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Abstract

Non-negative matrix factorization is a powerful
tool for learning useful representations in the da-
ta and has been widely applied in many problems
such as data mining and signal processing. Or-
thogonal NMF, which can further improve the
locality of decomposition, has drawn consider-
able interest in clustering problems. However,
imposing simultaneous non-negative and orthog-
onal structure can be difficult, and so existing
algorithms can only solve it approximately. To
address this challenge, we propose an innova-
tive procedure called Greedy Orthogonal Pivot-
ing Algorithm (GOPA). The GOPA method fully
exploits the sparsity of non-negative orthogonal
solutions to break the global problem into a se-
ries of local optimizations, in which an adaptive
subset of coordinates are updated in a greedy,
closed-form manner. The biggest advantage of
GOPA is that it promotes exact orthogonality and
provides solid empirical evidence that stronger
orthogonality does contribute favorably to better
clustering performance. On the other hand, we
have designed randomized and batch-mode ver-
sion of GOPA, which can further reduce the com-
putational cost and improve accuracy, making it
suitable for large data.

1. Introduction

Non-negative matrix factorization (Lee & Seung, 2000; D-
ing et al., 2006; Wang & Zhang, 2013) is a powerful tool
for learning useful representations. Given an n x d data
matrix X where each column is one feature and each row
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is one data point, the main idea behind NMF is to approx-
imate these input vectors by nonnegative linear combina-
tions of nonnegative basis vectors (rows of of H) with the
coefficients stored in columns of W, as follows

min | X - WH|%
W, H
s.t. W >0,H > 0.

By imposing simultaneous non-negative structures in da-
ta reconstruction and basis identification, NMF has shown
great potential in unravelling important structures in the da-
ta from various applications, such as data clustering (Kuang
et al., 2012; Li & Ding, 2006), image processing (Lee &
Seung, 2000), text mining (Xu et al., 2003; Ding et al.,
2008), and signal processing (Ozerov & Fevotte, 2010).
See a recent review in (Wang & Zhang, 2013).

The NMF is not jointly convex with W and H, and various
approaches have been proposed to solve it. Early attemp-
t mainly focused on multiplicative updates. For example,
Lee & Seung (2000) proposed the following procedures

(XH');;
Wi =W © (W),

(W’'X)ij
Hij = Hij ® (7‘7‘” VVI‘ILJ"

and proved its convergence using the technique of auxil-
iary functions. More variations of multiplicative updates
can be found in (Yang & Oja, 2011). In order to further
improve the convergence rate and quality, many other op-
timization strategies were proposed, such as the projected
gradient descent (Lin, 2007), alternating least squares (Ci-
chocki & Anh-Huy, 2009), active set method (Kim & Park,
2008a;b), block-coordinate descent (Kim et al., 2014), and
greedy coordinate descent (Hsieh & Dhillon, 2011).

NMF has been shown to generate part based representation
in many applications such as image and signal processing,
where data points are reconstructed using a limited number
of components that can be easy to interpret. However, this
may not be guaranteed for several reasons. First, the solu-
tion of NMF is not unique (even consider re-scaling), and
extra constraints are needed to obtain (more) well-posed
NMF problems. Indeed, it is found that the sample points
have to fill a proper subset of the positive orthant such that a
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unique simplicial cone corresponding to the NMF solution
exists (Donoho & Stodden, 2004). Another reason is that
solutions of NMF may not always be sparse since there is
no direct control over sparsity of solutions, and as a result
the decomposition can have a global support (Gillis, 2012).

In order to solve these problems, much attention has been
put on incorporating extra locality constraints to improve
quality of decomposition. For example, the sparsity-
inducing norms (such as ¢y and ¢; norm) have been in-
corporated in NMF to improves the found decomposition-
s (Hoyer, 2004; Peharz & Pernkopf, 2012); on the other
hand, Cai et al. (2011) incorporated the graph-based man-
ifold regularization such that the decomposition is more
aligned with the manifold structures.

