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Abstract

Generalized zero-shot learning is a significant
topic but faced with bias problem, which leads
to unseen classes being easily misclassified into
seen classes. Hence we propose an embedding
model called co-representation network to learn
a more uniform visual embedding space that ef-
fectively alleviates the bias problem and helps
with classification. We mathematically analyze
our model and find it learns a projection with high
local linearity, which is proved to cause less bias
problem. The network consists of a cooperation
module for representation and a relation module
for classification. It is simple in structure and can
be easily trained in an end-to-end manner. Experi-
ments show that our method outperforms existing
generalized zero-shot learning methods on several
benchmark datasets.

1. Introduction

Zero-shot learning (ZSL) is an important field in computer
vision. It aims at classifying images of unseen classes
through establishing mathematical relationship between the
semantic space and the visual space. Usually both seen
classes and unseen classes are described through a set of
semantic vectors in the same semantic space, including man-
ually defined attribute vectors (Lampert et al., 2014) and
word embedding vectors (Mikolov et al., 2013). Existing
ZSL researches can be categorized into conventional ZSL
(CZSL) and generalized ZSL (GZSL) according to the clas-
sification range: A CZSL task classifies only unseen classes
while a GZSL task classifies both seen and unseen classes.
Our algorithm is dedicated to the more challenging and
practical GZSL task.

Since the the concept of ZSL was first proposed by Lampert
et al. (2009), algorithms for CZSL have been emerging
one after another. During this period, every new algorithm
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broke the records on several benchmark datasets and has
promoted the progress of ZSL. However, CZSL technology
has not got practical applications because of its defects.
In practical scenarios, it is usually necessary to classify
both seen and unseen samples instead of just classifying
the unseen ones. But almost all classic CZSL algorithms
have a strong classification bias towards seen classes when
applying it to a GZSL task (Xian et al., 2017), which is
called bias problem. Therefor, it is significant to study the
GZSL algorithm. At present, effective GZSL algorithms
mostly use generative models (Verma et al., 2018; Xian
et al., 2018). They generate synthetic features of unseen
classes to control the weights of seen classes and unseen
classes so that the bias problem is mitigated.

Generative model is effective in GZSL but usually complex
in structure and not easy to train. Instead of generative
model, in this paper we propose a novel embedding model
called co-representation network (CRnet) for GZSL, which
learns more discriminative visual features and a more uni-
form embedding space that helps to classify. Our model
achieves a high accuracy on both seen classes and unseen
classes and outperforms existing generative models on most
GZSL benchmark datasets. The model has a simple, intu-
itive and easy to implement structure with high expandabil-
ity. It consists of two modules: A cooperation module for
projecting the semantic space to a visual embedding space;
A relation module (Sung et al., 2018) for classification. The
cooperation module consists of several parallel single-layer
perceptrons, each of which learns a linear projection in a
particular direction and is therefore called an expert module.
We mathematically analyze our model and find it learns a
piecewise linear projection with high local linearity, which
is proved to be effective in alleviating the bias problem. We
evaluate our model on five GZSL benchmark datasets includ-
ing AwA1 (Lampert et al., 2014), AwA2 (Xian et al., 2017),
CUB (Welinder et al., 2010), aPY (Farhadi et al., 2009) and
SUN (Patterson & Hays, 2012), and achieve the state-of-
the-art harmonic mean accuracy on the first four datasets
and a comparable result on SUN. Our main contributions
are summarized as follows:

1. We explore the cause of the bias problem and propose a
reasonable metric, Local Relative Distance, to measure it.

2. We propose a novel CRnet with simple structure to solve
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the bias problem in essence and therefor achieve good re-
sults on GZSL.

3. We mathematically analyze our model and prove that its
high local linearity is effective in alleviating the bias prob-
lem, which is an enlightening conclusion for other transfer
learning problems.

2. Related Work

We summarize several recent algorithms for CZSL and
GZSL, and explain their relationship with ours.

2.1. Conventional Zero-Shot Learning

Early CZSL algorithms focus on building an embedding
model with a better mathematical projection between the
semantic space and the visual space. Generally speaking,
the form of projection can be classified into three main
categories as follows.

