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Supplemental Materials

The supplementary material is organized as follows. First
we provide additional empirical results and discussions in
Supp. Section 1 and Supp. Section 2 respectively. Next we
present the technical proofs. Specifically, the correctness
result Theorem 1 is proved in Supp. Section 3. The instance-
wise upper bound Theorem 2 is proved in Supp. Section 4
while the Õ(

√
nm) upper bound Proposition 1 is proved in

Supp. Section 5. The lower bound Theorem 3 is proved in
Supp. Section 6. Finally, the auxiliary lemmas are in Supp.
Section 7.

1. Additional Results

Table 1. Small GWAS on chromosome 4.

dbSNP ID Original fMC Rej. at Rej. at
p-value p-value α=0.1 α=0.05

rs2242330 1.7e-6 8.0e-6
√ √

rs6826751 2.1e-6 1.6e-5
√ √

rs4862792 3.5e-5 4.0e-6
√ √

rs3775866 4.6e-5 3.6e-5
√ √

rs355477 7.9e-5 8.0e-5
√

×
rs355461 8.3e-5 8.0e-5

√
×

rs355506 8.3e-5 8.0e-6
√

×
rs355464 8.9e-5 1.3e-4

√
×

rs1497430 9.7e-5 5.2e-5
√ √

rs11946612 9.7e-5 4.8e-5
√ √

Table 2. Small GWAS on chromosome 1-3 (There is no discovery
reported on chromosomes 2-3 from the orignal paper).

dbSNP ID Chromosome Original fMC Rej. at
p-value p-value α=0.1

rs988421 1 4.9e-5 3.6e-5
√

rs1887279 1 5.7e-5 4.4e-5
√

rs2986574 1 6.3e-5 4.4e-5
√

rs3010040 1 8.0e-5 6.0e-5
√

rs2296713 1 8.0e-5 6.0e-5
√

2. Additional Discussions
2.1. Choosing the parameter for sMC

For sMC the parameter s need to be chosen a priori. A
back-of-the-envelope calculation shows that for a hypothesis
test with the ideal p-value p∞, the sMC p-value is around

p∞ ± p∞√
s

while the fMC p-value is around p∞ ±
√

p∞

n .
Suppose the BH threshold on the ideal p-values is τ∞. Since
it is desirable for the BH result on the MC p-values (sMC,
fMC) to be close to the BH result on the ideal p-values,
the accuracy of the MC p-values with corresponding ideal
p-values close to τ∞ can be thought of as the accuracy of

the entire multiple testing problem. Matching such accuracy
for sMC and fMC gives that s = τ∞n = r∞

m αn. When
n=10m and α=0.1, we have that s=r∞. That is, s should
be at least 100 if there are more than 100 discoveries on the
ideal p-values. However, since we do not know r∞ before
running the experiment, a larger value is preferred. It is
noted that values s=30-120 are recommended in a recent
work (Thulin et al., 2014).

2.2. Comparison to bandit FDR

In the bandit FDR setting (Jamieson & Jain, 2018), each
arm has a parameter µi with µi = µ0 for null arms and
µi > µ0 + ∆ for alternative arms, for some µ0 and ∆ > 0
given before the experiment. For arm i, i.i.d. observations
are available that are bounded and have expected value µi.
The goal is to select a subset of arms and the selected set
should control FDR while achieving a certain level of power.

Both bandit FDR and AMT aim to select a subset of “good
arms” as defined by comparing the arm parameters to a
threshold. In bandit FDR this threshold is given as µ0. In
AMT, however, this is the BH threshold that is not known
ahead of time and needs to be learned from the observed
data. The two frameworks also differ in the error crite-
rion. Bandit FDR considers FDR and power for the selected
set, a novel criterion in MAB literature. AMT, on the other
hand, adopts the traditional PAC-learning criterion of re-
covering the fMC discoveries with high probability. These
distinctions lead to different algorithms: bandit FDR uses
an algorithm similar to thresholding MAB (Locatelli et al.,
2016) but with carefully designed confidence bounds to
control FDR; AMT devises a new LUCB (lower and upper
confidence bound) algorithm that adaptively estimates two
things simultaneously: the BH threshold and how each arm
compares to the threshold.