In this paper we focus on improving the decomposition
of NMF using orthogonality constraints, namely the fac-
tor matrix should have orthonormal columns. Given a data
matrix X, the (uni-)orthogonal NMF is defined as

min || X - WH]||? (1)
W,H
st.  W>0, H>0, WW=1

Orthogonal NMF can effectively control the model com-
plexity and lead to unique solutions (Ding et al., 2006).
Indeed, orthogonal NMF has a intrinsic connection to clus-
tering considering that the cluster indicator matrix takes ex-
actly the form of an orthogonal matrix (Kuang et al., 2012;
Li & Ding, 2006). Furthermore, empirical evidence shows
that it performs remarkably well in certain clustering tasks,
such as document classification (Xu et al., 2003).

However, the coupled non-negative and orthogonal con-
straints can be challenging to optimization, and various al-
gorithms have been proposed. Early efforts mainly focused
on multiplicative updates. For instance, Ding et al. (2006)
first proposed a general proof on the equivalence between
k-means clustering and orthogonal NMF, and further gen-
eralized it to co-clustering. They pioneered the use of mul-
tiplicative update in approximately solving the NMF with
hard orthogonality constraint

(X'W);;
g 1Y HWW),
(XH)ij
Wij = W0 ——" .
! 1Y (WWXH),,

Convergence of such updates and correctness of solution is
given in (Ding et al., 2006). Other examples of multiplica-
tive updates includes (Yoo & Choi, 2008).

In Multiplicative updates once an entry becomes zero it will
keep vanishing throughout subsequent iterations, which is
called zero-locking and may lead to premature conver-
gence. To solve this problem and also improve the rate

of convergence, a number of optimization approaches have
been proposed. For example, Kimura et al. (2014) adopted
the hierarchical alternating least squares to update column-
wise update of the orthogonal factor matrix. The La-
grangian of (1) with local orthogonal constraints (i.e., in-
volving only the inner product between one column and the
rest columns in W) is solved. Since exact Lagrangian mul-
tiplier associated with the orthogonality constraint is very
difficult to determine, an approximation is used which is
similar to that in (Ding et al., 2006).

In order to avoid solving the Lagrangian multiplier with
hard orthogonality constraint, a soft penalty term can be
used

min X —WH|? + 8- [|[WW -1,
W, H
s.t. W >0, H>0.

Here § is the regularization parameter that controls the or-
thogonality of solution. For example, Shiga et al. (2016)
adopted the soft orthogonal constraint together with an
automatic relevance determination (ARD) prior in Gaus-
sian noise for NMF to identifying the potential constituent
chemical components from spectral imaging. Shiga et al.
(2014) generalized the projected gradient descent method
(Lin, 2007) where a modified version of the additive update
rules are designed to solve orthogonal NMF, with rigorous
proof of convergence. These algorithms do not have zero
locking problem and perform better in clustering tasks.

Besides multiplicative updates and soft orthogonal con-
straints, other methods have been proposed as well.
Pompili et al. (2014) proved equivalence between (uni-
)Jorthogonal NMF and a weighted version of spherical k-
means clustering algorithm, and designed an EM-iteration
to solve the clustering problem where the hard cluster as-
signment can be deemed as an orthogonal solution; Aster-
is et al. (2015) proposed an approximation to Nonnegative
Principal Component Analysis to solve orthogonal NMF
with provable guarantees; a large penalty term needs to be
enforced to promote orthogonality.

Overall, computing an orthogonal non-negative factoriza-
tion is still challenging. Almost all the existing orthogonal
NMF methods can only approximately enforce the orthog-
onality constraint; on the other hand, the level of orthog-
onality may not be explicitly controllable. In this paper,
we propose a new and systematic perturbation scheme for
more effective orthogonal NMF. By fully exploiting the s-
parse and exclusive structures of orthogonal solutions, we
decompose the original problem into a series of local opti-
mization, in which an adaptive subset of coordinates are
updated in a greedy, closed-form manner. Our method
is called Greedy Orthogonal Pivoting Algorithm (GOPA),
which has several advantages. First, each iteration operates
on a small subset of variables with closed-form solution,
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making the implementation easy; second, the iterations can
be parallelized to different levels, making it very compu-
tationally efficient; finally, our approach can enforce ex-
act orthogonal solutions and show significant performance
gains in clustering problems against state-of-the-arts.

The rest paper is organized as follows. Section 2 in-
troduces the proposed methods, including the sequential
GOPA method and its randomized version in Section 2.1,
the batch GOPA method in Section 2.2, complexity analy-
sis in Section 2.3 and convergence analysis in Section 2.4.
Section 3 reports empirical evaluations and Section 4 con-
cludes the paper and points our several interesting future
research directions.