1) The visual space are set as the source space and clas-
sification is based on the semantic space. Famous meth-
ods including DeViSE (Frome et al., 2013), ALE (Akata
et al., 2016), ESZSL (Romera-Paredes & Torr, 2015), SAE
(Kodirov et al., 2017), etc. learn linear or non-linear projec-
tions from the visual space to the semantic space through
various constraints or loss functions. Besides, classical al-
gorithms like DAP (Lampert et al., 2014) consider CZSL as
a probability problem and perform classification based on
the predicted posterior of each attribute, so we also classify
them as this category.

2) The visual space and the semantic space are simulta-
neously set as the source space and projected to a latent
space in search of better representation that helps to classify,
such as SSE (Zhang & Saligrama, 2015). SSE learns an
embedding function for semantic vectors and visual vectors
to get mixture patterns so that the similarity can be readily
measured.

3) The semantic space is set as the source space and classifi-
cation is performed on the visual space. For example, DEM
(Zhang et al., 2017) learns a deep embedding model which
projects the semantic space to the visual embedding space
to alleviate the hubness problem (Radovanovié et al., 2010).
This type of projection proves to significantly alleviate the
hubness problem compared with the other two types of pro-
jection (Shigeto et al., 2015; Zhang et al., 2017). We adopt
this conclusion, thus our model learns a projection from the
semantic space to the visual space.

2.2. Generalized Zero-Shot Learning

Although the concept of GZSL has been proposed in 2013
(Scheirer et al., 2013), research on it did not appear until
nearly two years. Chao et al. (2016) propose an effective

calibration method to adapt CZSL algorithms to perform
well on GZSL and develop a metric for GZSL evaluation.
Xian et al. (2017) not only evaluate the quality of most
previous CZSL algorithms in the same benchmark but also
reproduce their performance on GZSL tasks, and propose a
reasonable protocol for GZSL evaluation, which is widely
adopted in later GZSL algorithms, including ours.

Most existing algorithms use generative models for GZSL.
Because once generating some synthetic samples with high
quality of unseen classes, the problem becomes a traditional
classification task and bias problem as well as hubness prob-
lem can get solved. Bucher et al. (2017) present 4 different
strategies to design conditional data generators and com-
pare their performance. CVAE-ZSL (Mishra et al., 2018)
uses a conditional variational autoencoder to implement
the generation. SE-GZSL (Verma et al., 2018) also de-
signs a generative model baesd on a variational autoencoder
but in a feedback-driven way to generate novel exemplars
from seen/unseen classes. f-CLSWGAN (Xian et al., 2018)
trains a Wasserstein GAN with a classification loss and is
able to generate sufficiently discriminative CNN features to
train softmax classifiers.

Compared with embedding models widely used in CZSL,
generative models show their powerful performance on
GZSL. In this paper, we mathematically look into the essen-
tial cause of CZSL algorithms’ bad performance on GZSL,
the bias problem, and propose a traditional and simple em-
bedding model called CRnet to overcome it rather than pur-
suing the trend. Especially, Sung et al. (2018) propose the
relation network with a learnable relation module for metric
learning to solve the few-shot learning problem as well as
CZSL/GZSL problem. We adopt this module in CRnet and
set the relation network as a contrast in our experiments.

3. Method
3.1. Problems

CZSL & GZSL: Our task is to learn a projection from the
semantic space to the visual space. Given a seen set contain-
ing M seen classes S = (S%,Y?®) = {(s5,,45,)}M_, and
an unseen set containg N unseen classes U = (S*,Y") =
{(s%, y*)}N_,, where s5,,s% € R denote the P-d (di-
mensional) semantic vectors of the m-th seen class and the
n-th unseen class respectively, y;,, y» denote their class
labels respectively. And they satisfy Y°* N Y" = &. Then
training samples can be denoted as V* = {v¢} |, where C
is the number of images, v € R1*@ denote the QQ-d feature
vector extracted from the i-th training image through a tra-
ditional deep CNN (e.g. GoogleNet, VGG19, ResNet) and
its corresponding semantic vector and label are (s;,y;) € S.
Similarly, let V* = {v}1.| denote the D test samples but
its corresponding label and semantic vector (s, ") remain
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unknown, which is exactly what ZSL has to solve. So the
main task is to learn a projection f : S* — V¥ through
training samples so as to infer the labels of test set V.

