Lower Bounds for Smooth Nonconvex Finite-Sum Optimization

A. Proofs of Theorems 4.2 and 4.7
A.1. Proof of Theorem 4.2

We need the following lemma to guarantee an £2(n) lower bound for finding an e-suboptimal solution when F is convex.
Lemma A.1. For any linear-span randomized first-order algorithm .4 and any L, o,n, A, e with e < A/4, there exist

functions {f;}7; : R* — Rand F = Y1 | f;/n which satisfy that {f;}?_; € V(L) F € SO and F(x©) —
infxern F(x) < A. Inorder to find X € R” such that EF(X) — infxegn F(x) g €, A needs at least Q(n) IFO calls.

Proof of Theorem 4.2. Let {U®W}7_ € O(2T — 1, (2T — 1)n, n). We choose f;(x) : R”™ — R as follows:
fi(x) = Vnfare(U%;0,T),
1 _
= Z fi(x)
i=1

We have the following properties. First, we claim that { f;(x)} € V() because of Lemma 5.1 where fr. € S c (=11,
Next, suppose that X* = argmin,, F(z), then by definition, we have that for any x* € X*, U¥x* € (X*)@, where
(X)) = argmin, fue(z; @, T). Thus, we have

- 2nT
dist?(0, X*) = _inf. lo—x*)5 = _inf, Z [U@%|2 < ”T < nT.

Finally, let y(¥ = U()x ¢ R If there exists Z C [n],|Z| > n/2 and for each i € Z, ygﬁ) =..= yg%_l = 0, then by
Proposition 3.9, we have

F‘(x) - ian‘(z)

> f D wsely™, 0, T) — inf farse(z, o, T)]

i€L
> \/n/(16T). (A.1)

With above properties, we set the final functions as f;(x) = Af;(x//3). We first consider any fixed index sequence {i; }. For
the case € < LB?/(164/n), we set \, 3,T as

BV1 BV L
A= 3/646 75 /LaT: \/> )
47’L1/461/2

Since Then by Lemma 5.2, we have that f; € V&), F € S(O1) F(0) — inf, F(z) < A. By Proposition 3.5, we know that
for any algorithm output x(*) where ¢ is less than
T L
— =8n’/By/ =, (A.2)
€

there exists Z C [n],|Z| > n—nT/(2T) = n/2 and for each i € Z, y(z) = yéi%_l = 0, where y = U®x® Thus,
x(t) satisfies that

F(xW) - inf F(z) > \V/n/(16T) > ¢

where the first inequality holds due to (A.1). Then, applying Yao’s minimax theorem, we have that for any randomized
index sequence {i; }, we have the lower bound (A.2). For the case LB?/4 > ¢ > LB?/(16/n), by Lemma A.1 we know
that there exists an 2(n) lower bound. Thus, with all above statements, we have the lower bound (4.2). O
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A.2. Proof of Theorem 4.7
Proof of Theorem 4.7. Let {UW} | € O(T + 1,(T + 1)n,n). We choose fi(x) : RT+D" — R as follows:

fi(x):=Q(UYx \/&,T+1,0)+EF(U><),

We have the following properties. First, we claim that each f; € S(—@¢v/m4+acy/n) pecause Q € SO and T' € S(—¢e),
Next, note that

Fo) == 3 )

1 — ,
=3 fe(U9xVa, T +1).
n

=1

Then we have

F(0) — inf P(x)

1 — 1 — .
f§ Vo, T+1) —inf = Ox; o, T +1
n 4 fC(07 \/av + ) 12 n P fC(U X5 \/aa + )

Zko%ﬁwningﬁm+m

¢a +10aT,

where the second equality holds due to the fact that infy >, fe(U¥x;a,T) = Y1 | infx fe(x; o, T). Finally, let
y® = U®x. If there exists Z, |Z| > n/2 and for each i € Z, y(T) = y(Tl)+1 = 0, then by Proposition 3.11, we have

IN

IVE )3 > Z IOV fe(Ux; 0, T)]|3

1€L
1n

> — 5 (a?1/4)°
= a’/?/(32n). (A3)
With above properties, we set the final functions f;(x) = \f;(x/[3). We first consider any fixed index sequence {i;}. We

seta, A\, 3, T as
. { 5na}
a=minq 1, —
cyL

- 160ne?
T Lad/2
B =+/5\/L

AL 1, Sno

~ 1760ne2 ey L J’
Then by Lemma 5.2, we have that f; € S(~%%), F(0) — inf, F(z) < A with the assumption that €2 < ALa/(1760n). By
Proposition 3.5, we know that for any algorithm output x* where ¢ is less than

T AL
L mind 1, ono | (A.4)
2 T 3520¢ oL
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there exists Z C [n],|Z| > n —nT/(2T) = n/2 and for each i, y(Tl) = y(Tl)+1 = 0 where y() = U®x®_ Thus, by (A.3),
x(*) satisfies that

IVE®) |2 > N/B-1/a%/2/(32n) > ¢

Applying Yao’s minimax theorem, we have that for any randomized index sequence {i; }, we have the lower bound (A.4),
which implies (4.4).