2.3. Future works

We have shown that AMT improves the computational effi-
ciency of the fMC workflow, i.e., applying BH on the fMC
p-values. A direct extension is to the workflow of applying
the Storey-BH procedure (Storey et al., 2004) on the fMC
p-values. In addition, in many cases, especially in genetic re-
search, additional covariate information is available for each
null hypothesis, e.g., functional annotations of the SNPs in
GWAS, where a covariate-dependent rejection threshold can
be used to increase testing power (Xia et al., 2017; Zhang
et al., 2018). Extending AMT to such cases would allow both
efficient computation of MC p-values and increased power
via covariate-adaptive thresholding. Last but not least, MC
sampling is an important building block in some modern
multiple testing approaches like the model-X knockoff (Can-
des et al., 2018) or the conditional permutation test (Berrett
et al., 2018), where ideas in the present paper may be used
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to improve the computational efficiency.

3. Proof of Theorem 1
Proof. (Proof of Theorem 1) To show (9), it suffices to show
that conditional on any set of fMC p-values {P fMC

i } = {pi},

P
(
RAMT = RfMC

∣∣∣{P fMC
i } = {pi}

)
≥ 1− δ. (13)

Let E denote the event that all CBs hold. Since the number
of CBs is at most 2mL and each of them holds with proba-
bility at least 1− δ

2mL conditional on the fMC p-values, by
union bound,

P
(
E
∣∣∣{P fMC

i } = {pi}
)
≥ 1− δ.

Next we show that E impliesRAMT = RfMC, which further
gives (13). Let T be the total number of rounds, which
is finite since at most mn MC samples will be computed.
For any round t, let “(t)” represent the corresponding val-
ues before the MC sampling of the round, e.g., r̂(t), τ̂(t),
Cg(t), Cl(t), U(t). Also, let (T + 1) represent the values at
termination. For any t ∈ [T + 1],

1. if r̂(t) > r∗, by (5) more than m− r̂(t) fMC p-values
are greater than τ̂(t) whereas |Cg(t)| = m−r̂(t). Thus,
there is at least one hypothesis that has fMC p-value
greater than τ̂(t) and is not in Cg(t). On E , it cannot
be in Cl(t). Hence, it is in U(t), giving that U(t) 6= ∅.
Thus, t 6= T + 1 and the algorithm will not terminate.

2. if r̂(t) = r∗, there are m − r∗ hypotheses in Cg(t)
corresponding to those with fMC p-values greater than
τ∗. Other hypotheses all have fMC p-values less than
τ∗ and hence, on E , will not enter Cg after further
sampling. Therefore, r̂(t) will not further decrease.

Therefore, r̂(T + 1) = r∗. Since U(T + 1) = ∅, on E ,
Cl(T + 1) contains all hypotheses with fMC p-values less
than τ∗, i.e., Cl(T + 1) = RfMC. Hence, we have shown
(13).

Next we prove FDR control. Let FDP(RfMC) and
FDR(RfMC) denote the false discovery proportion and
FDR of the set RfMC, respectively. It is noted that
FDR(RfMC) = E[FDP(RfMC)]. Let E1 denote the event
thatRAMT = RfMC and Ec1 be the complement of E1. Then
P(Ec1) ≤ δ due to (9) that we have just proved. For AMT,

FDR(RAMT) = E[FDP(RAMT)] (14)
= E[FDP(RAMT)|E1]P(E1) + E[FDP(RAMT)|Ec1 ]P(Ec1).

(15)

The first term of (15)

E[FDP(RAMT)|E1]P(E1) = E[FDP(RfMC)|E1]P(E1)

≤ E[FDP(RfMC)] = FDR(RfMC) ≤ π0α,

where the last inequality is because the fMC p-values are
stochastically greater than the uniform distribution under the
null hypothesis, and hence, applying BH on them controls
FDR at level π0α.

