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Abstract

Smooth finite-sum optimization has been widely
studied in both convex and nonconvex settings.
However, existing lower bounds for finite-sum op-
timization are mostly limited to the setting where
each component function is (strongly) convex,
while the lower bounds for nonconvex finite-sum
optimization remain largely unsolved. In this pa-
per, we study the lower bounds for smooth non-
convex finite-sum optimization, where the objec-
tive function is the average of n nonconvex com-
ponent functions. We prove tight lower bounds
for the complexity of finding e-suboptimal point
and e-approximate stationary point in different set-
tings, for a wide regime of the smallest eigenvalue
of the Hessian of the objective function (or each
component function). Given our lower bounds,
we can show that existing algorithms including
KatyushaX (Allen-Zhu, 2018), Natasha (Allen-
Zhu, 2017b) and StagewiseKatyusha (Chen &
Yang, 2018) have achieved optimal Incremental
First-order Oracle (IFO) complexity (i.e., number
of IFO calls) up to logarithm factors for noncon-
vex finite-sum optimization. We also point out po-
tential ways to further improve these complexity
results, in terms of making stronger assumptions
or by a different convergence analysis.

1. Introduction

We consider minimizing the following unconstrained finite-
sum optimization problem:

min F(x) = %Zfi(x), (1.1)
i=1

x€R?

where each f;(x) : R™ — R is smooth and nonconvex
function. We are interested in the algorithmic performance
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of first-order algorithms for solving (1.1), which have ac-
cesses to the Incremental First-order Oracle (IFO) (Agarwal
& Bottou, 2015) defined as follows:

Given x and ¢ € [n], an IFO returns [f;(x), V f;(x)].

In this paper, we consider the very general setting where
F(x) is of (I, L)-smoothness (Allen-Zhu, 2017b), i.e., there
exist some constant [ € R and L > 0, such that for any
x,y € R%,

Lk =yl < PG~ Fly) ~ (VE(y),x ~ )

< glleyllé, (1.2)
where [ € R ! is the lower smoothness parameter, and L > 0
is the upper smoothness parameter. Note that conventional
L-smoothness definition is a special case of (1.2), where | =
—L. (1.2) is quite general, because with different choice of
I, (1.1) and (1.2) together can cover various kinds of smooth
finite-sum optimization problems. For example, when [ > 0,
F(x) is convex function, and F'(x) is o-strongly convex
if | = ¢ > 0. Such a sum-of-nonconvex optimization
problem (convex functions that are average of nonconvex
ones) was originally identified in Shalev-Shwartz (2015),
and appears in various machine learning problems such
as the shift-and-inverse procedure for principal component
analsyis (PCA) (Garber et al., 2016; Allen-Zhu & Li, 2016).
In specific, in order to calculate the leading eigenvector
of A = 1/n)"7 , a;a, the shift-and-inverse procedure
minimizes F(x) = 1/nY ., fi(x), where fi(x) =1/2-
x " (uI —a;a )x +b'x, u > 0such that uI = A, and b
is a vector. It can be seen that F'(x) is convex because its
Hessian I — A is positive definite, but some f;(x)’s can be
nonconvex since their Hessian yI — a;a; can be negative
definite. With [ > 0, our goal is to find an e-suboptimal
solution X (Woodworth & Srebro, 2016) to (1.1), which
satisfies

EF(X) — inf F(x) < e. (1.3)

On the other hand, when [ = —o < 0, F(x) is nonconvex,

"'We allow  to be nonnegative, which covers the definitions of
convex and strongly convex functions.
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and it is called o-almost convex (Carmon et al., 2018) 2. It
is known that finding an e-suboptimal solution in such non-
convex setting is NP-hard (Murty & Kabadi, 1987). Thus,
our goal is instead to find an e-approximate stationary point
X of F(x) for general nonconvex case, which is defined as
follows

E[VFX)|2 < e (1.4)
There is a vast literature on finding either (1.3) or (1.4)
for (1.1), such as SDCA without Duality (Shalev-Shwartz,
2016), Natasha (Allen-Zhu, 2017b), KatyushaX (Allen-Zhu,
2018), RapGrad (Lan & Yang, 2018), StagewiseKatyusha
(Chen & Yang, 2018), RepeatSVRG (Agarwal et al., 2017;
Carmon et al., 2018), to mention a few. In specific, this
line of work can be divided into two categories based on
the smoothness assumption over { f;(x)};. The first cat-
egory of work (Shalev-Shwartz, 2016; Allen-Zhu, 2017b;
2018; Agarwal et al., 2017; Carmon et al., 2018) makes
the assumption that each individual component function
fi(x) is L-smooth and F'(x) is (I,L) smooth. Under
such an assumption, when F'(x) is convex or o-strongly
convex, SDCA without Duality and KatyushaX can find
the e-suboptimal solution within O(n + n3/4\/L/¢) or
O(n + n?/*\/L/clog(1/€)) IFO calls respectively. When
F(x) is o-almost convex, Natasha and RepeatSVRG can
find the e-approximate stationary point with O((n>/*v/a LA
v/nL)/€?) IFO calls.

