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Abstract
We identify a trade-off between robustness and
accuracy that serves as a guiding principle in the
design of defenses against adversarial examples.
Although this problem has been widely studied
empirically, much remains unknown concerning
the theory underlying this trade-off. In this work,
we decompose the prediction error for adversarial
examples (robust error) as the sum of the natural
(classification) error and boundary error, and pro-
vide a differentiable upper bound using the theory
of classification-calibrated loss, which is shown to
be the tightest possible upper bound uniform over
all probability distributions and measurable pre-
dictors. Inspired by our theoretical analysis, we
also design a new defense method, TRADES, to
trade adversarial robustness off against accuracy.
Our proposed algorithm performs well experimen-
tally in real-world datasets. The methodology is
the foundation of our entry to the NeurIPS 2018
Adversarial Vision Challenge in which we won
the 1st place out of ~2,000 submissions, surpass-
ing the runner-up approach by 11.41% in terms
of mean `2 perturbation distance.

1. Introduction
In response to the vulnerability of deep neural networks
to small perturbations around input data (Szegedy et al.,
2013), adversarial defenses have been an imperative object
of study in machine learning (Huang et al., 2017), computer
vision (Song et al., 2018; Xie et al., 2017; Meng & Chen,
2017), natural language processing (Jia & Liang, 2017),
and many other domains. In machine learning, study of
adversarial defenses has led to significant advances in under-
standing and defending against adversarial threat (He et al.,
2017). In computer vision and natural language process-
ing, adversarial defenses serve as indispensable building
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blocks for a range of security-critical systems and appli-
cations, such as autonomous cars and speech recognition
authorization. The problem of adversarial defenses can be
stated as that of learning a classifier with high test accuracy
on both natural and adversarial examples. The adversarial
example for a given labeled data (x, y) is a data point x′

that causes a classifier c to output a different label on x′ than
y, but is “imperceptibly similar” to x. Given the difficulty
of providing an operational definition of “imperceptible sim-
ilarity,” adversarial examples typically come in the form of
restricted attacks such as ε-bounded perturbations (Szegedy
et al., 2013), or unrestricted attacks such as adversarial ro-
tations, translations, and deformations (Brown et al., 2018;
Engstrom et al., 2017; Gilmer et al., 2018; Xiao et al., 2018;
Alaifari et al., 2019; Zhang et al., 2019a). The focus of this
work is the former setting, though our framework can be
generalized to the latter.

Despite a large literature devoted to improving the robust-
ness of deep-learning models, many fundamental questions
remain unresolved. One of the most important questions
is how to trade off adversarial robustness against natural
accuracy. Statistically, robustness can be be at odds with
accuracy when no assumptions are made on the data distri-
bution (Tsipras et al., 2019). This has led to an empirical
line of work on adversarial defense that incorporates var-
ious kinds of assumptions (Su et al., 2018; Kurakin et al.,
2017). On the theoretical front, methods such as relaxation
based defenses (Kolter & Wong, 2018; Raghunathan et al.,
2018a) provide provable guarantees for adversarial robust-
ness. They, however, ignore the performance of classifier
on the non-adversarial examples, and thus leave open the
theoretical treatment of the putative robustness/accuracy
trade-off.

The problem of adversarial defense becomes more challeng-
ing when computational issues are considered. For example,
the straightforward empirical risk minimization (ERM) for-
mulation of robust classification involves minimizing the
robust 0-1 loss maxx′:‖x′−x‖≤ε 1{c(x′) 6= y}, a loss which
is NP-hard to optimize even if ε = 0 in general. Hence, it
is natural to expect that some prior work on adversarial de-
fense replaced the 0-1 loss 1(·) with a surrogate loss (Madry
et al., 2018; Kurakin et al., 2017; Uesato et al., 2018). How-
ever, there is little theoretical guarantee on the tightness of
this approximation.
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Figure 1. Left figure: decision boundary learned by natural train-
ing method. Right figure: decision boundary learned by our
adversarial training method, where the orange dotted line repre-
sents the decision boundary in the left figure. It shows that both
methods achieve zero natural training error, while our adversar-
ial training method achieves better robust training error than the
natural training method.

1.1. Our methodology and results

We begin with an example that illustrates the trade-off be-
tween accuracy and adversarial robustness in Section 2.4, a
phenomenon which has been demonstrated by Tsipras et al.
(2019), but without theoretical guarantees. We constructed
a toy example where the Bayes optimal classifier achieves
natural error 0% and robust error 100%, while the trivial
all-one classifier achieves both natural error and robust er-
ror 50% (Table 1). Despite a large literature on the analysis
of robust error in terms of generalization (Schmidt et al.,
2018; Cullina et al., 2018; Yin et al., 2018) and computa-
tional complexity (Bubeck et al., 2018b;a), the trade-off
between the natural error and the robust error has not been
a focus of theoretical study.

We show that the robust error can in general be bounded
tightly using two terms: one corresponds to the natural er-
ror measured by a surrogate loss function, and the other
corresponds to how likely the input features are close to the
ε-extension of the decision boundary, termed as the bound-
ary error. We then minimize the differentiable upper bound.
Our theoretical analysis naturally leads to a new formulation
of adversarial defense which has several appealing proper-
ties; in particular, it inherits the benefits of scalability to
large datasets exhibited by Tiny ImageNet, and the algo-
rithm achieves state-of-the-art performance on a range of
benchmarks while providing theoretical guarantees. For
example, while the defenses overviewed in (Athalye et al.,
2018) achieve robust accuracy no higher than ~47% under
white-box attacks, our method achieves robust accuracy as
high as ~57% in the same setting. The methodology is the
foundation of our entry to the NeurIPS 2018 Adversarial
Vision Challenge where we won first place out of ~2,000
submissions, surpassing the runner-up approach by 11.41%
in terms of mean `2 perturbation distance.

1.2. Summary of contributions

Our work tackles the problem of trading accuracy off against
robustness and advances the state-of-the-art in multiple
ways.

• Theoretically, we characterize the trade-off between
accuracy and robustness for classification problems
via decomposing the robust error as the sum of the
natural error and the boundary error. We provide differ-
entiable upper bounds on both terms using the theory
of classification-calibrated loss, which are shown to be
the tightest upper bounds uniform over all probability
distributions and measurable predictors.

• Algorithmically, inspired by our theoretical analysis,
we propose a new formulation of adversarial defense,
TRADES, as optimizing a regularized surrogate loss.
The loss consists of two terms: the term of empirical
risk minimization encourages the algorithm to maxi-
mize the natural accuracy, while the regularization term
encourages the algorithm to push the decision bound-
ary away from the data, so as to improve adversarial
robustness (see Figure 1).

• Experimentally, we show that our proposed algorithm
outperforms state-of-the-art methods under both black-
box and white-box threat models. In particular, the
methodology won the final round of the NeurIPS 2018
Adversarial Vision Challenge.

2. Preliminaries
We illustrate our methodology using the framework of bi-
nary classification, but it can be generalized to other settings
as well.

2.1. Notation

We will use bold capital letters such as X and Y to repre-
sent random vector, bold lower-case letters such as x and y
to represent realization of random vector, capital letters such
as X and Y to represent random variable, and lower-case
letters such as x and y to represent realization of random
variable. Specifically, we denote by x ∈ X the sample
instance, and by y ∈ {−1,+1} the label, where X ⊆ Rd
indicates the instance space. sign(x) represents the sign
of scalar x with sign(0) = +1. Denote by f : X → R
the score function which maps an instance to a confidence
value associated with being positive. It can be parametrized,
e.g., by deep neural networks. The associated binary clas-
sifier is sign(f(·)). We will frequently use 1{event}, the
0-1 loss, to represent an indicator function that is 1 if an
event happens and 0 otherwise. For norms, we denote by
‖x‖ a generic norm. Examples of norms include ‖x‖∞,
the infinity norm of vector x, and ‖x‖2, the `2 norm of
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vector x. We use B(x, ε) to represent a neighborhood of
x: {x′ ∈ X : ‖x′ − x‖ ≤ ε}. For a given score function
f , we denote by DB(f) the decision boundary of f ; that
is, the set {x ∈ X : f(x) = 0}. The set B(DB(f), ε)
denotes the neighborhood of the decision boundary of f :
{x ∈ X : ∃x′ ∈ B(x, ε) s.t. f(x)f(x′) ≤ 0}. For a given
functionψ(u), we denote byψ∗(v) := supu{uTv−ψ(u)}
the conjugate function of ψ, by ψ∗∗ the bi-conjugate, and
by ψ−1 the inverse function. We will frequently use φ(·) to
indicate the surrogate of 0-1 loss.