The second term of (15) is upper bounded by δ as FDP is
always no greater than 1. Therefore,

FDR(RAMT) ≤ π0α+ δ.

4. Proof of Theorem 2
Proof. (Proof of Theorem 2) The entire analysis is condi-
tional on the fMC p-values {P fMC

i } = {pi}. Without loss
of generality assume p1 ≤ p2 ≤ · · · ≤ pm. Let T be the
total number of rounds, which is finite since at most mn
MC samples will be computed. For any round t, let “(t)”
represent the corresponding values before the MC sampling
of the round. Note that “(T + 1)” represent the values at
termination. The quantities useful to the analysis include

1. Ni(t): number of MC samples for arm i.

2. plb
i (t), pub

i (t): lower and upper CBs for arm i.

3. Empirical mean p̂i(t) = 1
Ni(t)

(
1 ∨

∑Ni(t)
j=1 Bi,j

)
.

4. Cg(t), Cl(t), U(t): hypothesis sets as defined in (6).

5. r̂(t), τ̂(t): critical rank estimate and the corresponding
BH threshold estimate.

Let E denote the event that all CBs hold. Since the number
of CBs is at most 2mL and each of them holds with proba-
bility at least 1− δ

2mL conditional on the fMC p-values, by
union bound,

P
(
E
∣∣∣{P fMC

i } = {pi}
)
≥ 1− δ.

Conditional on E , when the algorithm terminates, U(T +
1) = ∅. There are m− r∗ hypotheses in Cg(T + 1) and r∗

hypotheses in Cl(T + 1). We next upper the number of MC
samples for hypotheses in these two sets separately.

Step 1. Hypotheses in Cg(T + 1). On E , there are m− r∗
hypotheses in Cg(T + 1). For any i ∈ [m− r∗], let gi be the
ith hypothesis entering Cg. For two hypotheses entering Cg
in the same round, the one is considered entering earlier if
it has a larger upper CB pub before the MC sampling in the
entering round.

Consider any gi that enters after MC sampling in round ti
and let gj be the first hypothesis entering Cg in the same
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round. Here, we note that ti = tj and the number of MC
samples Ngi(T + 1) = Ngj (T + 1). In addition,

Ngj (T + 1) = Ngj (tj + 1) ≤ (1 + γ)Ngj (tj), (16)

since the batch sizes is a geometric sequence with ratio γ.
Now we focus on Ngj (tj).

Since gj is sampled in round tj , we have that gj /∈ Cg(tj).
This indicates that in round tj , the lower CB of gj should
be no greater than the estimated threshold τ̂(tj) before MC
sampling; otherwise gj would have entered Cg before round
tj . Hence,

plb
gj (tj) ≤ τ̂(tj). (17)

Also, being the first to enter Cg in round tj , its upper CB is
the largest among all elements in U(tj), i.e.,

pub
gj (tj) = max

k∈U(tj)
pub
k (tj). (18)

Subtracting (17) from (18) to have the width of the confi-
dence interval

pub
gj (tj)− plb

gj (tj) ≥ max
k∈U(tj)

pub
k (tj)− τ̂(tj)

≥ max
k∈U(tj)

pk − τ̂(tj),
(19)

where the last inequality is conditional on E . Since
|Cg(tj)| = j − 1, we have that maxk∈U(tj) pk ≥ pm−j+1.
Therefore (19) can be further written as

pub
gj (tj)− plb

gj (tj) ≥ pm−j+1 − τ̂(tj) = ∆m−j+1. (20)

Since the CBs satisfy (7), equations (17) and (20) can be
rewritten as

p̂gj (tj)−

√
c
(

δ
2mL

)
p̂gj (tj)

Tgj (tj)
≤ τ̂(tj),

2

√
c
(

δ
2mL

)
p̂gj (tj)

Tgj (tj)
≥ ∆m−j+1.

(21)

Note that τ̂(tj) = m−j+1
m α. By Lemma 1,

Ngj (tj) ≤
4c
(

δ
2mL

) (
m−j+1
m α+

∆m−j+1

2

)
∆2
m−j+1

(22)

≤
4c
(

δ
2mL

)
pm−j+1

∆2
m−j+1

. (23)

Since i ≥ j, we have thatm−j+1 ≥ m− i+1. Therefore.