O

B. Proofs of Technical Lemmas
B.1. Proof of Lemma 5.1

Proof of Lemma 5.1. For any x,y € R™”, we have that

E:||Vgi(x) — Vai(y va Vng(UWx)] — V[y/ng(Uy)|3]
—Zn DTVg(UWx) — [UD]TVg(Uy)|3
—an (UDx) — Vg(UDy)|3

< p? Z [UDx —UWy|3
i=1
= 3%|x - yl3,

where the third and last equality holds due to the fact that U [U®]T =T and UM[UW]T = 0 for each i # j, and the
inequality holds due to the fact that g € S(=¢:¢). Thus, we have {g;}?_, € V(9. To prove G € SE/V™C) we have

2 @ (y® (y) = &
V2G(x Z U U)Tvlgux) - \/ﬁI,
where the inequality holds due to the assumption that g € S (&8), With this fact and [|[VG(x) — VG(y) |3 < Ei||Vgs(x) —
V3 (y)|I3 < 8%||x — y||3 which implies that V2G(x) < SI, we conclude that G' € SE&/V™5),
B.2. Proof of Lemma 5.2

Proof of Lemma 5.2. First we have {g;}™_, € V*/#"'L") because for any x,y € R<,

EilVgi(x) — Vai(y)ll3 = NEi||Vgi(x/8)/8 — Vgi(y/B)/5ll3
< NI x/B -y /Bl
=(\/B*- L')?Ix—yll5-

Next we have g; € S/B*¢" /8% because V2g;(x) = A/B2V2g;(x/3) and for any x € R,
N B €T 2N/ BV gi(x/B) 2 A/B* - (L
Next we have G(0) — infx G(x) < AA’ because
G(0) — inf G(x) = \G(0) — Ainf G(x) < \A'.

Finally we have dist(0, (Z')*) < 3B’ because (Z')* = 3 - Z*. O
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B.3. Proof of Lemma 5.3

Proof of Lemma 5.3. Suppose the initial point x(°) = 0. Consider the following function { fiy,, fi : R* — R, where

fi(x) = —v/n(x,el) + @

e is the i-th coordinate vector. We have that { f;}7, € V1) and the global minimizer of F is

1 <
*_72:(1)
X = e .

\/ﬁizl

Thus we have dist(0,x*) = 1 and F(0) — inf, F(x) = 1/2. Moreover, if point x satisfies that [supp{x}| < n/2, then

F(X) _ ”XH% _ i zn:<x7e(i)> _ ”X”% _ i Z <x,e(i)> > _1/47
2 \/ﬁ =1 2 \/ﬁ i€supp{x}
which implies
F(x) —inf F(x) > 1/4. (B.1)

Next we choose f; = Afi(x/3), where A = 2A, B = \/2A /L, then we can check that { f;}7, € VF), F(0)—inf, F(x) <
A, F e SEL) ¢ §@L) Moreover, since V f;(x) = —\y/ne® /3 + \x /32, then for some x, i is in the support set
of x only if f; has been called. Thus, if less than n/2 IFO calls have been made, then current point x satisfies that
|[supp{x}| < n/2. With (B.1), we have that F'(x) — inf, F(z) > A/4 > €. O

B.4. Proof of Lemma A.1

Proof of Lemma A.1. Suppose the initial point x(?) = 0. Consider the following function { f;}?,, f; : R — R, where

2
11Xll2

ot
®
Il
|
5
»
m/\
4

e(® is the i-th coordinate vector. Then by the proof of Lemma 5.3, we know that { fiyr_, € v, dist(0,%*) = 1 where X*
is the global minimizer of F' and for any x satisfying |supp{x}| < n/2,

F(x) —inf F(x) > 1/4. (B.2)

Next we choose f; = Afi(x/f3), where \ = LB?, 3 = B, then we can check that { f;}7_, € V%), dist(0,x*) = B where
x* is the global minimizer of F, F' € S(“1) < S(O1), Moreover, since V f;(x) = —\y/ne(? /3 + \x /32, then for some
X, i is in the support set of x only if f; has been called. Thus, if less than n/2 IFO calls have been made, then current point
x satisfies that |[supp{x}| < n/2. With (B.1), we have that F(x) — inf, F'(z) > A\/4 > e. O