2.2. Robust (classification) error

In the setting of adversarial learning, we are given a set of
instances x1, ...,xn ∈ X and labels y1, ..., yn ∈ {−1,+1}.
We assume that the data are sampled from an unknown dis-
tribution (X, Y ) ∼ D. To characterize the robustness of a
score function f : X → R, Schmidt et al. (2018); Cullina
et al. (2018); Bubeck et al. (2018b) defined robust (classifica-
tion) error under the threat model of bounded ε perturbation:
Rrob(f) := E(X,Y )∼D1{∃X ′ ∈B(X, ε) s.t. f(X ′)Y ≤
0}. This is in sharp contrast to the standard measure of
classifier performance—the natural (classification) error
Rnat(f) := E(X,Y )∼D1{f(X)Y ≤ 0} We note that the
two errors satisfyRrob(f) ≥ Rnat(f) for all f ; the robust
error is equal to the natural error when ε = 0.

2.3. Boundary error

We introduce the boundary error defined as Rbdy(f) :=
E(X,Y )∼D1{X ∈ B(DB(f), ε), f(X)Y > 0}. We have
the following decomposition ofRrob(f):

Rrob(f) = Rnat(f) +Rbdy(f). (1)

2.4. Trade-off between natural and robust errors

Our study is motivated by the trade-off between natural and
robust errors. Tsipras et al. (2019) showed that training
robust models may lead to a reduction of standard accuracy.
To illustrate the phenomenon, we provide a toy example.

Example. Consider the case (X,Y ) ∼ D, where the
marginal distribution over the instance space is a uniform
distribution over [0, 1], and for k = 0, 1, ..., d 1

2ε − 1e,

η(x) := Pr(Y = 1|X = x)

=

{
0, x ∈ [2kε, (2k + 1)ε),

1, x ∈ ((2k + 1)ε, (2k + 2)ε].

(2)

See Figure 2 for the visualization of η(x). We consider two
classifiers: a) the Bayes optimal classifier sign(2η(x)− 1);
b) the all-one classifier which always outputs “positive.”
Table 1 displays the trade-off between natural and robust
errors: the minimal natural error is achieved by the Bayes

	!(#)	

0	

1	
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Figure 2. Counterexample given by Eqn. (2).

Table 1. Comparisons of natural and robust errors of Bayes optimal
classifier and all-one classifier in example (2). The Bayes optimal
classifier has the optimal natural error while the all-one classifier
has the optimal robust error.

Bayes Optimal Classifier All-One Classifier
Rnat 0 (optimal) 1/2
Rbdy 1 0
Rrob 1 1/2 (optimal)

optimal classifier with large robust error, while the optimal
robust error is achieved by the all-one classifier with large
natural error.

Our goal. In practice, one may prefer to trade-off between
robustness and accuracy by introducing weights in (1) to
bias more towards the natural error or the boundary error.
Noting that both the natural error and the boundary error
involve 0-1 loss functions, our goal is to devise tight differ-
entiable upper bounds on both of these terms. Towards this
goal, we utilize the theory of classification-calibrated loss.

2.5. Classification-calibrated surrogate loss

Definition. Minimization of the 0-1 loss in the natural and
robust errors is computationally intractable and the demands
of computational efficiency have led researchers to focus
on minimization of a tractable surrogate loss, Rφ(f) :=
E(X,Y )∼Dφ(f(X)Y ). We then need to find quantitative re-
lationships between the excess errors associated with φ and
those associated with 0–1 loss. We make a weak assumption
on φ: it is classification-calibrated (Bartlett et al., 2006).
Formally, for η ∈ [0, 1], define the conditional φ-risk by

H(η) := inf
α∈R

Cη(α) := inf
α∈R

(ηφ(α) + (1− η)φ(−α)) ,

and define H−(η) := infα(2η−1)≤0 Cη(α). The
classification-calibrated condition requires that imposing
the constraint that α has an inconsistent sign with the Bayes
decision rule sign(2η − 1) leads to a strictly larger φ-risk:
Assumption 1 (Classification-Calibrated Loss). We assume
that the surrogate loss φ is classification-calibrated, mean-
ing that for any η 6= 1/2, H−(η) > H(η).

We argue that Assumption 1 is indispensable for classifi-
cation problems, since without it the Bayes optimal clas-
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Table 2. Examples of classification-calibrated loss φ and associated
ψ-transform. Here ψlog(θ) = 1

2
(1 − θ) log2(1 − θ) + 1

2
(1 +

θ) log2(1 + θ).
Loss φ(α) ψ(θ)

Hinge max{1− α, 0} θ
Sigmoid 1− tanh(α) θ

Exponential exp(−α) 1−
√

1− θ2
Logistic log2(1 + exp(−α)) ψlog(θ)

sifier cannot be the minimizer of the φ-risk. Examples of
classification-calibrated loss include hinge loss, sigmoid
loss, exponential loss, logistic loss, and many others (see
Table 2).

Properties. Classification-calibrated loss has many struc-
tural properties that one can exploit. We begin by intro-
ducing a functional transform of classification-calibrated
loss φ which was proposed by Bartlett et al. (2006). De-
fine the function ψ : [0, 1] → [0,∞) by ψ = ψ̃∗∗, where
ψ̃(θ) := H−

(
1+θ
2

)
−H

(
1+θ
2

)
. Indeed, the function ψ(θ)

is the largest convex lower bound onH−
(
1+θ
2

)
−H

(
1+θ
2

)
.

The value H−
(
1+θ
2

)
−H

(
1+θ
2

)
characterizes how close

the surrogate loss φ is to the class of non-classification-
calibrated losses.

Below we state useful properties of the ψ-transform. We
will frequently use the function ψ to boundRrob(f)−R∗nat.

Lemma 2.1 (Bartlett et al. (2006)). Under Assumption
1, the function ψ has the following properties: ψ is non-
decreasing, continuous, convex on [0, 1] and ψ(0) = 0.

3. Relating 0-1 loss to surrogate loss
In this section, we present our main theoretical contributions
for binary classification and compare our results with prior
literature. Binary classification problems have received sig-
nificant attention in recent years as many competitions eval-
uate the performance of robust models on binary classifica-
tion problems (Brown et al., 2018). We defer the discussion
of multi-class problems to Section 4.

3.1. Upper bound

Our analysis leads to a guarantee on the performance of
surrogate loss minimization. Intuitively, by Eqn. (1),
Rrob(f) − R∗nat = Rnat(f) − R∗nat + Rbdy(f) ≤
ψ−1(Rφ(f) − R∗φ) + Rbdy(f), where the last inequality
holds because we choose φ as a classification-calibrated
loss (Bartlett et al., 2006). This leads to the following result.

Theorem 3.1. Let Rφ(f) := Eφ(f(X)Y ) and R∗φ :=
minf Rφ(f). Under Assumption 1, for any non-negative
loss function φ such that φ(0) ≥ 1, any measurable f :
X → R, any probability distribution on X × {±1}, and

any λ > 0, we have1

Rrob(f)−R∗nat
≤ ψ−1(Rφ(f)−R∗φ)+Pr[X∈B(DB(f), ε), f(X)Y > 0]

≤ ψ−1(Rφ(f)−R∗φ) + E max
X′∈B(X,ε)

φ(f(X ′)f(X)/λ).

Quantity governing model robustness. Our result pro-
vides a formal justification for the existence of adversar-
ial examples: learning models are vulnerable to small
adversarial attacks because the probability that data lie
around the decision boundary of the model, Pr[X ∈
B(DB(f), ε), f(X)Y > 0], is large. As a result, small
perturbations may move the data point to the wrong side
of the decision boundary, leading to weak robustness of
classification models.

3.2. Lower bound

We now establish a lower bound onRrob(f)−R∗nat. Our
lower bound matches our analysis of the upper bound in
Section 3.1 up to an arbitrarily small constant.
Theorem 3.2. Suppose that |X | ≥ 2. Under Assumption
1, for any non-negative loss function φ such that φ(x)→ 0
as x → +∞, any ξ > 0, and any θ ∈ [0, 1], there exists
a probability distribution on X × {±1}, a function f :
Rd → R, and a regularization parameter λ > 0 such that
Rrob(f)−R∗nat = θ and
ψ
(
θ − E max

X′∈B(X,ε)
φ(f(X ′)f(X)/λ)

)
≤ Rφ(f)−R∗φ

≤ ψ
(
θ − E max

X′∈B(X,ε)
φ(f(X ′)f(X)/λ)

)
+ ξ.

Theorem 3.2 demonstrates that in the presence of extra
conditions on the loss function, i.e., limx→+∞ φ(x) = 0,
the upper bound in Section 3.1 is tight. The condition holds
for all the losses in Table 2.