After obtaining a well-learned projection f : S* — V*, for
semantic vector sy, and s}, their actual projection results are
vi = f(sf,) and V¥ = f(sY) respectively, which we call
feature anchors. And the space where the feature anchors
are located in is called visual embedding space. Then a
similarity function g(x) is used to evaluate the similarity ;4
between the j-th test image’s feature v§- and any predicted

feature anchor v4:
t ~
Tid = 9(Vj,Va) (D

For CZSL, the test set only contains images of unseen
classes, that is, y§ € Y! = Y and the search space is
limited to unseen classes, V4 € {V¢})_ d € {1,...,N}.
For GZSL, the test set does not just contains images of
unseen classes, then y§ € Y! = Y* UY?® and search
space contains both seen classes and unseen classes, vV, €
Ve u{vsM_ 'd € {1,...,M + N}. The higher
the similarity, the more likely it is to belong to this class. So

the classification of j-th test image can be achieved by

ind(j) = arg max 9(v},va) 2)

where ind(j) denotes the index, so the predicted label y% =
Y! dG)- In this paper, we focus on GZSL.

Bias Problem: The key to GZSL is to solve the bias prob-
lem. It refers to the problem that in the embedding space
the projected feature anchors of unseen classes v, are dis-
tributed too near to that of seen classes V¥, hence they are
hard to separate and unseen images are easily classified into
close seen classes. Consequently, most previous algorithms
that perform well on CZSL tasks are invalid on GZSL ones.

The cause of bias problem is similar to that of over-fitting
problem in classical machine learning tasks. On one hand,
semantic space and visual embedding space are two com-
pletely different space and their manifolds are inconsistent,
which increases the complexity of projection f(x) between
them and requires it to be highly nonlinear. On the other
hand, the sample size of the semantic space is limited the
same as the seen class number M. These cause f(*) to over-
fit the semantic vectors of seen classes and make the feature
anchors of seen classes and unseen classes extremely close
in the embedding space. Hence, the visual features that is
classified based on the similarity function g(*) become less
separable. In general, bias problem is highly related with the
complexity of f(x) and the uniformity of the distribution of
points in the embedding space.

Figure 1 shows a simplest example of projection from 1-
d semantic space to the g-th dimension of the embedding
space. s{, s5 and s3 are three points in the semantic space
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Figure 1. An example of a general fitting curve fg from 1-d to 1-d.
S: Semantic space, V: Embedding space.

and their corresponding feature anchors are v, v§ and V3.
Uiy U3, and U3, are the values of feature anchors in the
g-th dimension. And the curve fg is learned through these
seen points. Suppose there is a point s{ for unseen class
between s§ and s§ and its predicted feature anchor is v,
then v{, = fc(s{). When the distance between v} and v§
or V3 is too close, the bias problem arises. For quantitative
analysis, we use Standardized Euclidean distance e(*) as
the distance between any points in the embedding space:

S 2 G-\
e(vy, Vo) = Z% 3

a=1 q

where 03 is the variance of all points in the g-th dimension
and is used for normalization. And we adopt the Local Rel-
ative Distance (LRD) to measure the distribution of unseen
class anchors:
e(V¥, Ve )
S 7 "e(d)
LRD(VY) = ———7—~

(Vg Ve

“4)

where Vj( I is the seen class anchor closest to the unseen

class anchor ’\75( i) and Vﬁz n is the seen class anchor closest
to Vj( nE We propose the metric LRD on the assumption
that the local discrimination of similarity function g(x) is
certain and is related to the shortest distance between the
two local seen class anchors. Hence, unseen class anchors
with large LRD can be more easily distinguished from seen
class anchors by g(x) and lead to less bias problem.

3.2. Algorithm

The core of CRnet is to decompose the complex projection
f(x) into several simple projections to construct a more
uniform embedding space with large LRD. The concept
of decomposition is common in machine learning and is
effective for specific problems, e.g., the Deep Set model
adopts a sum-decomposition structure to achieve permuta-
tion invariance (Zaheer et al., 2017). While in this paper,
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CRnet adopts a decomposition structure to alleviate the bias
problem. It consists of a cooperation module with several
expert modules for f () and a relation module for g(x). The
steps and concepts of the algorithm are as follows.

