SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

A. Policy Learning Details

Given a TVLG dynamics model and quadratic cost approx-
imation, we can approximate our Q and value functions
to second order with the following dynamic programming
updates, which proceed from the last time step ¢ = 7' to the
first step t = 1:

T T
Qs,t =cst+ Fs,tVs,t+1 , st,t = Css,t T+ Fs7t‘/ss,t+1Fs,t ,

T T
Qa,t = Cait + Fa,tvs,t-&-l 5 Qaa,t = Caa,t T+ Fa7t‘/ss,t+1Fa,t ;

Qsa,t = Csa,t + F;I:t‘/ss,t—o—lFa,t s
1
V;,t == Qs,t - Qsa,tQaaﬂan,t)
—1
Vvss,t = st,t - Qsa,tQaa,tQas,t .

It can be shown (e.g., by Tassa et al. (2012)) that the action
a; that minimizes the second-order approximation of the
Q-function at every time step ¢ is given by

—1 —1
ay = 7Qaa,tQaSﬂfSt - Qaa,tQavt .

This action is a linear function of the state s;, thus we
can construct an optimal linear policy by setting K; =
~ Qa1 Qast and k; = —Q;altha,t. We can also show that
the maximum-entropy policy that minimizes the approxi-
mate Q-function is given by

Tr*(at|st) = N(Ktst + kta Qaa,t)~

Furthermore, as in Levine & Abbeel (2014), we can im-
pose a constraint on the total KL-divergence between the
old and new trajectory distributions induced by the poli-
cies through an augmented cost function C(s;,a;) =
%C*(st, a;) —log 7(ay|s;), where solving for \ via dual gra-
dient descent can yield an exact solution to a KL-constrained
LQR problem.

B. Parameterizing the Cost Model

The simplest choice that we consider for parameterizing
the cost model is as a full quadratic function of the state
and action, i.e., C'(s;, a;) = 38/ Cs; +¢ s, +allag||3 +b
where we assume that the action-dependent part of the cost
—i.e., a —is known, and we impose no restrictions on the
learned parameters C and c. This is our default option
due to its simplicity and the added benefit that fitting this
model locally can be done in closed form through least-
squares quadratic regression on the observed states. How-
ever, another option we consider is to choose c (st,ar) =
1s/LL"s; + c's; + allay||3 + b. L is a lower-triangular
matrix with non-negative diagonal entries, and thus by con-
structing our cost matrix as C = LL T we guarantee that
the learned cost matrix is positive semidefinite, which can
improve the behavior of the policy update.

In general, in this work, we consider quadratic parameteriza-
tions of the cost model since we wish to build a LQS model.

However, in general it may be possible to use non-quadratic
but twice-differentiable cost models, such as a neural net-
work model, and compute local quadratic cost models using
a second-order Taylor approximation as in Levine & Abbeel
(2014). We also do not assume access to a goal observation,
though if provided with such information we can construct a
quadratic cost function that penalizes distance to this goal in
the learned latent space, as in Finn et al. (2016) and Watter
et al. (2015).

C. The SVAE Algorithm

Johnson et al. (2016) build off of Hoffman et al. (2013)
and Winn & Bishop (2005), who show that, for conjugate
exponential models, the variational model parameters can
be updated using natural gradients of the form

Vol =’ + BE, [tp 5 (F,Y)] — w, (7)
Where w denotes the MNIW parameters of the varia-
tional factors on F, 3, B is the number of minibatches
in the dataset, w® is the parameter for the prior distribution
p(F, %), and ty »(F,) is the sufficient statistic function
for p(F,X). Thus, we can use this equation to compute
the natural gradient update for w, whereas for v, ¢, and the
parameters of the cost model, we use stochastic gradient
updates on Monte Carlo estimates of the ELBO, specifi-
cally using the Adam optimizer (Kingma & Ba, 2015). This
leads to two simultaneous optimizations, and their learn-
ing rates are treated as separate hyperparameters. We have
found 10~* and 1073 to be good default settings for the
natural gradient step size and stochastic gradient step size,
respectively.