4. Algorithmic Design for Defenses
Optimization. Theorems 3.1 and 3.2 shed light on algorith-
mic designs of adversarial defenses. In order to minimize
Rrob(f)−R∗nat, the theorems suggest minimizing2

min
f

E
{
φ(f(X)Y )︸ ︷︷ ︸

for accuracy

+ max
X′∈B(X,ε)

φ(f(X)f(X ′)/λ)︸ ︷︷ ︸
regularization for robustness

}
.

(3)
1We study the population form of the risk functions, and

mention that by incorporating the generalization theory for
classification-calibrated losses (Bartlett et al., 2006) one can ex-
tend the analysis to finite samples. We leave this analysis for future
research.

2For simplicity of implementation, we do not use the function
ψ−1 and rely on λ to approximately reflect the effect of ψ−1, the
trade-off between the natural error and the boundary error, and the
tight approximation of the boundary error using the corresponding
surrogate loss function.



Theoretically Principled Trade-off between Robustness and Accuracy

We name our method TRADES (TRadeoff-inspired Adver-
sarial DEfense via Surrogate-loss minimization).

Intuition behind the optimization. Problem (3) captures
the trade-off between the natural and robust errors: the first
term in (3) encourages the natural error to be optimized by
minimizing the “difference” between f(X) and Y , while
the second regularization term encourages the output to be
smooth, that is, it pushes the decision boundary of classifier
away from the sample instances via minimizing the “dif-
ference” between the prediction of natural example f(X)
and that of adversarial example f(X ′). This is conceptually
consistent with the argument that smoothness is an indis-
pensable property of robust models (Cisse et al., 2017). The
tuning parameter λ plays a critical role on balancing the
importance of natural and robust errors. To see how the λ
affects the solution in the example of Section 2.4, problem
(3) tends to the Bayes optimal classifier when λ → +∞,
and tends to the all-one classifier when λ→ 0.

Comparisons with prior work. We compare our approach
with several related lines of research in the prior litera-
ture. One of the best known algorithms for adversarial
defense is based on robust optimization (Madry et al., 2018;
Kolter & Wong, 2018; Wong et al., 2018; Raghunathan et al.,
2018a;b). Most results in this direction involve algorithms
that approximately minimize

min
f

E
{

max
X′∈B(X,ε)

φ(f(X ′)Y )

}
, (4)

where the objective function in problem (4) serves as an up-
per bound of the robust errorRrob(f). In complex problem
domains, however, this objective function might not be tight
as an upper bound of the robust error, and may not capture
the trade-off between natural and robust errors.

A related line of research is adversarial training by regular-
ization (Kurakin et al., 2017; Ross & Doshi-Velez, 2017;
Zheng et al., 2016). There are several key differences
between the results in this paper and those of (Kurakin
et al., 2017; Ross & Doshi-Velez, 2017; Zheng et al., 2016).
Firstly, the optimization formulations are different. In the
previous works, the regularization term either measures the
“difference” between f(X ′) and Y (Kurakin et al., 2017),
or its gradient (Ross & Doshi-Velez, 2017). In contrast,
our regularization term measures the “difference” between
f(X) and f(X ′). While Zheng et al. (2016) generated the
adversarial example X ′ by adding random Gaussian noise
to X , our method simulates the adversarial example by solv-
ing the inner maximization problem in Eqn. (3). Secondly,
we note that the losses in (Kurakin et al., 2017; Ross &
Doshi-Velez, 2017; Zheng et al., 2016) lack of theoretical
guarantees. Our loss, with the presence of the second term
in problem (3), makes our theoretical analysis significantly
more subtle. Moreover, our algorithm takes the same com-
putational resources as (Kurakin et al., 2017), which makes

Algorithm 1 Adversarial training by TRADES
input Step sizes η1 and η2, batch size m, number of iter-

ations K in inner optimization, network architecture
parametrized by θ

output Robust network fθ
1: Randomly initialize network fθ, or initialize network

with pre-trained configuration
2: repeat
3: Read mini-batchB = {x1, ...,xm} from training set
4: for i = 1, ...,m (in parallel) do
5: x′i ← xi + 0.001 · N (0, I), where N (0, I) is the

Gaussian distribution with zero mean and identity
variance

6: for k = 1, ...,K do
7: x′i ← ΠB(xi,ε)(η1sign(∇x′i

L(fθ(xi), fθ(x
′
i)))+

x′i), where Π is the projection operator
8: end for
9: end for

10: θ ← θ − η2
∑m
i=1∇θ[L(fθ(xi),yi) +

L(fθ(xi), fθ(x
′
i))/λ]/m

11: until training converged

our method scalable to large-scale datasets. We defer the
experimental comparisons of various regularization based
methods to Table 5.

Heuristic algorithm. In response to the optimization for-
mulation (3), we use two heuristics to achieve more general
defenses: a) extending to multi-class problems by involv-
ing multi-class calibrated loss; b) approximately solving
the minimax problem via alternating gradient descent. For
multi-class problems, a surrogate loss is calibrated if mini-
mizers of the surrogate risk are also minimizers of the 0-1
risk (Pires & Szepesvári, 2016). Examples of multi-class
calibrated loss include cross-entropy loss. Algorithmically,
we extend problem (3) to the case of multi-class classifica-
tions by replacing φwith a multi-class calibrated loss L(·, ·):

min
f

E
{
L(f(X),Y ) + max

X′∈B(X,ε)
L(f(X), f(X ′))/λ

}
,

(5)
where f(X) is the output vector of learning model (with
softmax operator in the top layer for the cross-entropy loss
L(·, ·)), Y is the label-indicator vector, and λ > 0 is the
regularization parameter. The pseudocode of adversarial
training procedure, which aims at minimizing the empirical
form of problem (5), is displayed in Algorithm 1.

The key ingredient of the algorithm is to approximately
solve the linearization of inner maximization in problem (5)
by the projected gradient descent (see Step 7). We note that
xi is a global minimizer with zero gradient to the objective
function g(x′) := L(f(xi), f(x′)) in the inner problem.
Therefore, we initialize x′i by adding a small, random per-
turbation around xi in Step 5 to start the inner optimizer.
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Table 3. Theoretical verification on the optimality of Theorem 3.1.
λ Arob(f) (%) Rφ(f) ∆ = ∆RHS −∆LHS

2.0 99.43 0.0006728 0.006708
3.0 99.41 0.0004067 0.005914
4.0 99.37 0.0003746 0.006757
5.0 99.34 0.0003430 0.005860

More exhaustive approximations of the inner maximization
problem in terms of either optimization formulations or
solvers would lead to better defense performance.

5. Experimental Results
In this section, we verify the effectiveness of TRADES
by numerical experiments. We denote by Arob(f) =
1 − Rrob(f) the robust accuracy, and by Anat(f) =
1−Rnat(f) the natural accuracy on test dataset. We release
our code and trained models at https://github.com/
yaodongyu/TRADES.

5.1. Optimality of Theorem 3.1
We verify the tightness of the established upper bound in
Theorem 3.1 for binary classification problem on MNIST
dataset. The negative examples are ‘1’ and the positive
examples are ‘3’. Here we use a Convolutional Neural
Network (CNN) with two convolutional layers, followed
by two fully-connected layers. The output size of the last
layer is 1. To learn the robust classifier, we minimize the
regularized surrogate loss in Eqn. (3), and use the hinge
loss in Table 2 as the surrogate loss φ, where the associated
ψ-transform is ψ(θ) = θ.

To verify the tightness of our upper bound, we calculate the
left hand side in Theorem 3.1, i.e.,

∆LHS = Rrob(f)−R∗nat,

and the right hand side, i.e.,
∆RHS = (Rφ(f)−R∗φ) +E max

X′∈B(X,ε)
φ(f(X ′)f(X)/λ).

As we cannot have access to the unknown distribution D,
we approximate the above expectation terms by test dataset.
We first use natural training method to train a classifier so
as to approximately estimateR∗nat andR∗φ, where we find
that the naturally trained classifier can achieve natural error
R∗nat = 0%, and loss valueR∗φ = 0.0 for the binary classi-
fication problem. Next, we optimize problem (3) to train a
robust classifier f . We take perturbation ε = 0.1, number of
iterations K = 20 and run 30 epochs on the training dataset.
Finally, to approximate the second term in ∆RHS, we use
FGSMk (white-box) attack (a.k.a. PGD attack) (Kurakin
et al., 2017) with 20 iterations to approximately calculate
the worst-case perturbed data X ′.

The results in Table 3 show the tightness of our upper bound
in Theorem 3.1. It shows that the differences between ∆RHS
and ∆LHS under various λ’s are very small.

5.2. Sensitivity of regularization hyperparameter λ
The regularization parameter λ is an important hyperparame-
ter in our proposed method. We show how the regularization
parameter affects the performance of our robust classifiers
by numerical experiments on two datasets, MNIST and CI-
FAR10. For both datasets, we minimize the loss in Eqn. (5)
to learn robust classifiers for multi-class problems, where
we choose L as the cross-entropy loss.