Initialization Algorithm: First, divide the semantic vec-
tors S* = {s? }M_, of training setinto K € {1,..., M}
subsets. We call each subset a semantic field and use the
unsupervised K-means clustering algorithm to implement
this process. Let S denote the clustering center of k-th
semantic field, where k € {1,..., K}, and we refer to it as
field center. Then for the k-th field center we specialize in
learning a projection f(sg,;Sy) through an expert module
so that the whole projection f () can be expressed as:

K
=D fulsiise) )
k=1

Expert Module: We design expert modules with the same
structure for each field center. For the k-th field center, the
input of its corresponding expert module is the offset of the
m-th semantic vector relative to s, denoted as oy, and
Orm = S,, — Si. Then the set of the input offsets with A/
seen classes for the k-th expert module is Oy = {ogm }M_,.

Each expert module contains a single layer perceptron and
we implement it with a FC layer (full connected layer) with
ReLU (Rectified Linear Unit). Then the projection f(x)
can be experssed as:

fu(sp;8k) = relu (W (sy, — ;) + byg) 6)

where Wy, denotes the weights of FC layer and by, denotes
the bias.

Figure 2(a) shows an example of three semantic fields
(K = 3). It’s obvious that for a specific expert module,
it has small input offsets for semantic vectors in its corre-
sponding field, while for semantic vectors in other fields it
has large ones (022 > 027). In this way, the expert network
gets different learning strategies for the semantic vectors
belonging to different fields, thus it can have different sensi-
tivity to different directions.

Cooperation Module: The cooperation module is a combi-
nation of K expert modules. We perform this combination
by summing the output vectors of the K expert networks
(Eq 5). Then the entire projection f(x) can be expressed as:

K
Zrelu Wk m — §k) + bk) (7

k=1

Figure 2(b) shows an ideal state achieved by each expert
module after training with Figure 2(a) as the initial state.
ReLU of each expert module actually divides the semantic
space into two parts. Semantic vectors located in one part
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Figure 2. (a) Semantic fields of AWA2 (Section 4.1), stars represent
the field centers. (b) The division of sementic space by different
expert modules. The dotted colored lines represent the dividing
lines, colored arrows indicate the gradient directions. All three
modules respond to the point boxed in the triangle while only f;
and f3 respond to the point boxed in the square.

are projected to 0 while those located in another part pro-
duce responses. And along with Wy, which is the gradient
direction of f (), the response produced by the k-th expert
module increases the most. Each expert module will even-
tually be sensitive to data in a specific direction and this is
why we name it expert. Hence, cooperation module finally
devides the semantic space into several parts, and semantic
vectors located in different parts are projected by several dif-
ferent expert modules. In this way, the form of each expert
module is very simple, a piecewise linear function f (),
but the whole model still retains certain nonlinear ability.

Relation Module: We adopt a relation module (Sung et al.,
2018) as the similarity function g(x) and follow most of the
original settings. Relation module works in a data driven
way so that the similarity metric is self-adaptive to data. It
consits of a two-layer MLP and its structure can be written
as: FC1-ReLU-FC2-Sigmoid. The input of FC1 is the con-
catenation of a predicted anchor v, = f(s?,) and a sample
feature vector v; in depth; FC2 works as a hidden layer
to increase nonlinearity and its output dimension is 1; The
sigmoid function maps the output to [0, 1] in order to repre-
sent the similarity. We randomly sample the entire training
set to generate training pairs of v7, and v{, and control the
ratio of matched pairs (v, and v correspond to the same
class y2,) to mismatched pairs (v, and v§ correspond to
different classes) at about 1 : 30. The similarity of matched
pairs is set to 1 and the similarity of mismatched pairs is set
to 0. Then the similarity ground-truth I(v$, V2 ) of training
pairs can be expressed as:

The relation network is trained through MSE loss:

lossl = ZZ — (v Afn))Z &)

Wvi Vi) = { ®
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Figure 3. The structure of CRnet

where ) . > respectively mean the possible values of i
and m in a randomly generated training batch (Sung et al.,
2018). In this way, the network will have a smaller output
for mismatched pairs and a larger output for matched pairs.

We connect the cooperation module and the relation mod-
ule together to construct the entire CRnet. It is simple in
structure and only consists of several perceptrons: several
parallel single-layer perceptrons make up the cooperation
module and a two-layer perceptron makes up the relation
module. Figure 3 shows the entire structure of CRnet for
GZSL. It should be noted that the pretrained CNN module
is only used for feature extraction and will not be trained.