D. Fitting the Local Dynamics Model

In the pretraining phase described in Section 3, we are
learning the following sets of parameters from observed
trajectories:

1. The parameters of the variational posterior over global
dynamics ggiopal (F, 2);

2. The weights of the encoder and decoder networks f-(s)
and e, (0);

3. The parameters of the cost function C (s, a).

In the RL phase described in Section 4, after learning the rep-
resentation and global models, we fit local linear-Gaussian
dynamics models to additional trajectories. The conjugacy
of the Bayesian LQS model enables a computationally ef-
ficient expectation-maximization procedure to learn the lo-
cal dynamics. We assume the same graphical model as in
Equation 2 to Equation 6 except we modify Equation 3 and

SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

Equation 4 to be

Fta Et ~ p(Fta Et) £ qglobal(Fa E))
S
St+1|st7at7Fta Y~ N (Ft Li]jh) .

The model assumes that the TVLG dynamics are indepen-
dent samples from our global dynamics, followed by a deep
Bayesian LDS to generate trajectories. This is similar to the
globally trained model, with the exception that we explicitly
assume time-varying dynamics.

Now suppose we have collected a set of trajectories of the
form [og, ag, co, . . ., 0, ar, cr] and aim to fit a local dy-
namics model. We use variational inference to approximate
the posterior distributions by setting up the variational fac-
tors

which ap-
distribution

L. q(sv1.r|Fir, X175 011, a1.7),
proximates the posterior
p(s1.r|o1.r, arr, Fi.r, Z1.7);

2. q(F¢, %), which approximates the posterior distribu-
tion p(Ft, Et\sl;T, al;T)

The ELBO under these variational factors is:

T
L= Eq[ZIng(Ot‘St)
t

— KL (Q(Sl:T)Hp(Sl:T|al:T7 Fi.r, Z1:T))
T—1

- Z KL (q(Fy, %) lp(Fe, 20)) |

We wuse variational EM to alternatively optimize
q(si.r|Fr.7, Y1.r;01r,ar) and q(Fy, ¥;). Using
evidence potentials (s¢; 04, ¢) output by the recog-
nition network e,(o;), both of these optimizations
can be done in closed form. Specifically, the optimal
q(s1.7|F1.7, X1.7;01.7,21.7) is computed via Kalman
smoothing using evidence potentials from the recognition
network, and the optimal ¢(F;, ;) can be computed
via Bayesian linear regression using expected sufficient
statistics from q(Sl:T|F1:T7 El:T; o1.7, alzT).

E. Experiment Setup

2D navigation. Our recognition model architecture for the
2D navigation domain consists of two convolution layers
with 2-by-2 filters and 32 channels each, with no pooling
layers and ReLU non-linearities, followed by another con-
volution with 2-by-2 filters and 2 channels. The output of
the last convolution layer is fed into a fully-connected layer
which then outputs a Gaussian distribution with diagonal
covariance. Our observation model consists of FC hidden
layers with 256 ReLLU activations, and the last layer outputs

a categorical distribution over pixels. We initially collect
100 episodes which we use to train our model, and for ev-
ery subsequent RL iteration we collect 10 episodes. The
cost function we use is the sum of the L?-norm squared of
the distance to the target and the commanded action, with
weights of 1 and 0.001, respectively.

As discussed in Section 7, we modify the 2D navigation task
from Watter et al. (2015) and Banijamali et al. (2018) to
randomize the location of the target every episode, and we
set this location uniformly at random between —2.8 and 2.8
for both the x and y coordinates, as coordinates outside of
[—3, 3] are not visible in the image. We similarly randomize
the initial position of the agent. In this setup, we use two
32-by-32 images as the observation, one with the location
of the agent and the other with the location of the target,
and in the fixed-target version of the task we only use one
32-by-32 image.

Nonholonomic car. The nonholonomic car domain consists
of 64-by-64 image observations. Our recognition model is a
convolutional neural network with four convolutional layers
with 4-by-4 filters with 4 channels each, and the first two
convolution layers are followed by a ReLU non-linearity.
The output of the last convolutional layer is fed into three FC
ReLU layers of width 2048, 512, and 128, respectively. Our
final layer outputs a Gaussian distribution with dimension
8. Our observation model consists of four FC ReLU layers
of width 256, 512, 1024, and 2048, respectively, followed
by a Bernoulli distribution layer that models the image.
For this domain, we collect 100 episodes initially to train
our model, and then for RL we collect 100 episodes per
iteration. The cost function we use is the sum of the L>2-
norm squared of the distance from the center of the car to
the target and the commanded action, with weights of 1 and
0.001, respectively.