MNIST setup. We use the CNN which has two convolu-
tional layers, followed by two fully-connected layers. The
output size of the last layer is 10. We set perturbation
ε = 0.1, perturbation step size η1 = 0.01, number of itera-
tions K = 20, learning rate η2 = 0.01, batch size m = 128,
and run 50 epochs on the training dataset. To evaluate the
robust error, we apply FGSMk (white-box) attack with 40
iterations and 0.005 step size. The results are in Table 4.

CIFAR10 setup. We apply ResNet-18 (He et al., 2016) for
classification. The output size of the last layer is 10. We set
perturbation ε = 0.031, perturbation step size η1 = 0.007,
number of iterations K = 10, learning rate η2 = 0.1, batch
size m = 128, and run 100 epochs on the training dataset.
To evaluate the robust error, we apply FGSMk (white-box)
attack with 20 iterations and the step size is 0.003. The
results are in Table 4.

We observe that as the regularization parameter 1/λ in-
creases, the natural accuracy Anat(f) decreases while the
robust accuracy Arob(f) increases, which verifies our the-
ory on the trade-off between robustness and accuracy. Note
that for MNIST dataset, the natural accuracy does not de-
crease too much as the regularization term 1/λ increases,
which is different from the results of CIFAR10. This is
probably because the classification task for MNIST is easier.
Meanwhile, our proposed method is not very sensitive to the
choice of λ. Empirically, when we set the hyperparameter
1/λ in [1, 10], our method is able to learn classifiers with
both high robustness and high accuracy. We will set 1/λ as
either 1 or 6 in the following experiments.

5.3. Adversarial defenses under various attacks
Previously, Athalye et al. (2018) showed that 7 defenses in
ICLR 2018 which relied on obfuscated gradients may easily
break down. In this section, we verify the effectiveness of
our method with the same experimental setup under both
white-box and black-box threat models.

MNIST setup. We use the CNN architecture in (Carlini &
Wagner, 2017) with four convolutional layers, followed by
three fully-connected layers. We set perturbation ε = 0.3,
perturbation step size η1 = 0.01, number of iterations K =
40, learning rate η2 = 0.01, batch size m = 128, and run
100 epochs on the training dataset.

CIFAR10 setup. We use the same neural network architec-
ture as (Madry et al., 2018), i.e., the wide residual network

https://github.com/yaodongyu/TRADES
https://github.com/yaodongyu/TRADES
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Table 4. Sensitivity of regularization hyperparameter λ on MNIST and CIFAR10 datasets.
1/λ Arob(f) (%) on MNIST Anat(f) (%) on MNIST Arob(f) (%) on CIFAR10 Anat(f) (%) on CIFAR10
1.0 94.75 ± 0.0712 99.28 ± 0.0125 44.68 ± 0.3088 87.01 ± 0.2819
2.0 95.45 ± 0.0883 99.29 ± 0.0262 48.22 ± 0.0740 85.22 ± 0.0543
3.0 95.57 ± 0.0262 99.24 ± 0.0216 49.67 ± 0.3179 83.82 ± 0.4050
4.0 95.65 ± 0.0340 99.16 ± 0.0205 50.25 ± 0.1883 82.90 ± 0.2217
5.0 95.65 ± 0.1851 99.16 ± 0.0403 50.64 ± 0.3336 81.72 ± 0.0286

WRN-34-10 (Zagoruyko & Komodakis, 2016). We set per-
turbation ε = 0.031, perturbation step size η1 = 0.007,
number of iterations K = 10, learning rate η2 = 0.1, batch
size m = 128, and run 100 epochs on the training dataset.

5.3.1. WHITE-BOX ATTACKS

We summarize our results in Table 5 together with the re-
sults from (Athalye et al., 2018). We also implement meth-
ods in (Zheng et al., 2016; Kurakin et al., 2017; Ross &
Doshi-Velez, 2017) on the CIFAR10 dataset as they are also
regularization based methods. For MNIST dataset, we ap-
ply FGSMk (white-box) attack with 40 iterations and the
step size is 0.01. For CIFAR10 dataset, we apply FGSMk

(white-box) attack with 20 iterations and the step size is
0.003, under which the defense model in (Madry et al.,
2018) achieves 47.04% robust accuracy. Table 5 shows that
our proposed defense method can significantly improve the
robust accuracy of models, which is able to achieve robust
accuracy as high as 56.61%. We also evaluate our robust
model on MNIST dataset under the same threat model as
in (Samangouei et al., 2018) (C&W white-box attack Carlini
& Wagner (2017)), and the robust accuracy is 99.46%. See
appendix for detailed information of models in Table 5.

5.3.2. BLACK-BOX ATTACKS

We verify the robustness of our models under black-box at-
tacks. We first train models without using adversarial train-
ing on the MNIST and CIFAR10 datasets. We use the same
network architectures that are specified in the beginning of
this section, i.e., the CNN architecture in (Carlini & Wag-
ner, 2017) and the WRN-34-10 architecture in (Zagoruyko
& Komodakis, 2016). We denote these models by natu-
rally trained models (Natural). The accuracy of the natu-
rally trained CNN model is 99.50% on the MNIST dataset.
The accuracy of the naturally trained WRN-34-10 model is
95.29% on the CIFAR10 dataset. We also implement the
method proposed in (Madry et al., 2018) on both datasets.
We denote these models by Madry’s models (Madry). The
accuracy of Madry et al. (2018)’s CNN model is 99.36% on
the MNIST dataset. The accuracy of Madry et al. (2018)’s
WRN-34-10 model is 85.49% on the CIFAR10 dataset.

For both datasets, we use FGSMk (black-box) method to
attack various defense models. For MNIST dataset, we set
perturbation ε = 0.3 and apply FGSMk (black-box) attack
with 40 iterations and the step size is 0.01. For CIFAR10

dataset, we set ε = 0.031 and apply FGSMk (black-box)
attack with 20 iterations and the step size is 0.003. Note that
the setup is the same as the setup specified in Section 5.3.1.
We summarize our results in Table 6 and Table 7. In both
tables, we use two source models (noted in the parentheses)
to generate adversarial perturbations: we compute the per-
turbation directions according to the gradients of the source
models on the input images. It shows that our models are
more robust against black-box attacks transfered from nat-
urally trained models and Madry et al. (2018)’s models.
Moreover, our models can generate stronger adversarial
examples for black-box attacks compared with naturally
trained models and Madry et al. (2018)’s models.
5.4. Case study: NeurIPS 2018 Adversarial Vision

Challenge
Competition settings. In the adversarial competition, the
adversarial attacks and defenses are under the black-box
setting. The dataset in this competition is Tiny ImageNet,
which consists of 550,000 data (with our data augmentation)
and 200 classes. The robust models only return label pre-
dictions instead of explicit gradients and confidence scores.
The task for robust models is to defend against adversarial
examples that are generated by the top-5 submissions in the
un-targeted attack track. The score for each defense model
is evaluated by the smallest perturbation distance that makes
the defense model fail to output correct labels.

Competition results. The methodology in this paper was
applied to the competition, where our entry ranked the 1st
place. We implemented our method to train ResNet models.
We report the mean `2 perturbation distance of the top-6
entries in Figure 3. It shows that our method outperforms
other approaches with a large margin. In particular, we
surpass the runner-up submission by 11.41% in terms of
mean `2 perturbation distance.

6. Conclusions
In this paper, we study the problem of adversarial defenses
against structural perturbations around input data. We focus
on the trade-off between robustness and accuracy, and show
an upper bound on the gap between robust error and optimal
natural error. Our result advances the state-of-the-art work
and matches the lower bound in the worst-case scenario.
The bounds motivate us to minimize a new form of regu-
larized surrogate loss, TRADES, for adversarial training.
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Table 5. Comparisons of TRADES with prior defense models under white-box attacks.
Defense Defense type Under which attack Dataset Distance Anat(f) Arob(f)

Buckman et al. (2018) gradient mask Athalye et al. (2018) CIFAR10 0.031 (`∞) - 0%
Ma et al. (2018) gradient mask Athalye et al. (2018) CIFAR10 0.031 (`∞) - 5%

Dhillon et al. (2018) gradient mask Athalye et al. (2018) CIFAR10 0.031 (`∞) - 0%
Song et al. (2018) gradient mask Athalye et al. (2018) CIFAR10 0.031 (`∞) - 9%
Na et al. (2017) gradient mask Athalye et al. (2018) CIFAR10 0.015 (`∞) - 15%

Wong et al. (2018) robust opt. FGSM20 (PGD) CIFAR10 0.031 (`∞) 27.07% 23.54%
Madry et al. (2018) robust opt. FGSM20 (PGD) CIFAR10 0.031 (`∞) 87.30% 47.04%
Zheng et al. (2016) regularization FGSM20 (PGD) CIFAR10 0.031 (`∞) 94.64% 0.15%