2. Greedy Orthogonal Pivoting Algorithm
2.1. Sequential GOPA

Given a data matrix X € R"*? with n samples and d
features, consider non-negative factorizations of the for-
m X ~ WH to solve the clustering problem, where
W € R™** is an orthonormal cluster indicator matrix such
that WTW = I, and H € R¥*? contains cluster centers
as its rows, with k being the number of clusters.

Given a feasible solution W where each row has exact-
ly one non-negative entry and each column has unit norm.
Consider updating a single row in W, namely, switching
the non-zero entry in this row from the original location to
another location (column), probably re-scaled numerically,
and then see if this update can potentially reduce the objec-
tive. Such perturbation naturally satisfies the orthogonality
constraint, since each row will always be filled with on-
ly one non-negative entry after each switching operation.
In practice, one needs to attempt &k switches for each row
(i.e., including the current location considering the possi-
ble numerical changes), such that the optimal location of
the non-zero entry and its optimal value can be determined.

We illustrate the basic idea in Figure 1. Suppose we want
to update the /th row in W, where without loss of general-
ity the gth column is assumed to be non-zero, and we want
to switch it to the pth column with value = € (0,1). Here
W, is the sub-vector corresponding to the non-zeros in
the pth column of W, and W, represents the non-zeros
excluding the Ith entry in the gth column of W. Note that
both the pth and gth column of W will be re-scaled corre-
spondingly after swapping the non-zero entry, in order to
guarantee the unit norm condition as shown Figure 1. Our
goal is to calculate an optimal x for this switch and the re-
sultant change of the objective value.

Note that throughout the updating procedures the solution
always reside in the feasible domain, i.e., W/W = I, and
as a result the objective function (1) can be written equiva-

lently as
max tr(WHX)
w
s.t. W > 0.

Let R = XH’ and R, the pth column of R. Then trace
objective before the switch can be written equivalently as

J =tu(W,R,) + f(W,R,) + Y tr(W/R;).
J#p.q

After swapping, the objective becomes

J = u(W,R,) +t(W/Ry)+ Y tr(WR,).

J#p.a

Let Z,, be the index of non-zero entries in W, Rp[zp] be
the corresponding sub-vector in R, and R,;; be the Ith

entry in R,. By removing the constant part of J (i.e., the
third term), the objective can be written as follows,

max V1= a2(Wi,Ryiz,)) + Ry, @

Through simple derivations we can obtain a closed form
solution for x, as

. Rl .
\/Ri[z] + (Wi Ry 1))?

3)

X

which automatically satisfies © € [0, 1] since R = XH’
and both X and H and W is non-negative too.

The change of the objective after updating the /th row of

‘W can be computed as

T=J =t ((W, = W,)R,) +ur (W, ~ W,)'pR, ).

Another possibility is that the non-zero entry in the /th row
of W only needs to be re-scaled but does not have to be
moved to another column. In such case, we will have the
following objective function

V1-22W( Rz +2 Rey. ()

Here Z,, is the index of the non-zero entries in W, exclud-
ing the /th entry. This problem is very similar to that in (3)
and the closed-form solution can be written as

Ry '
\/Rim + (Wi Rqz,))?

max
0<z<1

¥ =

By trying all the k possible switches, and for each swap
we examine the decrement of the objective, we can then
choose the optimal switch. If none of the £ swaps leads
to an improved objective, the [th row remains unchanged.
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Lth row l

Swapping
—

Figure 1. Illustration of the basic idea of greedy orthogonal pivoting algorithm (GOPA) in updating one row of an orthogonal W. GOPA
updates the [th row by shifting the non-zero entry from gth column to the pth column where p traverses through all the k£ columns of W.

On the other hand, if the best switch is associated with an
optimal solution of z* = 0 or z* = 1, the solution will
be discarded because the orthogonality condition would be
violated. The update of the H matrix is fairly simple, i.e.,
H = W’X since W has orthonormal columns.

The detailed algorithm is presented in Algorithm 1. We
call it “Greedy Orthogonal Pivoting Algorithm” (GOPA)
since it fully exploits the structure of non-negative orthog-
onal solutions and adopts a greedy scheme to determine the
location and value of the non-zero entry in each row of W.