E[Ngi(T + 1)|E ] ≤ (1 + γ)E[Ngi(ti)|E ]

≤ (1 + γ)
4c
(

δ
2mL

)
pm−j+1

∆2
m−j+1

≤ max
k≥m−i+1

4(1 + γ)c
(

δ
2mL

)
pk

∆2
k

.

(24)

Step 2. Hypotheses in Cl(T+1). On E , Cl(T+1) = RfMC

and τ̂(T + 1) = τ∗. Consider any hypothesis i ∈ Cl(T + 1)
whose fMC p-value is pi ≤ τ∗. It will be sampled until its
upper CB is no greater than τ∗. Let its last sample round be
ti. Then,

pub
gi(ti) > τ∗, pub

gi(ti + 1) ≤ τ∗, plb
gi(ti) ≤ pi. (25)

Subtracting the third term from the first term yields

pub
gi(ti)− p

lb
gi(ti) > ∆i. (26)

Since the CBs satisfy (7), the second term in (25) along with
(26) can be rewritten as

p̂i(ti + 1) +

√
c
(

δ
2mL

)
p̂i(ti + 1)

Ni(ti + 1)
≤ τ∗,

2

√
c
(

δ
2mL

)
p̂i(ti)

Ni(ti)
> ∆i.

(27)

Note that Ni(ti + 1) ≤ (1 + γ)Ni(ti) and p̂i(ti + 1) ≥
1

1+γ p̂i(ti), (27) can be further written as

p̂i(ti) +

√
c
(

δ
2mL

)
p̂i(ti)

Ni(ti)
≤ (1 + γ)τ∗

2

√
c
(

δ
2mL

)
p̂i(ti)

Ni(ti)
> ∆i.

(28)

Furthermore,

Ni(ti) ≤
4(1 + γ)c

(
δ

2mL

)
τ∗

∆2
i

. (29)

and the number of MC samples for hypothesis i

E[Ni(T + 1)|E ] ≤ (1 + γ)E[Ni(ti)|E ]

≤
4(1 + γ)2c

(
δ

2mL

)
τ∗

∆2
i

.
(30)

Step 3. Combine the result. Finally, noting that a hypoth-
esis can be at most sampled n times, the total expected MC
samples

E[N ] ≤ E

[
m∑
i=1

Ni(T + 1)
∣∣∣E]+ δmn (31)

≤
r∗∑
i=1

n ∧

(
4(1 + γ)2c

(
δ

2mL

)
τ∗

∆2
i

)
(32)

m∑
i=r∗+1

n ∧

(
max
k≥i

4(1 + γ)c
(

δ
2mL

)
pk

∆2
k

)
+ δmn.

(33)
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5. Proof of Proposition 1
Proof. (Proof of Proposition 1) First let us consider the case
where f(p) is continuous and monotonically decreasing.
The case where f(p) = 1 is easy and is dealt with at the
end.

Step 0. Notations. Since this proof is an asymptotic analy-
sis, we use subscript “n,m” to denote the quantities for
the fMC p-values with n MC samples and m hypothe-
ses. We are interested in the regime where m→∞ while
n = Ω(m).

For an instance with m hypotheses and n MC samples for
each hypothesis, let τ̃n,m be the BH threshold and F̃n,m be
the empirical distribution of the fMC p-values F̃n,m(x) =
1
m

∑m
i=1 I{P fMC

i ≤ x}. Also let f̃n,m be the probability
mass function f̃n,m(x) = 1

m

∑m
i=1 I{P fMC

i = x}.

For the distribution of the ideal p-values F , define g(x) =
x − F (x)α and let τ∗ = sup[0,1]{τ : g(τ) ≤ 0}. τ∗ is
actually the BH threshold in the limiting case, as will be
shown in Step 2 below. There are a few properties we
would like to point out. By definition g(τ∗) = 0. As a re-
sult, F (τ∗) = τ∗

α . Since f(p) is monotonically decreasing,
f(τ∗) < F (τ∗)

τ∗ = 1
α . Furthermore, g′(τ∗) = 1−f(τ∗)α >

0.