Kurakin et al. (2017) regularization FGSM20 (PGD) CIFAR10 0.031 (`∞) 85.25% 45.89%
Ross & Doshi-Velez (2017) regularization FGSM20 (PGD) CIFAR10 0.031 (`∞) 95.34% 0%

TRADES (1/λ = 1.0) regularization FGSM20 (PGD) CIFAR10 0.031 (`∞) 88.64% 49.14%
TRADES (1/λ = 6.0) regularization FGSM20 (PGD) CIFAR10 0.031 (`∞) 84.92% 56.61%
TRADES (1/λ = 1.0) regularization DeepFool (`∞) CIFAR10 0.031 (`∞) 88.64% 59.10%
TRADES (1/λ = 6.0) regularization DeepFool (`∞) CIFAR10 0.031 (`∞) 84.92% 61.38%
TRADES (1/λ = 1.0) regularization LBFGSAttack CIFAR10 0.031 (`∞) 88.64% 84.41%
TRADES (1/λ = 6.0) regularization LBFGSAttack CIFAR10 0.031 (`∞) 84.92% 81.58%
TRADES (1/λ = 1.0) regularization MI-FGSM CIFAR10 0.031 (`∞) 88.64% 51.26%
TRADES (1/λ = 6.0) regularization MI-FGSM CIFAR10 0.031 (`∞) 84.92% 57.95%
TRADES (1/λ = 1.0) regularization C&W CIFAR10 0.031 (`∞) 88.64% 84.03%
TRADES (1/λ = 6.0) regularization C&W CIFAR10 0.031 (`∞) 84.92% 81.24%

Samangouei et al. (2018) gradient mask Athalye et al. (2018) MNIST 0.005 (`2) - 55%
Madry et al. (2018) robust opt. FGSM40 (PGD) MNIST 0.3 (`∞) 99.36% 96.01%

TRADES (1/λ = 6.0) regularization FGSM40 (PGD) MNIST 0.3 (`∞) 99.48% 96.07%
TRADES (1/λ = 6.0) regularization C&W MNIST 0.005 (`2) 99.48% 99.46%

Table 6. Comparisons of TRADES with prior defenses under black-
box FGSM40 attack on the MNIST dataset. The models inside
parentheses are source models which provide gradients to adver-
sarial attackers. We provide the average cross-entropy loss value
L(f(X),Y ) of each defense model in the bracket. The defense
model ‘Madry’ is the same model as in the antepenultimate line of
Table 5. The defense model ‘TRADES’ is the same model as in
the penultimate line of Table 5.

Defense Model Robust Accuracy Arob(f)
Madry 97.43% [0.0078484] (Natural)

TRADES 97.63% [0.0075324] (Natural)
Madry 97.38% [0.0084962] (Ours)

TRADES 97.66% [0.0073532] (Madry)

Table 7. Comparisons of TRADES with prior defenses under black-
box FGSM20 attack on the CIFAR10 dataset. The models inside
parentheses are source models which provide gradients to adver-
sarial attackers. We provide the average cross-entropy loss value
of each defense model in the bracket. The defense model ‘Madry’
is implemented based on (Madry et al., 2018), and the defense
model ‘TRADES’ is the same model as in the 11th line of Table 5.

Defense Model Robust Accuracy Arob(f)
Madry 84.39% [0.0519784] (Natural)

TRADES 87.60% [0.0380258] (Natural)
Madry 66.00% [0.1252672] (Ours)

TRADES 70.14% [0.0885364] (Madry)

1st	(TRADES) 2.256
2nd 2.025
3rd 1.637
4th 1.585
5th 1.476
6th 1.401

2.256

2.025

1.637 1.585
1.476 1.401

0

0.5

1

1.5

2

2.5

1st	(TRADES) 2nd 3rd 4th 5th 6th

Figure 3. Top-6 results (out of ~2,000 submissions) in the NeurIPS
2018 Adversarial Vision Challenge. The vertical axis represents
the mean `2 perturbation distance that makes robust models fail to
output correct labels.

Experiments on real datasets and adversarial competition
demonstrate the effectiveness of our proposed algorithms.
It would be interesting to combine our methods with other
related line of research on adversarial defenses, e.g., feature
denoising technique (Xie et al., 2018) and network archi-
tecture design (Cisse et al., 2017), to achieve more robust
learning systems.
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A. Other Related Works
Attack methods. Although deep neural networks have achieved great progress in various areas (Zhang et al., 2019b; 2018),
they are brittle to adversarial attacks. Adversarial attacks have been extensively studied in the recent years. One of the
baseline attacks to deep nerual networks is the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015). FGSM
computes an adversarial example as

x′ := x + εsign(∇xφ(f(x)y)),

where x is the input instance, y is the label, f : X → R is the score function (parametrized by deep nerual network for
example) which maps an instance to its confidence value of being positive, and φ(·) is a surrogate of 0-1 loss. A more
powerful yet natural extension of FGSM is the multi-step variant FGSMk (also known as PGD attack) (Kurakin et al., 2017).
FGSMk applies projected gradient descent by k times:

x′t+1 := ΠB(x,ε)(x
′
t + εsign(∇xφ(f(x′t)y))),

where x′t is the t-th iteration of the algorithm with x′0 := x and ΠB(x,ε) is the projection operator onto the ball B(x, ε).
Both FGSM and FGSMk are approximately solving (the linear approximation of) maximization problem:

max
x′∈B(x,ε)

φ(f(x′)y).

They can be adapted to the purpose of black-box attacks by running the algorithms on another similar network which
is white-box to the algorithms (Tramèr et al., 2018). Though defenses that cause obfuscated gradients defeat iterative
optimization based attacks, Athalye et al. (2018) showed that defenses relying on this effect can be circumvented. Other
attack methods include MI-FGSM (Dong et al., 2018) and LBFGS attacks (Tabacof & Valle, 2016).

Robust optimization based defenses. Compared with attack methods, adversarial defense methods are relatively fewer.
Robust optimization based defenses are inspired by the above-mentioned attacks. Intuitively, the methods train a network by
fitting its parameters to the adversarial examples:

min
f

E
{

max
X′∈B(X,ε)

φ(f(X ′)Y )

}
. (6)

Following this framework, Huang et al. (2015); Shaham et al. (2015) considered one-step adversaries, while Madry et al.
(2018) worked with multi-step methods for the inner maximization problem. There are, however, two critical differences
between the robust optimization based defenses and the present paper. Firstly, robust optimization based defenses lack of
theoretical guarantees. Secondly, such methods do not consider the trade-off between accuracy and robustness.

Relaxation based defenses. We mention another related line of research in adversarial defenses—relaxation based defenses.
Given that the inner maximization in problem (6) might be hard to solve due to the non-convexity nature of deep neural
networks, Kolter & Wong (2018) and Raghunathan et al. (2018a) considered a convex outer approximation of the set of
activations reachable through a norm-bounded perturbation for one-hidden-layer neural networks. Wong et al. (2018) later
scaled the methods to larger models, and Raghunathan et al. (2018b) proposed a tighter convex approximation. Sinha et al.
(2018); Volpi et al. (2018) considered a Lagrangian penalty formulation of perturbing the underlying data distribution in a
Wasserstein ball. These approaches, however, do not apply when the activation function is ReLU.

Theoretical progress. Despite a large amount of empirical works on adversarial defenses, many fundamental questions
remain open in theory. There are a few preliminary explorations in recent years. Fawzi et al. (2018) derived upper bounds on
the robustness to perturbations of any classification function, under the assumption that the data is generated with a smooth
generative model. From computational aspects, Bubeck et al. (2018b;a) showed that adversarial examples in machine
learning are likely not due to information-theoretic limitations, but rather it could be due to computational hardness. From
statistical aspects, Schmidt et al. (2018) showed that the sample complexity of robust training can be significantly larger
than that of standard training. This gap holds irrespective of the training algorithm or the model family. Cullina et al. (2018)
and Yin et al. (2018) studied the uniform convergence of robust errorRrob(f) by extending the classic VC and Rademacher
arguments to the case of adversarial learning, respectively. A recent work demonstrates the existence of trade-off between
accuracy and robustness (Tsipras et al., 2019). However, the work did not provide any methodology about how to tackle the
trade-off.