Trianing: The entire network can be trained in an end-to-
end manner with [ossl. And we also adopt two regular-
ization losses to improve the performance. The total loss
function can be expressed as:

loss:lossl—i-oszng—!—ﬂngHg (10)

where w s, w, represent trainable parameters of f(x) and
g(*) respectively and ||w fH;, [|wgl |§ are the regularization
loss for them. «, 3 are two hyperparameters. We argue
that it is necessary to use two coefficients to control the
regularization terms of the two modules separately. Because
there are two completely different high-dimensional spaces
and the roles played by the two modules are completely
different: cooperation module for representation learning
while relation module for classification. Sung et al. (2018)
points out that ||w ng can alleviate the hubness problem
of embedding space, while ||w,| |§ can avoid the relation
module over-fitting on the training set as well as accelerating
convergence. And both of these points help solve the bias
problem. So the objective function can be written as:

arg min Z Z(g(Vf, Vi) —1(vE,vE))?

WiHWg

2 2
+allwilly + Bllwgll,

Y

where V2, can be obtained from Eq (7).

The green dotted line in Figure 3 indicates the back propa-
gation path of loss. There are K branches after loss goes
through the relation module and each branch share the same
error, denoted as §. According to Eq (6), the partial deriva-
tive of loss to Wy, of the k-th expert module is

Oloss
OW,,

1) (an — §k) (12)
In particular, the common regularization term ||w f||; is
omitted here for simplicity purpose. Then the update pro-
cesses of Wy, can be expressed as

= Wy +nd(ss, —sk) (13)

where 7 is the learning rate. Obviously, when the input
semantic vector s}, is close to the k-th field center 5y, the
update rate of Wy, is small. In the meanwhile, expert mod-
ule whose field center is far away from s;, is faced with
just a opposite situation — the update rate of weights is
large. Hence, each expert module can converge in different
directions and finally reach the state of Figure 2(b).

In fact, the initialization center corresponding to each expert
module can be arbitrarily selected, and even all modules
can share the same center, such as the mean of all semantic
vectors. But in this case, the convergence direction of differ-
ent modules largely depends on the initial value of weights,
which easily cause different expert modules to converge
to the same direction and leads to a local optimal solution,
especially when K is large. So we use the initialization algo-
rithm to ensure that the expert modules converge in different
directions and divide the space as evenly as possible.

Test: Apply the learned projection f(x) to both seen class
space S° and unseen class space S* for test. During test, the
input offests Oy, = {okd}y;{N = {sq — ék}y;{N, where
sq € S* U S®. Then classification for test image’s feature

v§- can be easily performed through Eq (1) and Eq (2).
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Table 1. Classification accuracies on various datasets following the GZSL setting. As/Au: Average per-class top-1 accuracy in % on
seen/unseen classes. H: Harmonic mean accuracy. Cloumn 3-12 are the results of classic CZSL methods on GZSL repruduced by Xian et
al. (2017), which show strong bias on As. Cloumn 13-18 are the official results of recent GZSL methods.