Step 1. F̃n,m converges uniformly to F . Let Fn be the
distribution of the fMC p-values with n MC samples. Then
Fn converges uniformly to F . Furthermore, by Glivenko-
Cantelli theorem F̃n,m converges uniformly to Fn. There-
fore, F̃n,m converges uniformly to F .

Step 2. τ̃n,m converges in probability to τ∗. For an in-
stance with m hypotheses and n MC samples for each hy-
pothesis, let g̃n,m(x) = x − F̃n,m(x)α. Then τ̃n,m =

sup[0,1]{τ : g̃n,m(τ) ≤ 0}. Since F̃n,m converges uni-
formly to F , g̃n,m converges uniformly to g. Since g′(τ∗) >
0 and is continuous at τ∗, ∃ε0 > 0 such that g(x) is mono-
tonically increasing on [τ∗ − ε0, τ∗ + ε0]. Since g̃n,m con-
verges uniformly to g on this interval, for any 0 < ε′ < ε,
P(|τ̃n,m − τ∗| > ε′)→ 0. Thus, τ̃n,m

p→ τ∗.

Step 3. Upper bound E[N ]. Let δ = 1
mn and let c̃ denote

any log factor (in both m and n) in general. Then for the
fMC p-values with n MC samples and m hypotheses, by
Theorem 1, and omitting additive constants,

E[N ] ≤ c̃E

[
r∗∑
i=1

n ∧ τ̃n,m
∆2

(i)

+

m∑
i=r∗+1

n ∧max
k≥i

P fMC
(k)

∆2
(k)

]

≤ c̃E

[
r∗∑
i=1

n ∧ 1

∆2
(i)

+

m∑
i=r∗+1

n ∧max
k≥i

1

∆2
(k)

]
.

(34)

Notice that F̃n,m(P fMC
(k) ) ≥ k

m where the inequality is be-

cause there might be several hypotheses with the same value.
Therefore for any P fMC

(k) > τ̃n,m,

1

∆2
(k)

=
1(

P fMC
(k) −

k
mα
)2

≤ 1(
P fMC

(k) − F̃n,m(P fMC
(k) )α

)2 =
1

g̃n,m(P fMC
(k) )2

.

Hence, summing over all possible values of the em-
pirical distribution of the fMC p-values, i.e., P fMC =

1
n+1 ,

2
n+1 , · · · , 1 (note the definition of the fMC p-values

in (4)), to further write (34) as

E[N ] ≤

c̃mE

b(n+1)τ̃n,mc∑
i=1

n ∧ 1(
i

n+1 − τ̃n,m
)2

 f̃n,m

(
i

n+ 1

)

+

n+1∑
i=d(n+1)τ̃n,me

(
n ∧max

k≥i

1

g̃n,m( k
n+1 )2

)
f̃n,m

(
i

n+ 1

) .
(35)

Since f(x) is continuous, g′(x) is also continuous. Recall
that g′(τ∗) > 0. Hence, ∃ε, c0 > 0 such that ∀x ∈ [τ∗ −
ε, 1], g′(x) > c0. Recall that g̃m,n converges uniformly to
g and τ̃n,m

p→ τ∗. Note that by definition g̃n,m(τ̃n,m) = 0.
Therefore, ∃c1 > 0 such that for large enough n,m, for any
k ≥ d(n+ 1)τ̃n,me,

g̃n,m

(
k

n+ 1

)
= g̃n,m

(
k

n+ 1

)
− g̃n,m(τ̃n,m) (36)

≥ c1
(

k

n+ 1
− τ̃n,m

)
. (37)

Hence, (35) can be further rewritten as

E[N ] ≤

c̃mE

b(n+1)τ̃n,mc∑
i=1

n ∧ 1(
i

n+1 − τ̃n,m
)2

 f̃n,m

(
i

n+ 1

)