The second category of work Allen-Zhu (2017b; 2018); Lan
& Yang (2018); Chen & Yang (2018) assumes that each
fi(x) is (—o, L)-smooth *. With such an assumption, Rap-
Grad and StagewiseKatyusha find e-approximate stationary
point with O((no + vVnoL)/e?) IFO calls.

Given the above IFO complexity results, a natural research
question is:

Are these upper bounds of IFO complexity already optimal?

We answer this question in an affirmative way by proving
lower bounds on the IFO complexity for a wide regime of
l, using carefully constructed functions. More specifically,
our contributions are summarized as follows:

1. For the case that F'(x) is convex or o-strongly con-
vex (a.k.a., sum-of-nonconvex optimization), we show
that without the L-smoothness assumption on each
component function f;(x), the lower bound of IFO
complexity for any linear-span first-order randomized
algorithms (See Definition 3.3) to find e-suboptimal
solution is Q(n + n®/4\/L/o log(1/€)) when F is o-
strongly convex, and Q(n+4n3/%\/L/e) when F(x) is

™t is also known as o-weakly convex (Chen & Yang, 2018) or

o-bounded nonconvex Allen-Zhu (2017b).)
3In fact, Allen-Zhu (2017b; 2018) fall into both categories.

convex, where L is the average smoothness parameter
on {fi(x)}"_; (See Definition 3.2). That is in con-
trast to the lower bounds Q(n + n'/2\/L/o log(1/¢))
and Q(n 4+ n'/2,/L/e) proved by Woodworth & Sre-
bro (2016) when each component function f;(x) is
L-smooth.

2. For the case that F'(x) is o-almost convex, we show
that the lower bound of IFO complexity for any
linear-span first-order randomized algorithms to find
e-approximate stationary point is Q(1/€2(n®/*\/Lo A
v/nL)) when {f;(x)}*, is L-average smooth, and
Q(1/e2(vVnLo A L)) when each fi(x) is (—o, L)-
smooth. To our best knowledge, this is the first lower
bound result which precisely characterizes the depen-
dency on the lower smoothness parameter for finding
approximate stationary point.

3. We show that many existing algorithms includ-
ing SDCA without Duality (Shalev-Shwartz, 2016),
Natasha (Allen-Zhu, 2017b), KatyushaX (Allen-
Zhu, 2018), RapGrad (Lan & Yang, 2018), Stage-
wiseKatyusha (Chen & Yang, 2018) and RepeatSVRG
(Agarwal et al., 2017; Carmon et al., 2018) have indeed
achieved optimal IFO complexity for a large regime of
the lower smoothness parameter, with slight modifica-
tion of their original convergence analyses.

Notation We use a(x) = O(b(z)) if a(z) < Cb(x), where
C is a universal constant. We use 6() to hide polyno-
mial logarithm terms. For any vector v € R™, we use
v; to denote the i-th coordinate of v, and ||v||> to denote
its 2-norm. For any vector sequence {v(¥}7_,, we use
v(? to denote the i-th vector. We say a matrix sequence
{U@}n_ € O(a,b,n) where for each i, U® € R**? if
UOUO)T =Tand UD(UU)T = 0 forany 1 < i #
j < n. For any sets A, B C R?, we define the distance
between them as dist(A, B) = infac 4 bep ||a — b||2. For
any A C R9, we denote by Lin{ A} the linear space spanned
by a € A. In the rest of this paper, we use F'(x), f;(x) and
F, f; interchangeably when there is no confusion.

2. Additional Related Work

In this section, we review additional related work that is not
discussed in the introduction section.

Existing lower bounds for nonconvex optimization: To
the best of our knowledge, the only existing lower bounds
for nonconvex optimization are proved in Carmon et al.
(2017a;b); Fang et al. (2018). Carmon et al. (2017a;b)
proved the lower bounds for both deterministic and random-
ized algorithms on nonconvex optimization with high-order
smoothness assumption. However, they did not consider the
finite-sum structure which will bring additional dependency
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on the lower-smoothness parameter [ and the number of
component functions n. Fang et al. (2018) proved a lower
bound for nonconvex finite-sum optimization under con-
ventional smoothness assumption, i.e., [ = — L. Our work
extends this line of research, and proves matching lower
bounds for nonconvex finite-sum optimization under the
refined ({, L)-smooth assumption.