Differences with Adversarial Logit Pairing. We also compare TRADES with Adversarial Logit Pairing (ALP) (Kannan
et al., 2018; Engstrom et al., 2018). The algorithm of ALP works as follows: given a fixed network f in each round, the
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algorithm firstly generates an adversarial example X ′ by solving argmaxX′∈B(X,ε) φ(f(X ′)Y ); ALP then updates the
network parameter by solving a minimization problem

min
f

E {αφ(f(X ′)Y ) + (1− α)φ(f(X)Y ) + ‖f(X)− f(X ′)‖2/λ} ,

where 0 ≤ α ≤ 1 is a regularization parameter; the algorithm finally repeats the above-mentioned procedure until it
converges. We note that there are fundamental differences between TRADES and ALP. While ALP simulates adversarial
example X ′ by the FGSMk attack, TRADES simulates X ′ by solving argmaxX′∈B(X,ε) φ(f(X)f(X ′)/λ). Moreover,
while ALP uses the `2 loss between f(X) and f(X ′) to regularize the training procedure without theoretical guarantees,
TRADES uses the classification-calibrated loss according to Theorems 3.1 and 3.2.

B. Proofs of Main Results
In this section, we provide the proofs of our main results.

B.1. Proof of Theorem 3.1

Theorem 3.1 (restated). LetRφ(f) := Eφ(f(X)Y ) andR∗φ := minf Rφ(f). Under Assumption 1, for any non-negative
loss function φ such that φ(0) ≥ 1, any measurable f : X → R, any probability distribution on X × {±1}, and any λ > 0,
we have

Rrob(f)−R∗nat ≤ ψ−1(Rφ(f)−R∗φ) + Pr[X ∈ B(DB(f), ε), f(X)Y > 0]

≤ ψ−1(Rφ(f)−R∗φ) + E max
X′∈B(X,ε)

φ(f(X ′)f(X)/λ).

Proof. By Eqn. (1), Rrob(f) − R∗nat = Rnat(f) − R∗nat + Rbdy(f) ≤ ψ−1(Rφ(f) − R∗φ) + Rbdy(f), where the last
inequality holds because we choose φ as a classification-calibrated loss (Bartlett et al., 2006). This leads to the first
inequality.

Also, notice that

Pr[X ∈ B(DB(f), ε), f(X)Y > 0] ≤ Pr[X ∈ B(DB(f), ε)]

= E max
X′∈B(X,ε)

1{f(X ′) 6= f(X)}

= E max
X′∈B(X,ε)

1{f(X ′)f(X)/λ < 0}

≤ E max
X′∈B(X,ε)

φ(f(X ′)f(X)/λ).

This leads to the second inequality.

B.2. Proof of Theorem 3.2

Theorem 3.2 (restated). Suppose that |X | ≥ 2. Under Assumption 1, for any non-negative loss function φ such that
φ(x) → 0 as x → +∞, any ξ > 0, and any θ ∈ [0, 1], there exists a probability distribution on X × {±1}, a function
f : Rd → R, and a regularization parameter λ > 0 such thatRrob(f)−R∗nat = θ and

ψ
(
θ − E max

X′∈B(X,ε)
φ(f(X ′)f(X)/λ)

)
≤ Rφ(f)−R∗φ ≤ ψ

(
θ − E max

X′∈B(X,ε)
φ(f(X ′)f(X)/λ)

)
+ ξ.

Proof. The first inequality follows from Theorem 3.1. Thus it suffices to prove the second inequality.

Fix ε > 0 and θ ∈ [0, 1]. By the definition of ψ and its continuity, we can choose γ, α1, α2 ∈ [0, 1] such that θ =
γα1 + (1 − γ)α2 and ψ(θ) ≥ γψ̃(α1) + (1 − γ)ψ̃(α2) − ε/3. For two distinct points x1,x2 ∈ X , we set PX such
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that Pr[X = x1] = γ, Pr[X = x2] = 1 − γ, η(x1) = (1 + α1)/2, and η(x2) = (1 + α2)/2. By the definition of
H−, we choose function f : Rd → R such that f(x) < 0 for all x ∈ X , Cη(x1)(f(x1)) ≤ H−(η(x1)) + ε/3, and
Cη(x2)(f(x2)) ≤ H−(η(x2)) + ε/3. By the continuity of ψ, there is an ε′ > 0 such that ψ(θ) ≤ ψ(θ − ε0) + ε/3 for all
0 ≤ ε0 < ε′. We also note that there exists an λ0 > 0 such that for any 0 < λ < λ0, we have

0 ≤ E max
X′∈B(X,ε)

φ(f(X ′)f(X)/λ) < ε′.

Thus, we have

Rφ(f)−R∗φ = Eφ(Y f(X))− inf
f

Eφ(Y f(X))

= γ[Cη(x1)(f(x1))−H(η(x1))] + (1− γ)[Cη(x2)(f(x2))−H(η(x2))]

≤ γ[H−(η(x1))−H(η(x1))] + (1− γ)[H−(η(x2))−H(η(x2))] + ε/3

= γψ̃(α1) + (1− γ)ψ̃(α2) + ε/3

≤ ψ(θ) + 2ε/3

≤ ψ
(
θ − E max

X′∈B(X,ε)
φ(f(X ′)f(X)/λ)

)
+ ε.

Furthermore, by Lemma C.1,

Rrob(f)−R∗nat = E[1{sign(f(X)) 6= sign(f∗(X)),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
+ Pr[X ∈ B(DB(f), ε), sign(f∗(X)) = Y ]

= E|2η(X)− 1|
= γ(2η(x1)− 1) + (1− γ)(2η(x2)− 1)

= θ,

where f∗ is the Bayes optimal classifier which outputs “positive” for all data points.

C. Extra Theoretical Results
In this section, we provide extra theoretical results for adversarial defenses.

C.1. A lemma

We denote by f∗(·) := 2η(·)− 1 the Bayes decision rule throughout the proofs.

Lemma C.1. For any classifier f , we have

Rrob(f)−R∗nat =E[1{sign(f(X)) 6= sign(f∗(X)),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
+ Pr[X ∈ B(DB(f), ε), sign(f∗(X)) = Y ].

Proof. For any classifier f , we have

Pr(∃X ′ ∈ B(X, ε) s.t. sign(f(X ′)) 6= Y |X = x)

= Pr(Y = 1,∃X ′ ∈ B(X, ε) s.t. sign(f(X ′)) = −1|X = x)

+ Pr(Y = −1,∃X ′ ∈ B(X, ε) s.t. sign(f(X ′)) = 1|X = x)

= E[1{Y = 1}1{∃X ′ ∈ B(X, ε) s.t. sign(f(X ′)) = −1}|X = x]

+ E[1{Y = −1}1{∃X ′ ∈ B(X, ε) s.t. sign(f(X ′)) = 1}|X = x]

= 1{∃x′ ∈ B(x, ε) s.t. sign(f(x′)) = −1}E1{Y = 1|X = x}
+ 1{∃x′ ∈ B(x, ε) s.t. sign(f(x′)) = 1}E1{Y = −1|X = x}

= 1{∃x′ ∈ B(x, ε) s.t. sign(f(x′)) = −1}η(x) + 1{∃x′ ∈ B(x, ε) s.t. sign(f(x′)) = 1}(1− η(x))

=

{
1, x ∈ B(DB(f), ε),

1{sign(f(x)) = −1}(2η(x)− 1) + (1− η(x)), otherwise.
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Therefore,

Rrob(f) =

∫
X

Pr[∃X ′ ∈ B(X, ε) s.t. sign(f(X ′)) 6= Y |X = x]dPrX(x)

=

∫
B(DB(f),ε)

Pr[∃X ′ ∈ B(X, ε) s.t. sign(f(X ′)) 6= Y |X = x]dPrX(x)

+

∫
B(DB(f),ε)⊥

Pr[∃X ′ ∈ B(X, ε) s.t. sign(f(X ′)) 6= Y |X = x]dPrX(x)

= Pr(X ∈ B(DB(f), ε)) +

∫
B(DB(f),ε)⊥

[1{sign(f(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x).

We have

Rrob(f)−Rnat(f
∗)

= Pr(X ∈ B(DB(f), ε)) +

∫
B(DB(f),ε)⊥

[1{sign(f(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x)

−
∫
B(DB(f),ε)⊥

[1{sign(f∗(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x)

−
∫
B(DB(f),ε)

[1{sign(f∗(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x)

= Pr(X ∈ B(DB(f), ε))−
∫
B(DB(f),ε)

[1{sign(f∗(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x)

+ E[1{sign(f(X)) 6= sign(η(X)− 1/2),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
= Pr(X ∈ B(DB(f), ε))− E[1{X ∈ B(DB(f), ε)}min{η(X), 1− η(X)}]

+ E[1{sign(f(X)) 6= sign(η(X)− 1/2),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
= E[1{X ∈ B(DB(f), ε)}max{η(X), 1− η(X)}]

+ E[1{sign(f(X)) 6= sign(η(X)− 1/2),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
= Pr[X ∈ B(DB(f), ε), sign(f∗(X)) = Y ]

+ E[1{sign(f(X)) 6= sign(f∗(X)),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|].