Algorithm 1 Greedy Orthogonal Pivoting Algorithm.
Input. Data matrix X, initial orthogonal W € R™*¥,

I: for t=1,t++,t <Tdo

2:  foreachi € [1,n] do

3: Swap the non-zero entry of W; ; from the o-

riginal location (qth column) to each of the
{1,2,..., k} locations;

4: Calculate optimal z* (3) for each swap;

Place the non-zero entry in the pth column with
minimum objective (4);

6: Re-scale pth and gth column of W to norm 1;
7:  end for
8
9

Update matrix H by H = W’'X.
: end for

In figure 2, we illustrate the behaviour GOPA in compari-
son with two popular multiplicative update algorithms (D-
ing et al., 2006; Choi, 2008). We star from an initial W
where each row only has a single non-zero entry that is
randomly located. All three algorithms here can preserve
the orthogonality of solutions. However, multiplicative
updates suffer from zero-locking and quickly reach pre-
mature convergence; in comparison, GOPA procedures can
significantly reduce the objective even starting from such a
sparse initial W matrix.
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Figure 2. Convergence behaviour of multiplicative updates and
GOPA on one benchmark data. When starting from a non-
negative orthogonal solution of W, multiplicative updates quick-

ly reaches pre-mature convergence, while the GOPA can substan-
tially decrease the objective.

Randomized GOPA. The sequential updating procedures
of GOPA can be randomized by selecting only a subset
of matrix rows (and resultant columns) to update in each
round of iterations. By doing this, the iterations can have
the potential to jump out of local optima in a similar way
to the stochastic gradient descent, and in the meantime the
computational cost can be reduced as well.

In Figure 3, we plot the objective function corresponding
to different choices of the updating ratio. As can be ex-
pected, a smaller update ratio may require more iterations
to converge; however, the final objective is similar or even
(slightly) superior to that of using a full update. Empirical-
ly, using a properly selected update ratio (e.g., 0.5) can si-
multaneously save computations and improve convergence,
which has been observed in the majority of the benchmark
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data sets.
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Figure 3. Randomized GOPA with different random updating ra-
tio on a benchmark data. A smaller ratio (i.e. incomplete updat-
ing) can potentially save computation and improve convergence.

2.2. Batch-Mode GOPA

The greedy orthogonal pivoting updates one row of W at a
time and proceeds sequentially. In practice, it can be desir-
able if a subset of rows can be updated simultaneously. We
therefore consider generalizing the GOPA to a batch mode.

Exact generalization of GOPA to batch-mode can be chal-
lenging due to its sequential nature. This is because updat-
ing one row of W can involve perturbing two columns in
‘W, corresponding to the original and target locations of the
non-zero entry in that row. As a result, subsequent pivoting
steps will all be affected. We therefore drop such sequen-
tial constraints and allow several rows in W' to be updated
simultaneously. More specifically, we first apply the piv-
oting procedure on the rows of W and record the updated
location of the non-zero entries for each row. This step can
be done in parallel for all the rows. We then simultaneously
calculate values of the non-zero entries that are located in
the same column. We can further randomize the procedure
by performing the updates on only a subset of the rows.

Figure 4 illustrates the batch-mode GOPA procedure. We
first introduce randomization in each round of iterations by
picking out n - (1 — r%) rows from W, which do not go
through any pivoting; namely we only perform GOPA on
the remaining n-r% rows, whose non-zero entries will pos-
sibly be shifted to a new column. Then we reorder the rows
such that their non-zero entries are aligned by column. For
eachof p =1, 2, ..., k, we collect the rows whose non-zero
entries are located in the pth column, and divide their in-
dices into Z,; and Z,;, corresponding to the rows without
and with the pivoting operation, respectively; related sub-
vectors are defined as W, = Wp[I;] and W = Wp[z;; I

Column to update
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P

Figure 4. Batch mode update of matrix W. In each column, the
non-zero entries are divided into two sub-vectors: W, which is
only subject to a concurrent re-scaling, and W,,, whose entries
are determined by the optimization problem (5).

Based on the updated locations of the non-zero entries of all
the rows, we can then formulate the optimization problem
as follows. First, entries in W7 will remain unchanged
and will only be subject to a re-scaling to guarantee the
unit-norm for each column; in contrast, entries in W;j will
be sufficiently optimized in order to reduce the objective
function. Let the pth column of R = XH’ be R,,. Then
our goal is to optimize the following objective

mex a-e+B-x'u 5)
s.t. A+p2=1, x| =1.
WE'R,(T0)
u=R,(T¥), e= —L_"F
pe Wil

To solve the above problem, write the Lagrangian of the
objective as

J=ae+Bxu— (o + 5% —1) - ha(x'x—1).