Existing upper bounds for first-order convex optimiza-
tion: There existing a bunch of work focusing on establish-
ing upper complexity bounds to find e-suboptimal solution
for convex finite-sum optimization problems. It is well
known that by treating F'(x) as a whole part, gradient de-
scent can achieve O(n.L/¢) IFO complexity for convex func-
tions and O(nL/clog(1/€)) for o-strongly convex func-
tions, and accelerated gradient descent (AGD) (Nesterov,
1983) can achieve O(n+/L/€) IFO complexity for convex
functions and O(n+/L/o log(1/e)) for o-strongly convex
functions. Both IFO complexities achieved by AGD are opti-
mal when n = 1 (Nesterov, 1983). By using variance reduc-
tion technique (Roux et al., 2012; Johnson & Zhang, 2013;
Xiao & Zhang, 2014; Defazio et al., 2014; Mairal, 2015;
Bietti & Mairal, 2017), the IFO complexity can be improved
tobe O((n+ L/o)log(1/e)) for strongly convex functions.
By combining variance reduction and Nesterov’s accelera-
tion techniques (Nesterov, 1983), the IFO complexity can
be further reduced to O(nlog(1/€) + y/nL/e) for convex
functions, and O((n + /nL/c)log(1/e€)) for o-strongly
convex functions (Allen-Zhu, 2017a), which matches the
lower bounds up to a logarithm factor.

Existing lower bounds for first-order convex optimiza-
tion: For deterministic optimization algorithms, it has been
proved that one needs §2(1/L/¢€) IFO calls for convex func-
tions, and Q2(1/L/c log(1/¢)) IFO calls for o-strongly con-
vex functions to find an e-suboptimal solution. There is a
line of work (Woodworth & Srebro, 2016; Lan & Zhou;
Agarwal & Bottou, 2015; Arjevani & Shamir, 2016) estab-
lishing the lower bounds for first-order algorithms to find
e-suboptimal solution to the convex finite-sum optimiza-
tion. More specifically, Agarwal & Bottou (2015) proved a
lower bound Q(n + /nL/clog(1/¢)) for strongly convex
finite-sum optimization problems, which is valid for deter-
ministic algorithms. Arjevani & Shamir (2016) provided a
dimension-free lower bound Q(n + \/nL/o log(1/e€)) for
first-order algorithms with the assumption that any new it-
erate generated by the algorithm lies in the linear span of
gradients and iterates up to the current iteration. Lan &
Zhou proved a lower bound Q(n + /L/colog(1/e€)) for
a class of randomized first-order algorithms where each
component function will be selected by fixed probabili-
ties. Woodworth & Srebro (2016) proved a set of lower
bounds including Q(n + /L/¢) for convex functions and

Q(n + y/L/olog(1/e)) for o-strongly convex functions.

Besides, Woodworth & Srebro (2016)’s results do not need
the assumption that the new iterate lies in the span of all the
iterates up to the iteration, which is a more general result.

For more details on the upper bound and lower bound results,
please refer to Tables 1 and 2.

3. Preliminaries

We first present the formal definitions of (I, L)-smoothness
and average smoothness, which will be used throughout the
proof.

Definition 3.1. For any differentiable function f : R™ —
R, we say f is (I, L)-smooth for some [ € Rand L € R™
if for any x,y € R™, it holds that

Lx—yIB < 760~ 7y) ~ (VI () x )

L
< Zx—y|3
< Sl =yl

We denote such a function class by S“%). In particular, we
say f is L-smooth if f € (11,

Note that if f is twice differentiable, then f € S(-L) if and
only if IT < V2f(x) < LI for any x € R™.

Definition 3.2. For any differentiable functions {f;}7; :
R™ — R, we say {f;}I", is L-average smooth for some
L > 0if E;||Vfi(x) — Vfi(y)l|3 < L?||x — y]||3 for any
x,y € R™, where E; X (i) = 1/n- Y., X(i) for any
ra(nd)om variable X (7). We denote such a function class by
V&),

It is worth noting that if { f;} satisfy that for each i, f; €
SLL) then {f;} € V1),

In this work, we focus on the linear-span randomized first-
order algorithm, which is defined as follows:

Definition 3.3. Given an initial point x(9), a linear-span
randomized first-order algorithm A is defined as a measur-
able mapping from functions { f; }?*_; to an infinite sequence
of point and index pairs {(x(*),4;)}2°, with random vari-
able 7; € [n], which satisfies

xtD e Lin{x@ ... x® Vi, (x©),..., V], (x")}.