Reacher. The reacher domain consists of 64-by-64-by-3
image observations. Our recognition model consists of
three convolutional layers with 7-by-7, 5-by-5, and 3-by-3
filters with 64, 32 and 8 channels respectively. The first
convolutional layer is followed by a ReL.U non-linearity.
The output of the last convolutional layer is fed into an
FC ReLU layer of width 256, which outputs a Gaussian
distribution with dimension 10. Our observation model
consists of one FC ReLU layers of width 512, followed by
three deconvolutional layers with the reverse order of filters
and channels as the recognition model. This is followed
by a Bernoulli distribution layer that models each image.
We collect 200 episodes initially to train our model, and
then for RL we collect 100 episodes per iteration. The cost
function we use is the sum of the L?-norm of the distance
from the fingertip to the target and the L2-norm squared of
the commanded action, which is the negative of the reward
function as defined in Gym.

SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

Sawyer Lego block stacking. The image-based Sawyer
block-stacking domain consists of 64-by-64-by-3 image ob-
servations. The policy outputs velocities on the end effector
in order to control the robot. Our recognition model is a con-
volutional neural network with the following architecture: a
5-by-5 filter convolutional layer with 16 channels followed
by two convolutional layers using 5-by-5 filters with 32
channels each. The convolutional layers are followed by
ReLU activations leading to a 12 dimensional Gaussian dis-
tribution layer. Our observation model consists of a FC
ReLU layer of width 128 feeding into three deconvolutional
layers, the first with 5-by-5 filters with 16 channels and the
last two of 6-by-6 filters with 8 channels each. These are
followed by a final Bernoulli distribution layer.

For this domain, we collect 400 episodes initially to train
our model and 10 per iteration thereafter. Note that this
pretraining data is collected only once across solving all of
the tasks that we test on. The cost function is the cubed
root of the L2-norm of the displacement vector between the
end-effector and the target in 3D-space.

Sawyer pushing. The image-based Sawyer pushing domain
also operates on 64-by-64-by-3 image observations. Our
recognition and observation models are the same as those
used in the block-stacking domain. The dynamics model is
learned by a network with two FC ReLU layers of width 128
followed by a 12 dimensional Gaussian distribution layer.
The cost model is learned jointly with the representation and
dynamics by optimizing the ELBO, which with regards to
the cost corresponds to logistic regression on the observed
sparse reward using a sampled latent state as the input. We
collect 200 episodes to train our model and 20 per iteration
for RL.

During the RL phase, the human supervisor uses keyboard
input to provide the sparse reward signal to the learning al-
gorithm, indicating whether or not the mug was successfully
pushed onto the coaster. In practice, for simplicity, we label
the last five images of the trajectory as either 0 or 1 depend-
ing on whether or not the keyboard was pressed at any time
during the trajectory, as for this task a successful push is
typically reflected in the end state. In order to overcome
the exploration problem and provide a diverse dataset for
pretraining the cost model, we manually collect 180 “goal
images” where the mug is on the coaster and the robot arm
is in various locations.

F. Implementation of Comparisons

PPO. We use the open source implementation of PPO
(named “PPO2”) from the OpenAl Baselines project:
https://github.com/openai/baselines. We write
OpenAl gym wrappers for our simulated environments in
order to test PPO on our simulated tasks.

LQR-FLM. We implement LQR-FLM based on the open-
source implementation from the Guided Policy Search
project: https://github.com/cbfinn/gps. The only
modification to the LQR-FLM algorithm that we make is to
handle unknown cost functions by fitting a quadratic cost
model to data from the current policy.

DVE. We train a video prediction model using the open
source Stochastic Adversarial Video Prediction project:

https://github.com/alexlee-gk/video_prediction.

To define the task, we specify the location of a pixel whose
movement to a specified goal location indicates success.
The cost function is then the predicted probability of
successfully moving the selected pixel to the goal. We then
use MPC, specifically the cross-entropy method (CEM) for
offline planning: we sample sequences of actions from a
Gaussian, predict the corresponding sequence of images
using the video prediction model, evaluate the cost of
the imagined trajectory with the cost model, and refit the
parameters of the Gaussian to the best predicted action
sequences. This iterative process eventually outputs an
action sequence to perform in the real world in order to try
and solve the task.