By setting the derivative to zeros, we have the following
conditions:

e=2a)\, xX'u=26\, fu=2\x.

By combining these conditions with a? + 32 = 1 and
|lx|| = 1, we have the following closed-form solution

B=+v1—a2

u e

T YT @t

In Figure 5, we plot the objective with different choices of
the updating ratio in batch-mode GOPA. Again, a smaller
update ratio requires more iterations but the final objective
is similar or even superior to that of using a full update, and
can be computationally cheaper in the meantime.



Greedy Orthogonal Pivoting Algorithm for Non-negative Matrix Factorization

Double-Sided Orthogonality. In case co-clustering is
considered (Kuang et al., 2012), we want to enforce or-
thogonality on both the W and the H matrix, to which the
GOPA method can be extended trivially.
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Figure 5. The convergence behaviour of batch-mode GOPA with
different choices of the updating ratio on a benchmark data. A
smaller update ratio gives equally good (or better) objective and
can potentially save computational cost when properly selected.

Algorithm 2 Batch-mode Greedy Orthogonal Pivoting.
Input. Data X, initial orthogonal W € R™** ratio r%.

1: Perform GOPA on n - 7% randomly selected rows in
matrix W

2: for t=1,t++,t <Tdo

3: for p el k]do

4: Collect rows whose non-zero entries are located
in the pth column, indexed by m;

5: For the pth column of W, update rows in 7, (i.e.,
Wf) and W}j) using (5);

6: end for

7. Update matrix H by H = W'X,

8: end for

2.3. Complexity

For the sequential GOPA (Algorithm 1), given a data ma-
trix X € R™"* and a pre-defined rank k, the complexity is
O (T (rnkb + ndk)), where T is the number of iterations,
is the updating ratio in each round of iterations, and b is the
average cluster size (which is close to 7 in case of balanced
clusters). Note that the k& switches of the non-zero entry as-
sociated with each row of W is totally independent, there-
fore they can be implemented in a parallel fashion and the
time complexity will then be reduced to O (T'(rnb + ndk))
if there are k concurrent workers.

For the batch-mode GOPA (Algorithm 2), there can be two
levels of parallelization. First, the pivoting of each single
row requires calculating the optimal non-zero entry for all

the k£ columns, which can be done in parallel. Second, The
pivoting of multiple rows can also be performed indepen-
dent of each other. Suppose there are w; wo workers, where
each group of wy workers calculate the pivoting for a sin-
gle row in W. Then the complexity of the parallel GOPA
method can be written as O(T'(Z2kL 4 ndk)).

wiwsa

2.4. Convergence

Each orthogonal pivot starts from switching the non-zero
entry in one row of W from the original column to a desti-
nation column, which may end up with updating either one
or two columns of W, depending on the change of the ob-
jective of each switch and feasibility of solution. Therefore,
the GOPA method may be considered as a block coordi-
nate descent. However, there are two special properties that
make it different from standard coordinate descent method.
First, the subset of coordinates in each step are selected
adaptively based on the current model (W®)), instead of
using a fixed scheme (e.g. cyclic or random choices); sec-
ond, in determining which column(s) to update when work-
ing with one row of W, the GOPA procedure will actual-
ly choose the best step among all the k possible switch-
es. Therefore, although convergence of block coordinate
descent has been well studied in the literature (Beck &
Tetruashvill, 2013; Tseng, 2001), generalizing it to GOPA
method is highly non-trivial and is still being pursued.

Indeed, the sequential GOPA algorithm is guaranteed to
decrease the objective (or preserve the same objective) in
each step. This is because in working with each row of W,
the final switch is chosen to be the best step among all the
k possible switches; in case none of these switches leads
simultaneously to a feasible solution and decreased objec-
tive, then no update is performed. Therefore, by combin-
ing continuous optimization (obtaining the non-zero entry
value z*) and greedy selection of block coordinates, the
sequential GOPA method will efficiently converge in a fi-
nite number of iterations since the objective is always non-
negative. For batch-mode GOPA, due to simultaneous up-
dates of the non-zero entries in W, a non-increasing objec-
tive may not be strictly assured during the iterations. How-
ever, empirically, non-increasing and converging objective
is always observed for batch-mode GOPA when the update
ratio is properly selected (e.g., 0.5 or larger). Indeed, the
batch-mode outperforms the sequential version on a large
portion of the benchmark data set, as reported in Section 3,
demonstrating its ability to better combat local optima.