It can be easily checked that most first-order primal finite-
sum optimization algorithms, such as SAG (Roux et al.,
2012), SVRG (Johnson & Zhang, 2013), SAGA (Defazio
et al., 2014) and Katyusha (Allen-Zhu, 2017a), KatyushaX
(Allen-Zhu, 2018), are linear-span randomized first-order
algorithms.

In this work, we prove the lower bounds by constructing
adversarial functions which are “hard enough” for any linear-
span randomized first-order algorithms. To demonstrate
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Table 1. IFO Complexity comparison with the assumption that {f;};—, is average L-smooth and F is (I, L)-smooth. Here A =
F(x©) —inf,cpa F(x) and B = dist(x(?), X*), where X* = argmin, za F/(x). When [ = & or 0, the goal is to find an e-suboptimal

solution; and when ! = —o < 0, the goal is to find an e-approximate stationary point.
o>0 (07 L) (O7L) (_07 L)

3/4 /L A L (A (,,3/4

Upper Bounds O((n+n / \/;) log e> O(”+n3/4B\/;) O(&(n**oL A+/nL))

(Allen-Zhu, 2018) (Allen-Zhu, 2018)  (Allen-Zhu, 2017b; Fang et al., 2018)

: A

Lower Bounds (7 F ng’/4\/glog 2) Qn+ n3/4B\/§) Q(2(**VoL Ay/nL))

(Theorem 4.1) (Theorem 4.2) (Theorem 4.5)

Table 2. IFO Complexity comparison with the assumption that each f; is (I, L)-smooth. Here A = F(x?) — inf, cpa F(x) and
B = dist(x(?), X*) where X* = argmin, _zs F(x). When [ = o or 0, the goal is to find an e-suboptimal solution; and when
Il = —o < 0, the goal is to find an e-approximate stationary point.

oc>0 (o,L) (0,L) (=o,L)
nL A n N(A N/
Upper Bounds O((n+ o) log O(n+ By/"%) O(&(no +vVnoL) Av/nL))
(Allen-Zhu, 2017a) (Allen-Zhu, 2017a) (Lan & Yang, 2018; Fang et al., 2018)
nL A nL A
Lower Bounds Q(n+ 4/ log ) Q(n+ By/™E) Q(5(VnoL A L))
(Woodworth & Srebro, 2016) (Woodworth & Srebro, 2016) (Theorem 4.7)

the construction of adversarial functions, we first introduce
the following quadratic function class, which comes from
Nesterov (2013).

Definition 3.4. Let Q(x;£,m, () : R™ — R be:

Q(x;¢,m, ()

= g(xl — 1)+

m—1

(e =0 + 5 ()
t=1

N |

In our construction, we need the following two important
properties of Q(x; &, m, ().

Proposition 3.5. For any 0 < &, < 1and m > 1, the
following properties hold:

L Q(x;¢,m,() € SO,

2. Suppose that U € R™*4 satisfying UUT = I. Sup-
pose that U = [u®,..u™]T. Then for any X satis-
fying Ux € Lin{u™, ..., u(®}, and any differentiable
function 1 : R — R, we have V[Q(Ux;£,m, () +
S uEa®)) € Lin{fu®, ... a1,

In short, the first property of Q(x; &, m, () says that @ is a
convex function with 4-smoothness, and the second prop-
erty says that for any orthogonal matrix U, the composite

function Q(Ux; &, m, () + > i, pu(x"u®) enjoys the so-
called zero-chain property (Carmon et al., 2017a): if the
current point is X, then the information brought by an IFO
call at the current point can at most increase the dimen-
sion of linear space which X belongs to by 1, which is very
important for the proof of lower bounds.

Based on Definition 3.4, one can define the following three
function classes: fars., fac from Nesterov (2013) and f¢
from Carmon et al. (2017b). We first introduce a class of
strongly convex functions fass, which is originally defined
in Nesterov (2013).

Definition 3.6. (Nesterov, 2013) Let fars(x;a,m)
R™ — R be
Tarse(x5a,m)
2/«
Va+1

1—
= 4aQ<X;1,m,

)+ S e

For fars(x; &, m), we have the following properties.

Proposition 3.7 (Chapter 2.1.4, Nesterov (2013)). For any
0<a<lletq:=(1-+/a)/(1+ /a),itholds that

1. fase(x;a,m) € S,

2. farse(0;,m) —infyerm farse(x;a,m) < ¢2(1—¢?).
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3. For any x satisfying x,,, = 0, we have

q2m+2 .