| AwA1l | AwA2 | CUB | SUN | aPY

Method ‘ As Au H ‘ As Au H ‘ As Au H ‘ As Au H ‘ As Au H
CONSE (Norouzi et al., 2013) 88.6 0.4 0.8 90.6 0.5 1.0 72.2 1.6 3.1 39.9 6.8 11.6 | 91.2 0.0 0.0
CMT?* (Socher et al., 2013) 86.9 8.4 153 | 89.0 8.7 159 | 60.1 4.7 8.7 28.0 8.7 133 | 742 10.9 19.0
SSE (Zhang & Saligrama, 2015) 80.5 7.0 129 | 825 8.1 14.8 | 46.9 8.5 144 | 364 2.1 4.0 78.9 0.2 0.4
SJE (Akata et al., 2015) 74.6 11.3 19.6 | 739 8.0 144 | 592 235 336 | 305 14.7 19.8 | 55.7 3.7 6.9
ESZSL (Romera-Paredes & Torr, 2015) 75.6 6.6 12.1 77.8 5.9 11.0 63.8 12.6 21.0 27.9 11.0 15.8 70.1 2.4 4.6
SYNC (Changpinyo et al., 2016) 87.3 8.9 162 | 905 10.0 18.0 | 709 11.5 19.8 | 433 79 134 | 66.3 7.4 13.3
SAE (Kodirov et al., 2017) 77.1 1.8 35 82.2 1.1 22 54.0 7.8 13.6 18.0 8.8 11.8 | 80.9 0.4 0.9
LATEM (Xian et al., 2016) 71.7 7.3 133 | 773 11.5 200 | 573 152 240 | 288 14.7 19.5 | 73.0 0.1 0.2
ALE (Akata et al., 2016) 16.8  76.1 275 | 81.8 140 239 | 628 237 344 | 33.1 218 263 | 73.7 4.6 8.7
DEVISE (Frome et al., 2013) 68.7 134 224 | 747 17.1 27.8 | 53.0 238 328 | 274 169 209 | 769 4.9 9.2
DEM (Zhang et al., 2017) 847 328 473 | 8.4 30.5 451 57.9 19.6 292 | 343 205 256 11.1 75.1 19.4
RN (Sung et al., 2018) 913 314 467 | 934 300 453 | 6l.1 38.1 47.0 - - - - - -
DCN (Liu et al., 2018) 842 255 391 - - - 60.7 284 387 | 37.0 255 302 | 75.0 142 239
CVAE-ZSL (Mishra et al., 2018) - - 47.2 - - 51.2 - - 345 - - 26.7 - - -
SE-GZSL (Verma et al., 2018) 67.8 563 61.5 | 68.1 583 628 | 533 415 467 | 305 409 349 -

f-CLSWGAN (Xian et al., 2018) 614 579 59.6 - - - 577 437 497 | 36.6 426 394 -

CRnet (Ours) ‘ 747 581 654 ‘ 788 52,6  63.1 ‘ 56.8 455 505 ‘ 36.5  34.1 353 ‘ 684 324 440

4. Experiment

We evaluate our approach on five benchmark datasets in-
cluding AwA1 (Animals with Attributes 1), AwA?2 (Animals
with Attributes 2), CUB (Caltech UCSD Birds 200), SUN
(SUN Scene Recognition) and aPY(Attribute Pascal and
Yahoo), following the GZSL settings (Xian et al., 2017)
for seen/unseen splits and compare it with other methods
including classic CZSL methods and several recent GZSL
methods.

4.1. Datasets and Hyperparameters

Among these five datasets, AwA1l, AwA?2, and aPY are three
coarse-grained classification datasets while CUB and SUN
are two fine-grained ones. For fair comparison, we use the
2048-d features extracted form resnet-101 pre-trained on
Imagenet without any finetune operation for all datasets,
consistent with the experiments reproduced by Xian et al.
(2017). The specific details and training hyper-parameters
of each datasets are summarized in Table 2.

Table 2. Statistics and hyper-parameters of each dataset. Att: The
dimensions of semantic vectors; S/U: Seen class size/Unseen class
size; Img: Total number of images.

I Statistic I Parameter
Dataset || Att S/U Img || K o B
AwAl 85 40/10 30475 3 le-5 le-4
AwA2 85 40/10 37322 3 le-5 le-4
aPY 64 20/12 15339 3 le-5 le-4
CUB 312 150/50 11788 4 le-5 0
SUN 102 645/72 14340 12 le-6 0

For AWA1, CUB and SUN, the hyper-parameters are deter-
mined through a train-validation split of seen classes and
are used to train the model on complete data. For AwA?2 and
aPY, we use the same hyper-parameters as AWA1 because
of the similarity of the three datasets. The adjustment of
hyper-parameters in our method is not complicated and they
follow some rules: The best value of K is roughly positively
correlated with the number of seen classes M. And our ex-
periments show that a slight increase in K will bring some
redundant parameters to the network, but has little impact on
the results. «, 3 are the coefficients of regularization terms
[|w ¢l |§, [|wgl \3 respectively. For fine-grained classification
datasets CUB and SUN, large (3 causes under-fitting of g(x),
hence it is set to 0. Similarly, SUN with a large class size
requires a smaller « to avoid under-fitting of f ().

Besides, the number of hidden units of relation module for
each dataset is set to 2048, which is considered large enough.
All models are trained at a learning rate of 10~ with Adam
optimizer until the loss converge.