3. Experiments

In this section we perform empirical evaluations. We have
compared both sequential and batch GOPA with altogether
6 state-of-the-art algorithms for orthogonal NMF. The first
two methods are multiplicative updates; The EM-ONMF
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Table 1. Averaged clustering accuracy and standard deviation for different orthogonal NMF algorithms on benchmark datasets over 30
repeated runs. All algorithms start from random initialization.

Dataset | OMU-CD OMU-CH OAUR HALS-ONMF SOARD EM-ONMF  Seq. GOPA  Bat. GOPA
RCV1 65.40£9.45 66.63£8.83  69.14+£5.16 70.63£8.16 70.13£8.20  66.06+10.57 69.37£7.18  71.69+3.84
Reuters | 23.97£1.75 25.36£1.37 23.74£1.52 23.50£1.01 2331£1.06  25.14£1.86  25.86+£1.28  30.12+1.23
Newsgp4 | 28.81+4.16 29.08+4.42  29.78+2.38 29.98+4.10 30.73+£3.62  38.58+6.93  36.36+6.61  41.91+5.50
Webkb4 | 71.61+9.32  76.92+6.38  76.361+2.95 77.53£7.27 77.43£7.53  7451+£8.66  77.39+5.67 76.90£7.32
WebACE | 50.13£3.91 49.12+4.06 47.66+4.72 46.59+2.86 46.694+2.38  51.494+5.53  49.57+£3.81 51.89+5.20
TDT2 49.02£2.70  45.01£2.17 41.66£1.24 46.51£1.65 46.24+1.73  54.06+£3.74  48.92£2.07 55.13+2.73
UCI 50.18+£3.78 47.32+£3.61 46.98+3.88 76.48+3.82 75.01£3.35  73.94+6.21 80.44+5.13  79.59+4.09
USPS 57.93£4.82 61.50£4.39 48.18+3.77 62.28+2.39 65.44+£2.31  65.41+£3.20 65.65£3.78  67.44+3.71
DNA 68.04£7.05 65.73£9.47 62.25+6.16 72.18+4.29 71.05£6.07  73.77+£3.62  74.80+3.77 75.09+2.73
Connect | 36.72+1.73  35.54+0.95 34.90+0.75 36.42+0.89 36.49+£1.09  37.60+1.26  37.58+1.22  38.24+1.64
Protein 42.17+0.86 40.88£1.90 41.25+2.37 40.91+1.59 40.224+1.56  41.43+1.10  42.13+£1.10 41.63+1.49
Coil20 32.29+1.04 32.77£1.15 37.52+1.22 61.04+2.05 59.57£2.53  56.28+5.46  61.22+1.65 59.86*4.16
20News | 16.27£2.14 15.74£1.94 15.04+£1.50 17.01+£0.64 16.86+0.73  16.91+1.74 15.38+£0.98  16.37+1.23

can achieve exact orthogonal solutions because it adopts a
clustering framework, and the other three methods use soft
orthogonality constraints. Our matlab codes can be found
at https://github.com/kzhang980/ORNMF.

1. Orthogonal multiplicative update (OMU-1) proposed
by (Ding et al., 2006);

2. Orthogonal multiplicative update (OMU-2) proposed
by (Choi, 2008);

3. Orthogonal NMF with additive update rules (OAUR)
proposed by (Shiga et al., 2014);

4. Orthogonal EM-based NMF (EM-ONMF) proposed
by (Pompili et al., 2014);

5. Fast Hierarchical Alternating Least Squares for Or-
thogonal NMF (HALS-ONMF) (Kimura et al., 2014);

6. Soft Orthogonal NMF with automatic relevance deter-
mination prior (SOARD) (Shiga et al., 2016).

Table 2. Benchmark datasets

Dataset Number of Number of Sample
Clusters Features Size

RCV1 4 9625 29992
Reuters 65 8293 18933
20Newsgp 20 18846 26214
Newsgp4 4 3946 1000
Webkb4 4 4190 1000
WebACE 20 2340 1000
TDT2 30 9394 36771
UCI 10 3823 64
USPS 10 7291 256
DNA 3 2000 180
Connect 3 6756 126
Protein 3 4965 357
Coil20 20 1440 1024