. Q
Iarse(x3a,m) — inf arse(x50,m) > 5

Next we introduce a class of general convex functions
fare(x;m), which is also defined in Nesterov (2013).
Definition 3.8. (Nesterov, 2013) Let fa(x;m)
R?™=1 5 1be

fne(xsm) o= iQ(x; 1,2m —1,1). (3.2)

We have the following properties about far.(x;m).
Proposition 3.9 (Chapter 2.1.2, Nesterov (2013)). We have

1. fae(x;m) € SO,
2. Let X* = argmin, cga fare(x;m) be the optimal so-
lution set, we have dist?(0, X*) < 2m/3.

3. For any x which satisfies that |x,,,| = ... = |Xamm—1] =
0, we have fare(x;m) — infycrem-1 fae(x;m) >
1/(16m).

The above two function classes farsc and far. will be used
to prove the lower bounds for convex optimization. Finally
we introduce f¢, which is original proposed in Carmon et al.
(2017b), and we will use it to prove the lower bounds for
nonconvex optimization.

Definition 3.10. Let fo(x;a,m) : R™T! — R be
fe(x;a,m) : = Q(x;va,m +1,0) + al'(x),

where I'(x) : R™™! — R is defined as
G 2t —1)
I'x) := 12 ————=dt.
) ; 0 /1 1+

We have the following properties about fc.

Proposition 3.11 (Lemmas 2, 3, 4, Carmon et al. (2017b)).
Let ¢y = 360. Then for any 0 < o < 1, it holds that

1. T(x) € 8 and fe(x; a,m) € S(aerAtacy),

2. fe(0;a,m) — infycpm+r fe(x;a,m) < a/2 +
10am.

3. For x which satisfies that x,,, = x,,,4+1 = 0, we have
IV fe(x; a,m)|o > o/ /4.

4. Main Results

In this section we present our lower bound results. We
start with the sum-of-nonconvex (but convex) optimization
setting, then move on to the general nonconvex finite-sum
optimization setting.

4.1. F' is Convex — Suboptimal Solution

We first show the result when F' is o-strongly convex and
{fi}, € V) and our goal is to find an e-suboptimal
solution.

Theorem 4.1. For any linear-span randomized first-order
algorithm A and any L,o,n,A,e such that ¢ <
8ANT/453/2[,=3/2 there exist a dimension d = O(n +
n3/*\/L/olog(1/e)) and functions {f;}7, : R — R
which satisfy that {f;}7., € V), F ¢ S5 and
F(x(©) —infycpa F(x) < A. In order to find X € R?
such that EF'(X) — inf,cpa F'(x) < ¢, A needs at least

Q(n + n3/4\/flog (TLJA))
o Le

Next we show the result when F' is convex and {f;}, €
12528

.1

IFO calls.

Theorem 4.2. For any linear-span randomized first-order
algorithm A and any L, n, B, € such that ¢ < LB?/4 there
exist a dimension d = O(n + n®/*,/L/¢) and functions
{fi¥r, : R? — R which satisfy that {f;}7, € VL),
F ¢ SO and dist(x(?), X*) < B where X* =
argming s F(x). In order to find X € R? such that
EF(X) — inf,cra F(x) < €, A needs at least

| L
Q (n +n3/4B )
€
IFO calls.

Remark 4.3. Our lower bounds (4.1) and (4.2) are tight,
because they have been achieved by SDCA without Duality
(Shalev-Shwartz, 2016) for [ = ¢ and KatyushaX (Allen-
Zhu, 2018) for [ = o and [ = 0 up to a logarithm factor.

4.2)

Remark 4.4. It is interesting to compare (4.1) and (4.2)
with the corresponding lower bounds for convex finite-sum
optimization in Woodworth & Srebro (2016), which proves
Q(n + y/nL/c) lower bound for strongly convex functions
and Q(n + y/nL/¢) for convex functions, where each f;
is L-smooth. The dependence on n is 73/ in our lower
bounds when € < 1, as opposed to n'/? in Woodworth
& Srebro (2016). This gap has been observed firstly by
Shalev-Shwartz (2016) from the view of upper bounds, and
was conjectured to be caused by nonconvexity of each com-
ponent function f;. Our lower bound results suggest that
this gap is due to the L-smooth on each component function
fi and the L-average smooth on {f;}_,, and such a gap
cannot be removed.

4.2. F' is Nonconvex — Approximate Stationary Point

Next we show the lower bounds when F' is o-almost convex.
For this case our goal is to find an e-approximate stationary
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point. We first present the lower result when { f;}7_, € V(F)

Theorem 4.5. For any linear-span randomized first-order
algorithm A and any L,n,A,e with €2 < (Ao A
LAn~=1/2)/10°, there exist a dimension d = O(A/é? -
(n3/*v/oL A \/nL)) and functions {f;}7_, : R? — R
which satisfy that {f;}7., € V) F ¢ S5 and
F(x©) —inf,cpa F(x) < A. In order to find X € R?
such that E|VF(X)||2 < ¢, A needs at least

Q (2 [n*/4oL A \/ﬁL]> 4.3)

IFO calls.