+

n+1∑
i=d(n+1)τ̃n,me

n ∧ 1

c21

(
i

n+1 − τ̃n,m
)2

 f̃n,m

(
i

n+ 1

)
≤ c̃

c21
mE

[
n+1∑
i=1

n ∧ 1

( in − τ̃n,m)2
f̃n,m

(
i

n+ 1

)]

=
c̃

c21
mE

[
n ∧ 1

(P fMC
i − τ̃n,m)2

]
.
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Since Fn converges uniformly to F and τ̃n,m
p→ τ∗, by

Slutsky’s theorem and the continuous mapping theorem, the
RHS will converge to

c̃

c21
mE

[
n ∧ 1

(P∞i − τ∗)2

]
. (38)

Last we evaluation the expectation:

E
[
n ∧ 1

(P∞i − τ∗)2

]
=

∫ τ∗− 1√
n

0

1

(p− τ∗)2
dF (p)

+

∫ τ∗+ 1√
n

τ∗− 1√
n

ndF (p) +

∫ 1

τ∗+ 1√
n

1

(p− τ∗)2
dF (p).

By noting that f(τ∗) < 1
α and f(p) is monotonically de-

creasing it is clear that all three terms are Õ(
√
n), which

concludes the proof of this case.

When f(p) = 1, the limiting BH threshold τ∗ = 0. Further-
more, g(x) = (1− α)x and g′(x) = 1− α > 0. Therefore,
g( k
n+1 ) ≥ (1− α)( k

n+1 − τ̃n,m). Then, similarly we have
the total number of MC samples

E[N ] ≤ c̃

(1− α)2
mE

[
n ∧ 1

(P fMC
i − τ̃n,m)2

]
, (39)

which converges to

c̃

(1− α)2
mE

[
n ∧ 1

(P∞i )2

]
(40)

that is Õ(
√
nm).

6. Proof of Theorem 3
Proof. (Proof of Theorem 3) Let Fn be the distribution
of the fMC p-values with n MC samples. By Lemma 2,
conditional on the fMC p-values {P fMC

i } = {pi}, ∃δ0 > 0,
c0 > 0, c1 > 0, s.t. ∀δ < δ0, a δ-correct algorithm satisfies

E
[
N
∣∣∣{P fMC

i } = {pi}
]
≥ c0n

m∑
i=1

I{τ∗ < pi ≤ τ∗ +
c1√
n
}.

(41)

Taking expectation with respect to the fMC p-values to have

E [N ] ≥ c0nmP
[
τ∗ < P fMC

i ≤ τ∗ +
c1√
n

]
. (42)

Since the null fMC p-values follow a uniform distribution,

E [N ] ≥ c0π0nm
c1√
n

= c0c1π0

√
nm, (43)

which completes the proof.

7. Auxiliary Lemmas
Lemma 1. For c > 0, p̂ > 0, ∆ > 0, τ > 0, if

p̂−
√
cp̂

n
≤ τ, 2

√
cp̂

n
≥ ∆, (44)

then

n ≤
4c(τ + ∆

2 )

∆2
. (45)

Proof. (Proof of Lemma 1) Rearranging the first inequality
in (44) and taking square of both sides to have

p̂2 − 2τ p̂+ τ2 ≤ cp̂

n
.

This further gives that

p̂ ≤ τ +
c

2n
+

√
c

n
τ +

c2

4n2
.

Combining the above with the second inequality in (44) to
have

∆2

4c
n ≤ p̂ ≤ τ +

c

2n
+

√
c

n
τ +

c2

4n2
,

which can be rearranged as

∆2

4c
n− τ − c

2n
≤
√
c

n
τ +

c2

4n2
.

Taking square of both sides and cancel the repeated terms
to have (

∆2

4c
n

)2

− ∆2τ

2c
n+ τ2 − ∆2

4
≤ 0,

which is equivalent to(
∆2

4c
n− τ

)2

≤ ∆2

4
.

Taking square root of both sides and we completed the
proof.