3.1. Clustering Tasks

We have selected altogether 13 benchmark data sets that
have been widely used in evaluating the performance of
clustering algorithms, including sparse text data, digital im-
ages, and medical data, with details listed in Table 2. We
use random initialization for all the algorithms (for GOPA
we use sparse random initialization namely each row of W
only has one non-zero entry). To reduce statistical vari-
ations, we repeat each algorithm 30 times and report the
mean and standard deviation of clustering accuracy. Re-
sults that are statistically significantly better than others
are in bold letters. Both sequential and batch-mode GOPA
methods use a updating ratio of 0.5.

As can be seen from Table 1, generally soft-constraints
based orthogonal NMF produce better clustering result-
s than those using multiplicative updates. We speculate
this might be due to the zero-locking problem that is in-
trinsic to multiplicative updates. The proposed sequential
and batch-mode GOPA methods demonstrate promising re-
sults on the majority of the data sets. Note that general-
ly the batch-mode GOPA method is almost as good as the
sequential counterpart, while on several text data sets the
batch-mode GOPA shows notable improvement in accura-
cy (RCV1, Reuters, Newsgroup4). This should be attribut-
ed to the con-current updates of the non-zero entries of a
number of rows of W. Overall, our approaches produce
the highest accuracy on 12 out of altogether 13 data sets.
This provides empirical evidence that strong orthogonality
benefits clustering.

3.2. Convergence Behaviour

In this section we further study the convergence behavior
of different algorithms. First, it is worthwhile to note that a
fair comparison of the objective function can be quite non-
trivial for orthogonal NMF problems. This is because the
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Figure 6. Convergence behaviour of different orthogonal NMF algorithms in terms of clustering accuracy. The GOPA method shows

faster convergence and better stability during the iterations.

objective value || X — WH]||? depends crucially on the s-
parsity level of solutions: a dense model (W) with more
non-zero entries can easily achieve a lower objective than a
sparse model. While in practice, different orthogonal NMF
algorithms can generate solutions whose level of orthogo-
nality, and equivalently the sparsity, vary significantly. As a
result, simply reporting the objective values does not faith-
fully mirror their performance and behaviours.

Given this consideration, we will adopt the clustering accu-
racy as a more informative metric for examination. In Fig-
ure 6, we report the clustering accuracy versus the number
of iterations for different algorithms on a few representa-
tive benchmark data sets. We can observe that sequential
GOPA converges very fast, typically in less than 30 itera-
tions, while other methods may take one to two hundreds
steps. Note that the objective value of GOPA is not the
lowest, however, its clustering performance is significantly
better than others. Therefore, the superior performance of
GOPA can only be attributed to its strictly orthogonal so-
lution. In comparison, all other competing algorithms of
orthogonal NMF (except the clustering-based formulation
(Pompili et al., 2014)) can only achieve partial orthogonal-
ity. This clearly demonstrates the importance of enforc-
ing useful structural constraints in obtaining good cluster-
ing performance. Our results provide strong evidence that
strict orthogonality can be more desirable than approximate
one in clustering, which adds to our current understanding
of NMF in solving clustering problems.

4. Conclusion and Future Work

In this paper, we proposed a greedy pivoting algorithm to
obtain orthogonal solutions in non-negative matrix factor-
ization. Our approach promotes exact orthogonality and
can also benefit from flexible randomization and paral-
lelization schemes. We provide solid empirical evidence
that strict orthogonality in NMF improves the clustering
performance on a wide collection of benchmark data sets.

There are a number of interesting directions currently be-
ing pursued. For example, we are interested in a rigorous
theoretic analysis of the convergence rate of the sequential
GOPA method, and probabilistic error bounds that can be
used to quantify the behaviour of batch-mode GOPA. We
are also studying new ways of decomposing the orthogonal
NMF problem to improve optimality of solutions. Final-
ly, we will study how to adaptively relax the orthogonality
constraints (and so the sparsity of solutions) to solve pat-
tern mining problems more robustly.
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