Remark 4.6. Our lower bound (4.3) is tight for the follow-
ing reasons. (4.3) becomes Q(A/e? - n3/4\/oL) when o =
O(L/+/n), and such IFO complexity has been achieved by
RepeatSVRG up to a logarithm factor (Carmon et al., 2018;
Agarwal et al., 2017). For the case o = Q(L/\/n), (4.3)
becomes 2(A/e? - \/nL), and such IFO complexity has
been achieved by SPIDER (Fang et al., 2018) and SNVRG
(Zhou et al., 2018) up to a logarithm factor.

Next we show lower bounds under a slightly stronger as-
sumption that each f; € S(~%%). Our result shows that
with such a stronger assumption, the optimal dependency
on n will be smaller.

Theorem 4.7. For any linear-span randomized first-order
algorithm A and any L,n, A, e which satisfies that €2 <
(ALn=' A Ac)/103, there exist a dimension d = O(A /€2 -
(VnoL A L)) and functions {f;}™; : R¢ — R which sat-
isfy that each f; € S and F(x(?)) — infy cpa F(x) <
A. In order to find X € R¢ such that E[|[VF(X)|2 < ¢, A
needs at least

Q (? [VnoL A L]> “.4)

IFO calls.

Remark 4.8. Our lower bound (4.4) is tight for the case
o = O(L/n), where (4.4) becomes Q(A/e? - v/nol). Such
IOF complexity has been achieved by Natasha (Allen-
Zhu, 2017b), RapGrad (Lan & Yang, 2018) and Stage-
wiseKatyusha (Chen & Yang, 2018) up to a logarithm factor.
Nevertheless, for the case 0 = Q(L/n), (4.4) becomes
Q(A/e? - L), which does not match the best-known upper
bound O(A/€? - /nL) (Fang et al., 2018) by a factor of
\/n on the dependency of n. We leave it as a future work to
close this gap.

4.3. Discussion on the Average Smoothness Assumption

Careful readers may have already found that in our Theo-
rems 4.1, 4.2 and 4.5, we only assume that { f;}7_, € V1),

In other words, the above lower bound results (except The-
orem 4.7) hold for {f;}7 , that is average smooth. Nev-
ertheless, most of the upper bound results achieved by ex-
isting finite-sum optimization algorithms (i.e., SDCA with-
out Duality (Shalev-Shwartz, 2016), Natasha (Allen-Zhu,
2017b), KatyushaX (Allen-Zhu, 2018), RapGrad (Lan &
Yang, 2018), StagewiseKatyusha (Chen & Yang, 2018) and
RepeatSVRG (Agarwal et al., 2017; Carmon et al., 2018))
are proved under the assumption that f; € S(—%L) for each
i € [n], which is stronger than assuming {f;}_, € V1),
which only appears in Zhou et al. (2018) and Fang et al.
(2018). Therefore, it is important to verify that these upper
bounds results still hold under the weaker assumption that
{fi}1, that is average smooth.

To verify this, we need to rethink about the role that the
assumption f; € S(—L) for each i € [n] plays in the
convergence analyses for those algorithms. In detail, in
the convergence analyses of those nonconvex finite-sum
optimization algorithms including SDCA without Dual-
ity (Shalev-Shwartz, 2016), Natasha (Allen-Zhu, 2017b),
KatyushaX (Allen-Zhu, 2018), one needs the assumption
that f; € S5L) for each i € [n] in the following two
scenarios: First, it is used to show that F' € S(—51) which
can be derived as follows: for any x,y € R4,

IVE(x) = VEy)II3 < Ei[|Vfi(x) = Vi(¥)l3

2 2
< Lolx =yl 4.5)
Second, it is used to upper bound the variance of the semi-
stochastic gradient at each iteration, which is an unbiased
estimator of the true gradient. More specifically, let v be

v =Vfi(x) - Vfi(X) + VF(X),

where X is the global minimum of F' when F' is convex or
any snapshot of x when F' is nonconvex. Then we have

Eillv — VF(x)|3

=Ei||Vfi(x) — Vfi(X) + VE(X) — VF(x)||3
<2|E;||V fi(x) = VA5 + [VF(R) - VF(X)II%]
<2L7x — |3 (4.6)

We can see that in both scenarios, the weaker assumption
{fitl_, € V() is sufficient to make (4.5) and (4.6) hold.
Thus, we make the following informal statement, which may
be regarded as a slight improvement/modification in terms of
assumptions over existing algorithms for nonconvex finite-
sum optimization problems.