Lemma 2. Given the fMC p-values {P fMC
i } = {pi} with

BH threshold τ∗, ∃δ0 ∈ (0, 0.5), c0 > 0, c1 > 0, s.t.
∀δ < δ0, a δ-correct algorithm satisfies

E
[
N
∣∣∣{P fMC

i } = {pi}
]
≥ c0n

m∑
i=1

I{τ∗ < pi ≤ τ∗ +
c1√
n
}.

Proof. (Proof of Lemma 2) Consider any δ-correct algo-
rithm and let us denote the true (unknown) fMC p-values
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by {qi}. For any null hypothesis l with fMC p-value
τ∗ < pl ≤ τ∗ + c1√

n
, consider the following settings:

H0 : qi = pi, for i ∈ [m], (46)
Hl : ql = τ∗, qi = pi, for i 6= l. (47)

The δ-correct algorithm should accept the lth null hypothesis
under H0 and reject it under Hl, both with probability at
least 1− δ. For x ∈ {0, l}, we use Ex and Px to denote the
expectation and probability, respectively, conditional on the
fMC p-values {P fMC

i } = {qi}, under the algorithm being
considered and under settingHx. LetNl be the total number
of MC samples computed for null hypothesis l. In order
to show Lemma 2, it suffices to show that E0[Nl] ≥ c0n.
We prove by contradiction that if E0[Nl] < c0n and if the
algorithm is correct under H0 with probability at least 0.5,
the probability that it makes a mistake under Hl is bounded
away from 0.

Notations. Let Sl,t to be the number of ones when t MC
samples are collected for the lth null hypothesis. We also
let Sl be the number of ones when all Nl MC samples are
collected. Let k0 = (n + 1)pl − 1 and kl = (n + 1)τ∗ −
1. Given Nl, Sl follows hypergeometric distribution with
parameters (Nl, k0, n) and (Nl, kl, n) under H0 and Hl,
respectively. Let ∆k = k0 − kl. We note that

∆k = (n+ 1)(pl − τ∗) ∈ (0,
c1(n+ 1)√

n
]. (48)

Define key events. Let c0 = 1/8 and define the event

Al = {Nl ≤ 0.5n}. (49)

Then by Markov’s inequality, P0(Al) ≥ 3
4 .

Let Bl be the event that the lth null hypothesis is accepted.
Then P0(Bl) ≥ 1− δ > 1/2.

Let Cl be the event defined by

Cl =

{
max

1≤t≤0.5n
|Sl,t − tk0/n| < 2

√
n

}
. (50)

By Lemma 3 P0(Cl) ≥ 7/8.

Finally, define the event Sl by Sl = Al ∩ Bl ∩ Cl. Then
P0(Sl) > 1/8.

Lower bound the likelihood ratio. We let W be the
history of the process (the sequence of null hypotheses cho-
sen to sample at each round, and the sequence of observed
MC samples) until the algorithm terminates. We define the
likelihood function Ll by letting

Ll(w) = Pl(W = w), (51)

for every possible history w. Note that this function can be
used to define a random variable Ll(W ).

Given the history up to round t − 1, the null hypotheses
to sample at round t has the same probability distribution
under either setting H0 and Hl; similarly, the MC sample
at round t has the same probability setting, under either hy-
pothesis, except for the lth null hypothesis. For this reason,
the likelihood ratio

Ll(W )

L0(W )
=

(
kl
Sl

)(
n−kl
Nl−Sl

)(
k0
Sl

)(
n−k0
Nl−Sl

)
=

Sl−1∏
r=0

kl − r
k0 − r

Nl−Sl−1∏
r=0

n− kl − r
n− k0 − r

=

Sl−1∏
r=0

(
1− ∆k

k0 − r

)Nl−Sl−1∏
r=0

(
1 +

∆k

n− k0 − r

)
(52)

Next we show that on the event Sl, the likelihood ratio is
bounded away from 0.

If Sl ≤ 100
√
n, then the likelihood ratio

Ll(W )

L0(W )
≥
(

1− ∆k

k0 − Sl

)Sl

≥
(

1− c2√
n

)100
√
n

> c3,

(53)

for some constants c2 > 0, c3 > 0.