C.2. Adversarial vulnerability under log-concave distributions

Theorem 3.1 states that for any classifier f , the value Pr[X ∈ B(DB(f), ε)] characterizes the robustness of the classifier. In
this section, we show that among all classifiers such that Pr[sign(f(X)) = +1] = 1/2, linear classifier minimizes

lim inf
ε→+0

Pr[X ∈ B(DB(f), ε)]

ε
, (7)

provided that the marginal distribution over X is products of log-concave measures. A measure is log-concave if the
logarithm of its density is a concave function. The class of log-concave measures contains many well-known (classes of)
distributions as special cases, such as Gaussian and uniform measure over ball.

Our results are inspired by the isoperimetric inequality of log-concave distributions by the work of Barthe (2001). Intuitively,
the isoperimetric problem consists in finding subsets of prescribed measure, such that its measure increases the less under
enlargement. Our analysis leads to the following guarantee on the quantity (7).

Theorem C.2. Let µ be an absolutely continuous log-concave probability measure on R with even density function and
let µ⊗d be the products of µ with dimension d. Denote by dµ = e−M(x), where M : R→ [0,∞] is convex. Assume that
M(0) = 0. If

√
M(x) is a convex function, then for every integer d and any classifier f with Pr[sign(f(X)) = +1] = 1/2,

we have

lim inf
ε→+0

PrX∼µ⊗d [X ∈ B(DB(f), ε)]

ε
≥ c
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Figure 4. Left figure: boundary neighborhood of linear classifier. Right figure: boundary neighborhood of non-linear classifier. Theorem
C.2 shows that the mass of Slinear is smaller than the mass of Snon-linear, provided that the underlying distribution over the instance space is
the products of log-concave distribution on the real line.

for an absolute constant c > 0. Furthermore, among all such probability measures and classifiers, the linear classifier over
products of Gaussian measure with mean 0 and variance 1/(2π) achieves the lower bound.

Theorem C.2 claims that under the products of log-concave distributions, the quantity Pr[X ∈ B(DB(f), ε)] increases with
rate at least Ω(ε) for all classifier f , among which the linear classifier achieves the minimal value.

C.2.1. PROOFS OF THEOREM C.2

For a Borel set A and for ε > 0, denote by Aε = {x : d(x,A) ≤ ε}. The boundary measure of A is then defined as

µ+(A) = lim inf
ε→+0

µ(Aε)− µ(A)

ε
.

The isoperimetric function is
Iµ = inf{µ+(A) : µ(A) = 1/2}. (8)

Before proceeding, we cite the following results from (Barthe, 2001).
Lemma C.3 (Theorem 9, (Barthe, 2001)). Let µ be an absolutely continuous log-concave probability measure on R with
even density function. Denote by dµ = e−M(x), where M : R→ [0,∞] is convex. Assume that M(0) = 0. If

√
M(x) is a

convex function, then for every integer d, we have Iµ⊗d ≥ Iγ⊗d , where γ is the Gaussian measure with mean 0 and variance
1/(2π). In particular, among sets of measure 1/2 for µ⊗d, the halfspace [0,∞) × Rd−1 is solution to the isoperimetric
problem (8).

Now we are ready to prove Theorem C.2.

Proof. We note that

Pr[X ∈ B(DB(f), ε)]

= Pr[X ∈ B(DB(f), ε), sign(f(X)) = +1] + Pr[X ∈ B(DB(f), ε), sign(f(X)) = −1].

To apply Lemma C.3, we set the A in Lemma C.3 as the event {sign(f(X)) = +1}. Therefore, the set

Aε = {X ∈ B(DB(f), ε), sign(f(X)) = −1}.

By Lemma C.3, we know that for linear classifier f0 which represents the halfspace [0,∞)× Rd−1, and any classifier f ,

lim inf
ε→+0

PrX∼µ⊗d [X ∈ B(DB(f), ε), sign(f(X)) = −1]− Pr[sign(f(X)) = +1]

ε

≥ lim inf
ε→+0

PrX∼γ⊗d [X ∈ B(DB(f0), ε), sign(f0(X)) = −1]− Pr[sign(f0(X)) = +1]

ε
.

(9)
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Similarly, we have

lim inf
ε→+0

PrX∼µ⊗d [X ∈ B(DB(f), ε), sign(f(X)) = +1]− Pr[sign(f(X)) = −1]

ε

≥ lim inf
ε→+0

PrX∼γ⊗d [X ∈ B(DB(f0), ε), sign(f0(X)) = +1]− Pr[sign(f0(X)) = −1]

ε
.

(10)

Adding both sides of Eqns. (9) and (10), we have

lim inf
ε→+0

PrX∼µ⊗d [X ∈ B(DB(f), ε)]

ε
≥ lim inf

ε→+0

PrX∼γ⊗d [X ∈ B(DB(f0), ε)]

ε
≥ c.

C.3. Margin based generalization bounds

Before proceeding, we first cite a useful lemma. We say that function f1 : R→ R and f2 : R→ R have a γ separator if there
exists a function f3 : R→ R such that |h1 − h2| ≤ γ implies f1(h1) ≤ f3(h2) ≤ f2(h1). For any given function f1 and
γ > 0, one can always construct f2 and f3 such that f1 and f2 have a γ-separator f3 by setting f2(h) = sup|h−h′|≤2γ f1(h′)
and f3(h) = sup|h−h′|≤γ f1(h′).

Lemma C.4 (Corollary 1, (Zhang, 2002)). Let f1 be a function R → R. Consider a family of functions fγ2 : R → R,
parametrized by γ, such that 0 ≤ f1 ≤ fγ2 ≤ 1. Assume that for all γ, f1 and fγ2 has a γ separator. Assume also that
fγ2 (z) ≥ fγ

′

2 (z) when γ ≥ γ′. Let γ1 > γ2 > ... be a decreasing sequence of parameters, and pi be a sequence of positive
numbers such that

∑∞
i=1 pi = 1, then for all η > 0, with probability of at least 1− δ over data:

E(X,Y )∼Df1(L(w,X, Y )) ≤ 1

n

n∑
i=1

fγ2 (L(w,xi, yi)) +

√
32

n

(
ln 4N∞(L, γi,x1:n) + ln

1

piδ

)
for all w and γ, where for each fixed γ, we use i to denote the smallest index such that γi ≤ γ.

Lemma C.5 (Theorem 4, (Zhang, 2002)). If ‖x‖p ≤ b and ‖w‖q ≤ a, where 2 ≤ p <∞ and 1/p+ 1/q = 1, then ∀γ > 0,

log2N∞(L, γ, n) ≤ 36(p− 1)
a2b2

γ2
log2[2d4ab/γ + 2e+ 1].

Theorem C.6. Suppose that the data is 2-norm bounded by ‖x‖2 ≤ b. Consider the family Γ of linear classifier w with
‖w‖2 = 1. Let Rrob(w) := E(X,Y )∼D1[∃Xrob ∈ B2(X, ε) such that YwTXrob ≤ 0]. Then with probability at least
1− δ over n random samples (xi, yi) ∼ D, for all margin width γ > 0 and w ∈ Γ, we have

Rrob(w) ≤ 1

n

n∑
i=1

1(∃xrob
i ∈ B(xi, ε) s.t. yiwTxrob

i ≤ 2γ) +

√
C

n

(
b2

γ2
lnn+ ln

1

δ

)
.

Proof. The theorem is a straightforward result of Lemmas C.4 and C.5 with

L(w,x, y) = min
xrob∈B(x,ε)

ywTxrob,

f1(g) = 1(g ≤ 0) and fγ2 (h) = sup
|g−h|<2γ

f1(g) = f1(g − 2γ) = 1(g ≤ 2γ),

and γi = b/2i and pi = 1/2i.

We note that for the `2 ball B2(x, ε) = {x′ : ‖x− x′‖2 ≤ ε}, we have

1(∃xrob
i ∈ B(xi, ε) s.t. yiwTxrob

i ≤ 2γ) = max
xrob

i ∈B(xi,ε)
1(yiw

Txrob
i ≤ 2γ) = 1(yiw

Txi ≤ 2γ + ε).

Therefore, we can design the following algorithm—Algorithm 2.
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Algorithm 2 Adversarial Training of Linear Separator via Structural Risk Minimization
Input: Samples (x1:n, y1:n) ∼ D, a bunch of margin parameters γ1, ..., γT .
1: For k = 1, 2, ..., T
2: Solve the minimax optimization problem:

Lk(w∗k,x1:n, y1:n) = min
w∈S(0,1)

1

n

n∑
i=1

max
xrob

i ∈B(xi,ε)
1(yiw

Txrob
i ≤ 2γk)

= min
w∈S(0,1)

1

n

n∑
i=1

1(yiw
Txi ≤ 2γk + ε).

3: End For

4: k∗ = argmink Lk(w∗k,x1:n, y1:n) +

√
C
n

(
b2

γ2
k

lnn+ ln 1
δ

)
.