Proposition 4.9. For existing nonconvex finite-sum op-
timization algorithms including SDCA without Dual-
ity (Shalev-Shwartz, 2016), Natasha (Allen-Zhu, 2017b),
KatyushaX (Allen-Zhu, 2018), RapGrad (Lan & Yang,
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2018), StagewiseKatyusha (Chen & Yang, 2018) and Re-
peatSVRG (Agarwal et al., 2017; Carmon et al., 2018), we
can replace the smoothness assumption that f; € S(—%1)
with {f;}7, € V5, without affecting their IFO complexi-
ties.

5. Proof of Main Theorems

In this section, we provide the detailed proofs for the lower
bounds presented in Section 4. Due to space limit, we only
provide the proofs for Theorems 4.1 and 4.5, and defer the
proofs for the other theorems in the supplementary material.

5.1. Technical Lemmas

Our proofs are based on the following three technical lem-
mas, whose proofs can be found in the supplementary mate-
rial.

The first lemma provides the upper bound for the average
smoothness parameter of finite-sum functions, when each
component function is lower and upper smooth.

Lemma 5.1. Forany g : R™ — R and g € S where
0 < [¢] < ¢, suppose that {UD}2_ . € O(m, mn,n).
Then for g; : R™" — R where g;(x) := /ng(U®x), we
have that {g;}7_; € V(©). For G(x) = >, 3:(UWx)/n,
we also have G € S(&/Vm:Q),

In the proof we need to do scale transformation to the given
functions. The following lemma describes how problem
dependent quantities change with respect to scale transfor-
mation.

Lemma 5.2. Let {g;}" ,,3; : R? — R be functions sat-
isfying {g;}7, € V), 5; € S€¢). We further de-
fine G = Y., §i/n, and Z* = argmin,ps G(z). Sup-
pose that G(0) — infycpa G(x) < A’ and dist(0, Z*) <
B’.  For any N\, > 0, we define {g;}; sat-
isfying g;(x) = Agi(x/B) and G = 31, gi/n.
Let (Z')* = argmin,cga G(z). Then we have that
{gi}yr, € VA/BHLY g0 e SO/BHEABC)  q(0) —
inf,cpe G(x) < AA’ and dist(0, (Z2')*) < BB'.

We also need the following lemma to guarantee an Q(n)
lower bound for finding an e-suboptimal solution when F' is
convex.

Lemma 5.3. For any linear-span randomized first-order
algorithm A and any L, o, n, A, e with e < A /4, there exist
functions {f;}7, : R® — Rand F = ;" | fi/n which
satisfy that {f;}7_, € VI, F € S@@L) and F(x(©) —
infxerr F(x) < A. In order to find X € R™ such that
EF(X) — infxerr F(x) < €, A needs at least 2(n) IFO
calls.

We now begin our proof. Without loss of generality, we
assume that x(°) = 0, otherwise we can replace function

f(x) with f(x) = f(x —x©).

5.2. Proofs for: F'is Convex

Proof of Theorem 4.1. Let {UW}™_, € O(T,Tn,n). We
choose fi(x) : RT™ — R as follows:

fz(x) = \/ﬁfNSC(U(i)XQ «, T)7
F(x): %Zﬁ-(x).
i=1

First, we claim that { f;(x)}?_, € V) and F € S(@/v™1)
due to Lemma 5.1 where fare € S(®1, o < 1. Next, we
claim F(0) — infx F(x) < 1/v/n> " [fvse (030, T) —
infy fase(UDx;a,T)] < ¢2//n(1 — ¢?), because

F(0) — inf F(x)
_Vny )it VN (D
- ;fNSC(O,a,T) 12f o ;fNSC(U x;a,T)

= % Z[f/\[sc((); o, T) — igf Iarse(x5a,T))
i=1

q2

= V- @)

where the second equality holds due to the fact that
infx 30 fvse(UWx50,T) = SO0 infy e (x50, T).
Finally, let y() = U®x. If there exists Z C [n],|Z| >
n/2 and for each ¢ € Z, ygﬁ) = 0. Then, by Propo-
sition 3.7, for each i € Z, we have fy(y™,a,T) —
inf, fae(z, o, T) > ag®T+2 /2, which implies

F(x) — irzlfF(z)
> = 3 ey, 0. T) it fase(z. 0. 7))

i€
> ay/ng*T /2.