4.2. Comparison of Results

We evaluate the average per-class top-1 accuracy on both
seen classes (denoted as As) and unseen classes (denoted as
Au) of each dataset, and calculate the harmonic mean of the
two accuracy as Xian et al. (2017) suggest to evaluate the
overall performance of the model. Let H denote harmonic
mean and it can be expressed as H = (2 x Au x As)/(Au+
As). Table 1 reports the results of different methods on the
five datasets following the GZSL settings.

The result shows that our method outperforms recent GZSL
methods on the overall evaluation metric H. Especially, RN
(relation network) can be seen as a contrast to our network
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because they share the same relation module and differ
only in the implementation of projection f(x): RN uses
a two-layer MLP while CRnet uses a cooperation module.
Obviously, Au of CRnet has a significant improvement com-
pared with RN, which proves that cooperation module is
quite effective in solving the bias problem. Besides, SE-
GZSL and f-CLSWGAN use generative models to solve
the bias problem so that its Au increases a lot. But the
generative model also leads to an obvious decrease on As.
While our model learns a projection through seen features
directly just like most CZSL methods, leading to a small
decrease on As. Therefore, compared with SE-GZSL, our
approach obtains a comparable Au (52.6%) with a much
more higher As (78.8%) on AwA2. On AwA1, CUB and
aPY, our approach even achieves the highest Au (58.1%,
45.5%, 32.4% respectively). The good performance on both
Au and As finally results in a high H, which indicates that
the model maintains a good balance between seen classes
and unseen classes and our method truly takes effects.

But embedding models like CRnet also have a drawback.
CRnet is highly dependent on the correct classification
of seen class samples. Hence, it is limited by the seen
samples and Au is usually no higher than As. While gen-
erative models that generate synthesized unseen samples
can adjust the weights of unseen and seen classes and is
less constrained. The result on SUN is a good embodi-
ment: the classification accuracy on seen classes is quite
low (36.5%), resulting in CRnet’s even lower accuracy on
unseen classes (34.1%). While generative model like f-
CLSWGAN achieves a higher Au (42.6%) than As (36.6%)
and outperforms CRnet on H.

5. Analysis

It seems that CRnet has achieved a very good effect on
GZSL tasks only by replacing the two-layer MLP in RN
with several parallel single-layer percptrons. But why is this
effective and how does CRnet solve the bias problem? We
explain its mechanism and analyze the reasons why it works
from the following aspects.

5.1. More Discriminative Features

We visualize the feature anchors of CRnet and RN respec-
tively and find that the former is much more sparse than the
latter, as shown in Figure 4. In the subsequent similarity cal-
culation and classification process, only those dimensions
with response will take effect. In other words, stronger spar-
sity means more discriminative features. The single-layer
cooperate module in CRnet has learned the most discrim-
inative parts while the two-layer MLP in RN has learned
many redundant features which only exist in the training set
and cause disturbance to the test set. This is similar to the
over-confident phenomenon of multi-layer networks (Guo

etal., 2017). We believe single-layer networks have some
advantages over multi-layer networks in tasks like GZSL.
Compared with RN, more sparse and discriminative features
is the direct reason why CRnets accuracy on seen classes
decreases while the accuracy on unseen classes increases.

0.5
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Figure 4. Visualization of the feature anchors of CRnet (above)
and RN (below) well-trained on AwA?2. The first 300 dimensions’

normalization results of the feature anchors of 40 unseen classes
and 10 seen classes are presented.

5.2. More Uniform Embedding Space

Such a parallel structure of CRnet allows different expert
modules to learn differently and are sensitive to different
inputs. In order to have a better understanding of the co-
operation process, we visualize the response to different
semantic vectors of each expert module (Figure 5). Obvi-
ously each expert module has a weak response and even no
response to semantic vectors around its corresponding field
center S; (Figure 5.(a)(b)(c)). While for semantic vectors
located in the center of the space, each expert module has
response with parts of units actived (Figure 5.(d)).

Total 1.0

Expertl
Expert2
Expert3

(@) (b) 0.5

Total
Expertl
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© @ 0.0

Figure 5. Responses of each expert module of CRnet trained on
AwAZ2 to different inputs, (a) : S1, (b) : S2, (c) : S3, (d) : %(El +
S2 + §3). Total: Totoal response, i.e. preditced feature anchor.
The results are normalized and sorted in descending order of each
dimensions of total response, we show the ten dimensions with the
strongest responses.