RCE. We use model learning code directly from the authors
of RCE (Banijamali et al., 2018), though this code is not
publicly available and to our knowledge there are no open
source implementations of RCE or E2C (Watter et al., 2015)
that are able to reproduce the results from the respective pa-
pers. In addition to LQR-based control, we also experiment
with MPC with neural network dynamics and cost models
in the learned latent representation. In our experiments, we
report the best results using either of these control methods.

VAE ablation. In the VAE ablation, we replace our repre-
sentation and global models with a standard VAE (Kingma
& Welling, 2014; Rezende et al., 2014), which imposes a
unit Gaussian prior on the latent representation. Because
we cannot infer local dynamics as described in Section 4,
we instead use a GMM dynamics prior that is trained on
all data as described by Levine et al. (2016). After fitting
a local quadratic cost model, we again have a local LQS
model that we can use in conjunction with an LQR-FLM
policy update.

MPC baseline. (MPC) involves planning H time steps
ahead using a dynamics and cost model, executing an action
based on this plan, and then re-planning after receiving
the next observation (Camacho & Alba, 2013). Recently,
MPC has proven to be a successful control method when
combined with neural network dynamics models, where
many trajectories are sampled using the model and then the
first action corresponding to the best imagined trajectory is
executed (Nagabandi et al., 2018; Chua et al., 2018). Similar
to LQR-FLM, we can extend MPC to handle image-based
domains by learning dynamics and cost models within a

https://github.com/openai/baselines
https://github.com/cbfinn/gps
https://github.com/alexlee-gk/video_prediction

SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

RCE on 2D Navigation with Fixed Goal

~N w ») o <

Average Final Distance to Fixed Goal

-

o

100 150 200 250 300 350 400 450 500
Episodes

Figure 8. On 2D navigation with the goal fixed to the bottom right,
RCE is able to successfully learn a policy for navigating to the
goal.

learned latent representation. As MPC does not require an
LQS model, we can instead utilize neural network dynamics
and cost models which are more expressive.

G. Additional Experiments
G.1. RCE on Fixed-Target 2D Navigation

As mentioned in Section 7, RCE was unable to make
progress for the 2D navigation task, though we were able
to get more successful results by fixing the position of the
goal to the bottom right as is done in the image-based 2D
navigation task considered in E2C (Watter et al., 2015) and
RCE (Banijamali et al., 2018). Figure 8 details this experi-
ment, which we ran for three random seeds and report the
mean and standard deviation of the average final distance
to the goal as a function of the number of training episodes.
This indicates that RCE can indeed solve some tasks from
image observations, though we were unable to use RCE
succesfully on any of the tasks we consider.

G.2. Full Learning Progress of PPO

In Figure 9 we include the plots for the simulated tasks
comparing SOLAR and PPO. Note that the x-axis is on
a log scale, i.e., though our method is sometimes worse
in final policy performance, we use one to three orders of
magnitude fewer samples. This demonstrates our method’s
sample efficiency compared to PPO, while being able to
solve complex image-based domains that are difficult for
model-based methods.

PPO is an on-policy model-free RL method, and typically
off-policy methods exhibit better sample efficiency (Fuji-
moto et al., 2018; Haarnoja et al., 2018). We use PPO in our
comparisons because on-policy methods are typically easier
to tune, at the cost of being less efficient, and the complexity
of our image-based environments poses a major challenge

(a) (b) (©

Figure 9. (a) Comparison of our method to PPO on the 2D naviga-
tion task presented in the paper. Our method uses roughly three
orders of magnitude fewer samples to solve the task compared to
PPO. (b) On the car from images task, our method achieves slightly
worse performance than PPO though with about 25 times fewer
samples. (c¢) Comparison of our method to PPO for the reacher
task. Our method achieves worse final performance but uses about
40 times fewer samples than these methods.

for all RL methods. Specifically, we also compared to TD3
(Fujimoto et al., 2018), and we were unable to train success-
ful policies despite extensive hyperparameter tuning. We
also note that, to our knowledge, TD3 has never been tested
on image-based domains.