Output: Hypothesis wk∗ .

D. Extra Experimental Results
In this section, we provide extra experimental results to verify the effectiveness of our proposed method TRADES.

D.1. Experimental setup in Section 5.3.1

We use the same model, i.e., the WRN-34-10 architecture in Zagoruyko & Komodakis (2016), to implement the methods in
Zheng et al. (2016), Kurakin et al. (2017) and Ross & Doshi-Velez (2017). The experimental setup is the same as TRADES,
which is specified in the beginning of Section 5. For example, we use the same batch size and learning rate for all the
methods. More specifically, we find that using one-step adversarial perturbation method like FGSM in the regularization
term, defined in Kurakin et al. (2017), cannot defend against FGSMk (white-box) attack. Therefore, we use FGSMk with
the cross-entropy loss to calculate the adversarial example X ′ in the regularization term, and the perturbation step size η1
and number of iterations K are the same as in the beginning of Section 5.

As for defense models in Table 5, we implement the ‘TRADES’ models, the models trained by using other regularization
losses in (Kurakin et al., 2017; Ross & Doshi-Velez, 2017; Zheng et al., 2016), and the defense model ‘Madry’ in the
antepenultimate line of Table 5. We evaluate Wong et al. (2018)’s model based on the checkpoint provided by the authors.
The rest of the models in Table 5 are reported in (Athalye et al., 2018).

D.2. Extra attack results in Section 5.3.1

Extra white-box attack results are provided in Table 8.

Table 8. Results of our method TRADES under different white-box attacks.
Defense Under which attack Dataset Distance Anat(f) Arob(f)

TRADES (1/λ = 1.0) FGSM CIFAR10 0.031 (`∞) 88.64% 56.38%
TRADES (1/λ = 1.0) FGSM1,000 CIFAR10 0.031 (`∞) 88.64% 48.90%
TRADES (1/λ = 1.0) DeepFool (`2) CIFAR10 0.031 (`∞) 88.64% 84.49%
TRADES (1/λ = 6.0) FGSM CIFAR10 0.031 (`∞) 84.92% 61.06%
TRADES (1/λ = 6.0) FGSM1,000 CIFAR10 0.031 (`∞) 84.92% 56.43%
TRADES (1/λ = 6.0) DeepFool (`2) CIFAR10 0.031 (`∞) 84.92% 81.55%

The attacks in Table 5 and Table 8 include FGSMk (Kurakin et al., 2017), DeepFool (`∞) (Moosavi-Dezfooli et al., 2016),
LBFGSAttack (Tabacof & Valle, 2016), MI-FGSM (Dong et al., 2018), C&W (Carlini & Wagner, 2017), FGSM (Kurakin
et al., 2017), and DeepFool (`2) (Moosavi-Dezfooli et al., 2016).
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D.3. Extra attack results in Section 5.3.2

Extra black-box attack results are provided in Table 9 and Table 10. We apply black-box FGSM attack on the MNIST
dataset and the CIFAR10 dataset.

Table 9. Comparisons of TRADES with prior defense models under black-box FGSM attack on the MNIST dataset. The models inside
parentheses are source models which provide gradients to adversarial attackers.

Defense Model Robust Accuracy Arob(f)
Madry 97.68% (Natural) 98.11% (Ours)

TRADES 97.75% (Natural) 98.44% (Madry)

Table 10. Comparisons of TRADES with prior defense models under black-box FGSM attack on the CIFAR10 dataset. The models inside
parentheses are source models which provide gradients to adversarial attackers.

Defense Model Robust Accuracy Arob(f)
Madry 84.02% (Natural) 67.66% (Ours)

TRADES 86.84% (Natural) 71.52% (Madry)

D.4. Experimental setup in Section 5.3.2

The robust accuracy of Madry et al. (2018)’s CNN model is 96.01% on the MNIST dataset. The robust accuracy of Madry
et al. (2018)’s WRN-34-10 model is 47.66% on the CIFAR10 dataset. Note that we use the same white-box attack method
introduced in the Section 5.3.1, i.e., FGSM20, to evaluate the robust accuracies of Madry’s models.

D.5. Interpretability of the robust models trained by TRADES

D.5.1. ADVERSARIAL EXAMPLES ON MNIST AND CIFAR10 DATASETS

In this section, we provide adversarial examples on MNIST and CIFAR10. We apply foolbox3 (Rauber et al.,
2017) to generate adversarial examples, which is able to return the smallest adversarial perturbations under the `∞
norm distance. The adversarial examples are generated by using FGSMk (white-box) attack on the models described
in Section 5, including Natural models, Madry’s models and TRADES models. Note that the FGSMk attack is
foolbox.attacks.LinfinityBasicIterativeAttack in foolbox. See Figure 5 and Figure 6 for the adver-
sarial examples of different models on MNIST and CIFAR10 datasets.

D.5.2. ADVERSARIAL EXAMPLES ON BIRD-OR-BICYCLE DATASET

We find that the robust models trained by TRADES have strong interpretability. To see this, we apply a (spatial-tranformation-
invariant) version of TRADES to train ResNet-50 models in response to the unrestricted adversarial examples of the
bird-or-bicycle dataset (Brown et al., 2018). The dataset is bird-or-bicycle, which consists of 30,000 pixel-224×224 images
with label either ‘bird’ or ‘bicycle’. The unrestricted threat models include structural perturbations, rotations, translations,
resizing, 17+ common corruptions, etc.

We show in Figures 7 and 8 the adversarial examples by the boundary attack with random spatial transformation on our
robust model trained by the variant of TRADES. The boundary attack (Brendel et al., 2018) is a black-box attack method
which searches for data points near the decision boundary and attack robust models by these data points. Therefore, the
adversarial images obtained by boundary attack characterize the images around the decision boundary of robust models. We
attack our model by boundary attack with random spatial transformations, a baseline in the competition. The classification
accuracy on the adversarial test data is as high as 95% (at 80% coverage), even though the adversarial corruptions are
perceptible to human. We observe that the robust model trained by TRADES has strong interpretability: in Figure 7 all
of adversarial images have obvious feature of ‘bird’, while in Figure 8 all of adversarial images have obvious feature of
‘bicycle’. This shows that images around the decision boundary of truly robust model have features of both classes.

3Link: https://foolbox.readthedocs.io/en/latest/index.html

https://foolbox.readthedocs.io/en/latest/index.html
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(d) adversarial examples of class ‘7’

Figure 5. Adversarial examples on MNIST dataset. In each subfigure, the image in the first row is the original image and we list the
corresponding correct label beneath the image. We show the perturbed images in the second row. The differences between the perturbed
images and the original images, i.e., the perturbations, are shown in the third row. In each column, the perturbed image and the perturbation
are generated by FGSMk (white-box) attack on the model listed below. The labels beneath the perturbed images are the predictions of the
corresponding models, which are different from the correct labels. We record the smallest perturbations in terms of `∞ norm that make
the models predict a wrong label.
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(c) adversarial examples of class ‘ship’
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(d) adversarial examples of class ‘truck’

Figure 6. Adversarial examples on CIFAR10 dataset. In each subfigure, the image in the first row is the original image and we list
the corresponding correct label beneath the image. We show the perturbed images in the second row. The differences between the
perturbed images and the original images, i.e., the perturbations, are shown in the third row. In each column, the perturbed image and the
perturbation are generated by FGSMk (white-box) attack on the model listed below. The labels beneath the perturbed images are the
predictions of the corresponding models, which are different from the correct labels. We record the smallest perturbations in terms of `∞
norm that make the models predict a wrong label (best viewed in color).
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(a) clean example (b) adversarial example by boundary attack with ran-
dom spatial transformation

(c) clean example (d) adversarial example by boundary attack with ran-
dom spatial transformation

(e) clean example (f) adversarial example by boundary attack with ran-
dom spatial transformation

Figure 7. Adversarial examples by boundary attack with random spatial transformation on the ResNet-50 model trained by a variant of
TRADES. The original label is ‘bicycle’, and our robust model recognizes the adversarial examples correctly as ‘bicycle’. It shows in the
second column that all of adversarial images have obvious feature of ‘bird’ (best viewed in color).
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(a) clean example (b) adversarial example by boundary attack with ran-
dom spatial transformation

(c) clean example (d) adversarial example by boundary attack with ran-
dom spatial transformation

(e) clean example (f) adversarial example by boundary attack with ran-
dom spatial transformation

Figure 8. Adversarial examples by boundary attack with random spatial transformation on the ResNet-50 model trained by a variant of
TRADES. The original label is ‘bird’, and our robust model recognizes the adversarial examples correctly as ‘bird’. It shows in the second
column that all of adversarial images have obvious feature of ‘bicycle’ (best viewed in color).