With the above properties, we can choose f;(x) = Af;(x/f3)
in the following proof. We first consider any fixed index
sequence {i;}. In the sequel, we consider two cases: (1)

Vno/L <1/4;and 2) \/no/L > 1/4.
Case (1): v/no/L < 1/4, weseta, A, 8, T as follows

5.1

o Vo
L
\_ _Avmad
~ - Jap

8= /ML
0)3/2 8n7/4A}

r= 5 s (7

€
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Then by Lemma 5.2, we have that {f;}7., € V) | F ¢
S@L) F(0) —inf, F(z) < A due to \/no/L < 1/4. By
Proposition 3.5, we know that for any algorithm output x(*)
where ¢ is less than

nl _ s/ /£10g g P2 gnT/AA
2 o L € ’

there exists Z C [n],|Z] > n —nT/(2T) = n/2 and for
eachi € Z, ygf) = 0, where y( = U®@x®) Thus, x®
satisfies

(5.2)

F(x®) —inf F(z) > Aayvng®T+%/2 > ¢,

where the first inequality holds due to (5.1). We now have
proved that for any fixed index sequence {i;}, the output
x(T) of a deterministic linear-span algorithm is not an e-
suboptimal solution, i.e. F'(x(T))— F* > ¢. Then, applying
Yao’s minimax theorem®, we have that for any randomized
index sequence {i; }, we have the lower bound (5.2).

Case (2): /no/L > 1/4, by Lemma 5.3 we know that
there exists an Q2(n) lower bound.

By combining Cases (1) and (2), we have the lower bound
4.1). O

5.3. Proofs for: F'is Nonconvex

Proof of Theorem 4.5. Let {UWD}_ € O(T + 1,(T +
1)n,n). We choose f;(x) : RT™ — R as follows:

fi(x) == Vnfe(U9%;0,T),

F(x) := %Zﬁ(x). (5.3)

We have the following properties. First, we claim that
{fi(x)}r_, € YA+ac) and F(x) € S(-aer/vmidtac) py
Lemma 5.1 where fo € S(—@cv4tacy) and acy < 4+ ac,.
Next, we have

F(0) — irif F(x)

< 1/VnY [ fase(030,T) = inf frre(Ux 00, 7))
i=1

< Vn(va+10aT). (5.4)

Finally, let y(¥) = U®x. If there exists Z, |Z| > n/2 and
foreachi € Z, ygf) = y(Tli_l = 0, then by Proposition 3.11,

*Yao’s minimax principle (Yao, 1977) states that the expected
cost of a randomized algorithm on the worst case input, is lower
bounded by the expected cost of the deterministic algorithm against
a worst-case probability distribution on the inputs.

we have
_ 1 , ,
IVE&)3 > = I(UD)TV[fe(UWxa,T)]|I3
n -

€T
1n
55 (a3/4/4)2

= a’/?/32.

With above properties, we choose f;(x) = Af;(x//3) in the

following proof. We first consider any fixed index sequence
{it}. Weset a, \, 8, T as

a:mm{&’ﬁ 1}

)
ey L ey

v

(5.5)

- 5e2
" La3/?

B=1/5\/L

po LA fEevm 1)
554/ne? cyL ey
Then by Lemma 5.2, we have that {f;}7., € V() F ¢
S@L) F(0) — inf, F(z) < A with the assumption that

€2 < LaA/(55y/n). By Proposition 3.5, we know that for
any algorithm output x(*) where ¢ is less than

nt _ L\/HA\/min{&T\/ﬁ,l}, (5.6)

2 110e2 ey L ey

there exists Z C [n],|Z] > n —nT/(2T) = n/2 and for
each i, y\) = ygll = 0 where y(¥ = U@x(®)_ Thus, by
(5.5), x®) satisfies

[VED)||s > A/B-1/a3/2/32 > €.

Then, applying Yao’s minimax theorem, we have that for
any randomized index sequence {i;}, we have the lower
bound (5.6), which implies (4.3). O

6. Conclusions and Future Work

In this paper we proved the lower bounds of IFO complexity
for linear-span randomized first-order algorithms to find
e-suboptimal points or e-approximate stationary points for
smooth nonconvex finite-sum optimization, where the ob-
jective function is the average of n nonconvex functions.
While our lower bound results are proved for linear-span
randomized first-order algorithms, they can be extended to
more general randomized algorithms without linear-span
assumption (Woodworth & Srebro, 2016; Carmon et al.,
2017a; Fang et al., 2018). We leave it as a future work.
On the other hand, we would like to consider more gen-
eral setting, such as F is of (¢, L)-smoothness while each
fiis (I, L)-smoothness. We are also interested in proving
lower bound results for high-order finite-sum optimization
problems (Arjevani et al.; Agarwal & Hazan, 2017).
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