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A. Proof of Theorem 1
Theorem 1. The surrogate ηL(θ) is a lower bound of the objective function ηH(θ), i.e., ηL(θ) < ηH(θ), where
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p (T g) = Ep
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e) | θ
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(1)
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Z
p(τ g) (1− p(τ g)) (3)

Z is the normalization factor for q(τ g). Hw
p (T g) is the weighted entropy (Guiaşu, 1971; Kelbert et al., 2017), where the

weight is the accumulated reward
∑T

t=1 r(St, G
e) in our case.

Proof.
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= Hw
p (T g) (9)

= ηH(θ) (10)

In the inequality, we use the property log x < x− 1.
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B. Proof of Theorem 2
Theorem 2. Let the probability density function of goals in the replay buffer be

p(τ g),where p(τ g
i ) ∈ (0, 1) and

N∑
i=1

p(τ g
i ) = 1. (11)

Let the proposal probability density function be defined as

q(τ g
i ) =

1

Z
p(τ g

i ) (1− p(τ g
i )) , where

N∑
i=1

q(τ g
i ) = 1. (12)

Then, the proposal goal distribution has an equal or higher entropy

Hq(T g)−Hp(T g) ≥ 0. (13)

Proof. For clarity, we define the notations in this proof as pi = p(τ g
i ) and qi = q(τ g

i ).

Note that the definition of Entropy is
Hp =

∑
i

−pi log(pi), (14)

where the ith summand is pi log(pi), which is a concave function. Since the goal distribution has a finite support I , we have
the real-valued vector (p1, . . . , pN ) and ( 1

Z q1, . . . ,
1
Z qN ).

We use Karamata’s inequality (Kadelburg et al., 2005), which states that if the vector (p1, . . . , pN ) majorizes
( 1
Z q1, . . . ,

1
Z qN ) then the summation of the concave transformation of the first vector is smaller than the concave transfor-

mation of the second vector.

In our case, the concave transformation is the weighted information at the ith position -pi log(pi), where the weight is
the probability pi (entropy is the expectation of information). Therefore, the proof of the theorem is also a proof of the
majorizing property of p over q (Petrov).

We denote the proposal goal distribution as

qi = f(pi) =
1

Z
pi(1− pi). (15)

Note that in our case, the partition function Z is a constant.

Majorizing has three requirements (Marshall et al., 1979).

The first requirement is that both vectors must sum up to one. This requirement is already met because∑
i

pi =
∑
i

qi = 1. (16)

The second requirement is that monotonicity exits. Without loss of generality, we assume the probabilities are sorted:

p1 ≥ p2 ≥ . . . ≥ pN (17)

Thus, if i > j then

f(pi)− f(pj) =
1

Z
pi(1− pi)−

1

Z
pj(1− pj) (18)

=
1

Z
[(pi − pj)− (pi + pj)(pi − pj)] (19)

=
1

Z
(pi − pj)(1− pi − pj) (20)

≥ 0. (21)



Maximum Entropy-Regularized Multi-Goal Reinforcement Learning (Appendix)

which means that if the original goal probabilities are sorted, the transformed goal probabilities are also sorted,

f(p1) ≥ f(p2) ≥ . . . ≥ f(pN ). (22)

The third requirement is that for an arbitrary cutoff index k, there is

p1 + . . . pk < q1 + . . .+ qk. (23)

To prove this, we have

p1 + . . .+ pk =
p1 + . . .+ pk

1
(24)

=
p1 + . . .+ pk
p1 + . . .+ pN

(25)

≥ f(p1) + ...+ f(pk) (26)

=
1

Z
[p1(1− p1) + ...+ pk(1− pk)] (27)

=
1

Z
[p1 + . . .+ pk − (p21 + . . .+ p2k)] (28)

Note that, we multiply Z ∗ 1 to each side of

Z = p1(1− p1) + . . .+ pN (1− pN ). (29)

Then we have
(p1 + . . .+ pk)Z ∗ 1 ≥ p1 + . . .+ pk − (p21 + . . .+ p2k) ∗ 1. (30)

Now, we substitute the expression of Z and then have

(p1 + . . .+ pk)[p1(1− p1) + . . .+ pN (1− pN )] ≥ [p1 + . . .+ pk − (p21 + . . .+ p2k)] ∗ 1. (31)

We express 1 as a series of terms
∑

i pi, we have

(p1+. . .+pk)[p1(1−p1)+. . .+pN (1−pN )] ≥ [p1+. . .+pk−(p21+. . .+p2k)]∗[(p1+. . .+pk)+(pk+1+. . . pN )]. (32)

We use the distributive law to the right side and have

(p1 + . . .+ pk)[p1(1− p1) + . . .+ pN (1− pN )]

≥[p1 + . . .+ pk] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )]− [(p21 + . . .+ p2k)] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )].
(33)

We move the first term on the right side to the left and use the distributive law then have

(p1 + . . .+ pk)[−1 ∗ (p21 + . . .+ p2N ))] ≥ −[(p21 + . . .+ p2k)] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )]. (34)

We use the distributive law again on the right side and move the first term to the left and use the distributive law then have

(p1 + . . .+ pk)[−1 ∗ (p2k+1 + . . .+ p2N ))] ≥ −[(p21 + . . .+ p2k)] ∗ [(pk+1 + . . . pN )]. (35)

We remove the minus sign then have

(p1 + . . .+ pk)[(p2k+1 + . . .+ p2N ))] ≤ [(p21 + . . .+ p2k)] ∗ [(pk+1 + . . . pN )]. (36)

To prove the inequality above, it suffices to show that the inequality holds true for each associated term of the multiplication
on each side of the inequality.
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Suppose that
i ≤ k < j (37)

then we have
pi > pj . (38)

As mentioned above, the probabilities are sorted in descending order. We have

pip
2
j − p2i pj = pipj(pj − pi) < 0 (39)

then
pip

2
j < p2i pj . (40)

Therefore, we have proved that the inequality holds true for an arbitrary associated term, which also applies when they are
added up.

C. Insights
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Complementary Trajectory Density

Figure 1. Pearson correlation between the complementary density p̄(τ g) and TD-errors in the middle of training

To further understand why maximum entropy in goal space facilitates learning, we look into the TD-errors during training.
We investigate the correlation between the complementary predictive density p̄(τ g | φ) and the TD-errors of the trajectory.
The Pearson correlation coefficients, i.e., Pearson’s r (Benesty et al., 2009), between the density p̄(τ g | φ) and the TD-errors
of the trajectory are 0.63, 0.76, and 0.73, for the hand manipulation of egg, block, and pen tasks, respectively. The plot
of the Pearson correlation is shown in Figure 1. The value of Pearson’s r is between 1 and -1, where 1 is total positive
linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation. We can see that the complementary
predictive density is correlated with the TD-errors of the trajectory with an average Pearson’s r of 0.7. This proves that
the agent learns faster from a more diverse goal distribution. Under-represented goals often have higher TD-errors, and
thus are relatively more valuable to learn from. Therefore, it is helpful to maximize the goal entropy and prioritize the
under-represented goals during training.

References
Benesty, J., Chen, J., Huang, Y., and Cohen, I. Pearson correlation coefficient. In Noise reduction in speech processing, pp.

1–4. Springer, 2009.
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