The result is consistent with the state we expect to achieve
in Figure 2(b). Hence the projection of any semantic vector
to visual embedding space is done as well as constrained by
multiple parties. In this process, ReLU plays an important
role. Intuitively, it resembles a set of switches which deter-
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mines whether the expert module responds. Mathematically,
for each dimension of the embedding space, cooperation
module constructs a piecewise linear function with K + 1
pieces through ReLU. In this way, the local linearity of f(x)
increases without a heavy decrease of global nonlinearity.
High local linearity ensures that V¥ is not too close to v,
and leads to a larger LRD. We have a simple mathematical
proof for this as follows.

Figure 6 shows two different fitting curves fcgr and fg for
the three ponints in Figure 1. On [s§, s3], fcr is mono-
tone increasing and linear whereas fg is convex. Sup-
pose v. = 1/2- (v§, +05,), s« = 1/2- (s] + s3), then
for(s«) = vi. Suppose fa(s.) = v, obviouly, v/, < Vs
Then, Vsi € [s1,5.], 01, = for(s{) > fa(si) = vi, is
always satisfied. According to Eq (4), in this 1-d to 1-d case,
LRD can be easily caculated through:
min(i?llq - ﬁfq’ i)\gq - i}\%q)

LRD(3Y,) = (14)

s s
’U2q — Ulq

So, Vsi € [s{,s.], LRD(0},) > LRD(3}). In general,
we consider s to be uniformly distributed in the semantic
space. Hence, Vs{ € [s5, s3],

S

~u ~u’ Sx — 81 _
p (LRD(vlq) > LRD(vlq)) > =05 a9

where p(x) is the probability. Similarly, there is the same
conclusion when fg is concave or the two functions are
monotone decreasing on [s3, s5]. Eq (15) indicates that for
is more likely to get feature anchors with large LRD. In
other words, high local linearity between two points leads
to less bias problem. The conclusion can be extended to the
case of P-d to Q-d according to Eq (3).

Ay

@ Unseen class
@ Seen class

Figure 6. Examples of two different fitting curves for the three
points in Figure 1. S: Semantic space, V: Embedding space.

The representation ability of single-layer model is worse
than that of the multi-layer model. But CRnet adopts a
parallel stucture to avoid this problem and learns a piecewise

linear projection similar to fcg in Figure 6 with large LRD.
Larger LRD means a more uniform embedding space, so
that bias problem can be alleviated to a certain extent. This
is the root reason of CRnet’s good performance on GZSL.

We also calculate the average LRD of all unseen classes
for CRnet and RN on three datasets and report the result
in Table 3. The contrast proves that CRnet’s embedding
space is more uniform than RN’s. CRnet outperforms RN
on the average LRD on all three datasets, consistent with
Au. What’s more, when the relative difference between Au
of the two networks is smaller, the difference in the average
LRD is more likely to be smaller too, which indicates that
the proposed LRD is a reasonable metric for measuring the
bias problem.

Table 3. Average LRD of all unseen class anchors for RN and
CRnet on various datasets.

AwAl AwA2 CUB
RN 0.711  0.756  0.831
CRnet 0.835 0956 0.843

5.3. Learnable Relation Module

Using a Relation module to implement the similarity func-
tion g(x) is also an essential part of our algorithm. The
simplest form of g(x) for the final classification is the co-
sine distance, which is widely used in ZSL algorithm. It is
easy to implement and does not introduce extra parameters
to the network. But such a fixed pre-specified similarity
function is highly dependent on the linear separability of
the visual embedding space and leads to sharp drop in clas-
sification performance. In contrast, relation module learns
a non-linear similarity function in a data driven day and is
capable of self-adapting to the embedding space so that it
performs a better classification (Sung et al., 2018).

In general, CRnet learns a better visual representation with
more discriminative features and a more uniform embedding
space with less bias problem by a cooperative approach, so
that it achieves better performance on GZSL. Thus we name
it “Co-Representation Network”.

6. Conclution

We propose the Local Relative Distance metric to analyze
the bias problem in GZSL and design a novel embedding
model called co-representation network to solve it. It adopts
a single-layer cooperation module with parallel structure to
learn a more uniform embedding space with better represen-
tation. Its high local linearity proves to alleviate the bias
problem effectively. The model outperforms existing GZSL
methods and we believe it can provide some inspiration for
other transfer learning tasks.
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