If Sl > 100
√
n, further write (52) as

Ll(W )

L0(W )
=

Sl−1∏
r=0

{[
1−

(
∆k

k0 − r

)2
](

1 +
∆k

k0 − r

)−1
}

Nl−Sl−1∏
r=0

(
1 +

∆k

n− k0 − r

)
.

(54)

Since Sl > 100
√
n, on Cl, Nl−Sl

Sl
> 1. Note that if a ≥ 1,

then the mapping x 7→ (1+x)a is convex for x > −1. Thus,
(1 + x)a ≥ 1 + ax, which implies that for any 0 ≤ r ≤ k0,(

1 +
∆k

Nl−Sl

Sl
(k0 − r)

)Nl−Sl
Sl Cl
≥
(

1 +
∆k

k0 − r

)
. (55)

Then, (54) can be further written as

Ll(W )

L0(W )

(55)
≥

Sl−1∏
r=0

[
1−

(
∆k

k0 − r

)2
]

Sl−1∏
r=0

(
1 +

∆k

Nl−Sl

Sl
(k0 − r)

)−Nl−Sl
Sl

Nl−Sl−1∏
r=0

(
1 +

∆k

n− k0 − r

)
.

(56)
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Note that the 2nd term is no less than
Nl−Sl−1∏
r=0

(
1 +

∆k

Nl−Sl

Sl
k0 − r

)−1

. (57)

Eq. (56) can be further written as

Ll(W )

L0(W )
≥
Sl−1∏
r=0

[
1−

(
∆k

k0 − r

)2
]

Nl−Sl−1∏
r=0

(1 +
∆k

Nl−Sl

Sl
k0 − r

)−1(
1 +

∆k

n− k0 − r

)
(58)

Next we show that both terms in (58) are bounded away
from 0.

First term in (58)

Sl−1∏
r=0

[
1−

(
∆k

k0 − r

)2
]
≥

[
1−

(
∆k

k0 − Sl

)2
]Sl

(59)

Al,Cl
≥

(
1− c4

n

)n
≥ c5 > 0, (60)

for some constants c4 > 0, c5 > 0.

Second term in (55)

Nl−Sl−1∏
r=0

(1 +
∆k

Nl−Sl

Sl
k0 − r

)−1(
1 +

∆k

n− k0 − r

)
=

Nl−Sl−1∏
r=0

1 +

∆k

n−k0−r −
∆k

Nl−Sl
Sl

k0−r

1 + ∆k
Nl−Sl

Sl
k0−r



=

Nl−Sl−1∏
r=0

1 +
∆k

Nl

Sl

(
k0 − Sl

Nl
n
)

(
1 + ∆k

Nl−Sl
Sl

k0−r

)
(n− k0 − r)(Nl−Sl

Sl
k0 − r)


Al,Cl,Sl>100

√
n

≥
(

1− c6
Nl
√
n

)Nl

≥ c7,

(61)

for some constants c4 > 0, c5 > 0.

Hence ∃c8 > 0, such that on Sl the likelihood ratio

Ll(W )

L0(W )
≥ c8 > 0. (62)

Therefore, the probability of making an error under Hl

Pl(error) ≥ Pl(Sl) = El[I{Sl}]

= E0

[
I{Sl}

Ll(W )

L0(W )

]
≥ c8P0(Sl) ≥

c8
8
.

(63)

Hence, there does not exist a δ-correct algorithm for any
δ ≤ c8

8 , completing the proof.

Lemma 3. Let X1, · · · , Xn be random variables sampled
without replacement from the set {x1, · · · , xN}, where n ≤
N and xi ∈ {0, 1}. Let µ = 1

N

∑N
i=1 xi and for k ∈ [N ],

let Sk =
∑k
i=1Xi. Then for any θ > 0,

P
(

max
1≤k≤n

|Sk − µk| ≥
√
nθ

)
≤ 1

θ
. (64)

This is a direct consequence of Corollary 1.2 in the paper
(Serfling, 1974).


