =∑
k f ◦ T−1(ϑk)δθk , where f are independent Bernoulli

random variables with success rate T−1(ϑk). IBP uses
a particular transformation T−1(ϑk) = e−ϑk (Thibaux &
Jordan, 2007). (Teh & Gorur, 2009) gives a power-law ex-
tension of IBP with three parameters (3IBP) with an appli-
cation in language models. However, 3IBP does not enjoy
an analytical form for T−1. But we can safely work on
the CRM directly, given the generality of the existence of
T−1 (Orbanz & Williamson, 2011). One can observe that
the sampling function f ◦T−1 does not change with n. This
is the main limitation for IBP and 3IBP. A MCMC sampling
solution can be found in (Griffiths & Ghahramani, 2011;
Teh & Gorur, 2009).

CORRELATED RANDOM MEASURES

The key restrictions of IBP and 3IBP is that E[ξn({θk1}) ·
ξn({θk2})|ϑ̃] = E[ξn({θk1})|ϑ̃] · E[ξn({θk2})|ϑ̃]. In or-
der to model feature correlations, (Paisley et al., 2012b)
model fn(ϑk) as exchangeable random functions. The ex-
tra randomness besides ϑ̃ can be modelled by augment-
ing the Poisson process (ϑ̃k, θk) on R+ × Θ to higher di-
mension (`k, ϑ̃k, θk) on Rd × R+ × Θ with mean mea-
sure ν(d`, dϑ̃, dθ) = p(`)µ(ϑ̃)p(θ)d`dϑ̃dθ. The dis-
crete infinite logistic normal distribution (DILN) (Pais-
ley et al., 2012b) further proposes an example ξn =∑
k Znk(βϑ̃k, exp(−hn(`k)))δσk,τn , where hn(·) ∼

GP(m(·),K(·, ·)) and Znk is a gamma distribution parame-
terized by its shape and scale parameters. However, DILN
is restricted to use linear kernels, which is very restric-
tive. (Ranganath & Blei, 2018) proposed general correlated
random measures with examples for the binary, discrete,
and continuous cases.
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Figure 6. Decouple separately exchangeable random measure ξ into four parts.

Section 4. Detailed derivations.

The variational objective function can be decoupled as

L =

K∑
k=1

E
[

ln p(`k) + ln p(Vk) + ln p(θk)
]

+

N∑
n=1

E
[

ln p(hn)
]

+

N∑
n=1

K∑
k=1

E
[

ln p(Znk|V, hn, `k)
]

+

N∑
n=1

Mn∑
m=1

E
[

ln p(C(m)
n |Zn) + ln p(X(m)

n |C(m)
n , θ)

]
+ H

[
q(`, V, θ, h, Z,C)

]
. (19)

We expand each term in Eq. (19) as follows.

E[ln p(`k)] = ln p(̂̀k) = −r` ln(2πb)

2
−
̂̀>
k
̂̀
k

2b
. (20)

E[ln p(Vk)]=ln p(V̂k)=lnα+ (α− 1) ln(1− V̂k). (21)
E[ln p(θk)] = ln Γ(Dγ0)−D ln Γ(γ0)

+

D∑
d=1

(γ0 − 1)E[ln θkd],

where E[ln θkd] = ψ(γkd)− ψ(

D∑
d=1

γkd). (22)

E[ln p(hn)] = ln p(ĥn) = −rh ln(2πa)

2
− ĥ>n ĥn

2a
. (23)

E[ln p(Znk|V, hn, `k)]=− ln Γ(βp̂k)−βp̂kE[f(hn, `k)]

+ (βp̂k − 1)E[lnZnk]− E[Znk]E[exp(−f(hn, `k))],

where E[f(hn, `k)] = µf (ĥn, ̂̀k),

E[exp(−f(hn, `k))]=exp
(
−µf (ĥn, ̂̀k)+

1

2
σ2
f (ĥn, ̂̀k)

)
,

E[lnZnk] = ln(bnk) + ψ(ank), E[Znk] = ankbnk. (24)

E[ln p(Cnm|Zn)]=

K∑
k=1

φnm(k)E
[
lnZnk−ln

K∑
k′=1

Znk′
]
.

(25)

E[ln p(Xnm|Cnm, θ)] =

K∑
k=1

φnm(k)E[ln θk,Xnm
],

where E[ln θk,Xnm
] = ψ(γk,Xnm

)− ψ(

D∑
d=1

γkd). (26)

H[q(`k)] = 0. (27)
H[q(Vk)] = 0. (28)

H[q(θk)] =

D∑
d=1

ln Γ(γkd)− ln Γ(

D∑
d=1

γkd)

−
D∑
d=1

(γkd − 1)E[ln θkd]. (29)

H[q(hn)] = 0. (30)
H[q(Znk)] = ank + ln(bnk) + ln Γ(ank)

+ (1− ank)ψ(ank). (31)

H[q(Cnm)] = −
K∑
k=1

φnm(k) lnφnm(k). (32)



Random Function Priors for Correlation Modeling

Variational inference for `k, Vk and network parameters can
be done by directly plug-in and take gradients. Updating
q(θk) and q(Cnm) follows the general variational update
rule. Updating q(Znk) requires lower-bounding L.

For `, we use gradient ascent:

∇`L =

K∑
k=1

∇`E
[

ln p(`k)
]

+

N∑
n=1

K∑
k=1

∇`E
[

ln p(Znk|V, hn, `k)
]
. (33)

For V , we use gradient ascent:

∇V L =

K∑
k=1

∇V E
[

ln p(Vk)
]

+

N∑
n=1

K∑
k=1

∇V E
[

ln p(Znk|V, hn, `k)
]
. (34)

For θ, we have a closed-form update:

γkd = γ0 +

N∑
n=1

Mn∑
m=1

φnm(k) · 1(Xnm = d) (35)

For hn, we update the inference network g:

∇gL =

N∑
n=1

∇gE
[

ln p(hn)
]

+

N∑
n=1

K∑
k=1

∇gE
[

ln p(Znk|V, hn, `k)
]

(36)

For Znk, we maximize a lower bound for L similar as (Pais-
ley et al., 2012b). Related terms in L are:

L(q(Znk)) = (βp̂k − 1 +

Mn∑
m=1

φnm(k))E[lnZnk]

− E[Znk]E[exp(−f(ĥn, ̂̀k))]

−MnE
[

ln

K∑
k′=1

Znk′
]

+ H[q(Znk)]. (37)

The term that make closed-form update intractable is
E[ln

∑K
k′=1 Znk′ ]. We use the bound:

E[ln

K∑
k′=1

Znk′ ] ≤ ln εn +

∑K
k′=1 E[Znk′ ]− εn

εn
. (38)

This bound is correct for any εn > 0, and here we pre-
compute εn =

∑K
k=1 E[Znk] and treat εn as a constant in

the above equation. After Plugging-in the bound and some
algebra, we solve q(Znk) as:

ank = βp̂k +

Mn∑
m=1

φnm(k),

1/bnk = E
[

exp(−f(hn, `k))
]

+
Mn

εn
. (39)

For decoder network f :

∇fL =

N∑
n=1

K∑
k=1

∇fE
[

ln p(Znk|V, hn, `k)
]
. (40)

For Cnm, we have a closed-form update:

φnm(k) ∝ exp
(
E[ln θk,Xnm ] + E[lnZnk]

)
. (41)


