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Abstract
In this paper we show that generative adversarial
networks (GANs) without restriction on the dis-
criminative function space commonly suffer from
the problem that the gradient produced by the
discriminator is uninformative to guide the gen-
erator. By contrast, Wasserstein GAN (WGAN),
where the discriminative function is restricted to
1-Lipschitz, does not suffer from such a gradi-
ent uninformativeness problem. We further show
in the paper that the model with a compact dual
form of Wasserstein distance, where the Lipschitz
condition is relaxed, may also theoretically suffer
from this issue. This implies the importance of
Lipschitz condition and motivates us to study the
general formulation of GANs with Lipschitz con-
straint, which leads to a new family of GANs that
we call Lipschitz GANs (LGANs). We show that
LGANs guarantee the existence and uniqueness
of the optimal discriminative function as well as
the existence of a unique Nash equilibrium. We
prove that LGANs are generally capable of elim-
inating the gradient uninformativeness problem.
According to our empirical analysis, LGANs are
more stable and generate consistently higher qual-
ity samples compared with WGAN.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014), as one of the most successful generative models, have
shown promising results in various challenging tasks. GANs
are popular and widely used, but they are notoriously hard to
train (Goodfellow, 2016). The underlying obstacles, though
have been heavily studied (Arjovsky & Bottou, 2017; Lucic
et al., 2017; Heusel et al., 2017; Mescheder et al., 2017;
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2018; Yadav et al., 2017), are still not fully understood.

The objective of GAN is usually defined as a distance metric
between the real distribution Pr and the generative distribu-
tion Pg, which implies that Pr = Pg is the unique global
optimum. The nonconvergence of traditional GANs has
been considered as a result of ill-behaving distance metric
(Arjovsky & Bottou, 2017), i.e., the distance between Pr
and Pg keeps constant when their supports are disjoint. Ar-
jovsky et al. (2017) accordingly suggested using the Wasser-
stein distance, which can properly measure the distance
between two distributions no matter whether their supports
are disjoint.

In this paper, we conduct a further study on the convergence
of GANs from the perspective of the informativeness of the
gradient of the optimal discriminative function f∗. We show
that for GANs that have no restriction on the discriminative
function space, e.g., the vanilla GAN and its most variants,
f∗(x) is only related to the densities of the local point x and
does not reflect any information about other points in the dis-
tributions. We demonstrate that under these circumstances,
the gradient of the optimal discriminative function with re-
spect to its input, on which the generator updates generated
samples, usually tells nothing about the real distribution. We
refer to this phenomenon as the gradient uninformativeness,
which is substantially different from the gradient vanishing
and is a fundamental cause of nonconvergence of GANs.

According to the analysis of Gulrajani et al. (2017), Wasser-
stein GAN can avoid the gradient uninformativeness prob-
lem. Meanwhile, we show in the paper that the Lipschitz
constraint in the Kantorovich-Rubinstein dual of the Wasser-
stein distance can be relaxed, leading to a new equivalent
dual; and with the new dual form, the gradient may also not
reflect any information about how to refine Pg towards Pr.
It suggests that Lipschitz condition would be a vital element
for resolving the gradient uninformativeness problem.

Motivated by the above analysis, we investigate the general
formulation of GANs with Lipschitz constraint. We show
that under a mild condition, penalizing Lipschitz constant
guarantees the existence and uniqueness of the optimal dis-
criminative function as well as the existence of the unique
Nash equilibrium between f∗ and Pg where Pr = Pg. It
leads to a new family of GANs that we call Lipschitz GANs
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Table 1: Comparison of different objectives in GANs.

φ ϕ F f∗(x)
Gradient Gradient f∗(x)

Vanishing Uninformative Uniqueness
Vanilla GAN − log(σ(−x)) − log(σ(x)) {f : Rn → R} log Pr(x)

Pg(x) Yes Yes Yes

Least-Squares GAN (x− α)2 (x− β)2 {f : Rn → R} α·Pg(x)+β·Pr(x)
Pr(x)+Pg(x) No Yes Yes

µ-Fisher GAN x −x {f : Rn → R, Ex∼µ|f(x)|2 ≤ 1} 1
Fµ(Pr,Pg)

Pr(x)−Pg(x)
µ(x) No Yes Yes

Wasserstein GAN x −x {f : Rn → R, k(f) ≤ 1} N/A No No No
Lipschitz GAN any φ and ϕ satisfying Eq. (11) {f : Rn → R}; k(f) is penalized N/A No No Yes

(LGANs). We show that LGANs are generally capable of
eliminating the gradient uninformativeness in the manner
that with the optimal discriminative function, the gradient
for each generated sample, if nonzero, will point towards
some real sample. This process continues until the Nash
equilibrium Pr = Pg is reached.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide some preliminaries that will be used in
this paper. In Section 3, we study the gradient uninforma-
tiveness issue in detail. In Section 4, we present LGANs and
their theoretical analysis. We conduct the empirical analysis
in Section 5. Finally, we discuss related work in Section 6
and conclude the paper in Section 7.

2. Preliminaries
In this section we first give some notions and then present a
general formulation for generative adversarial networks.

2.1. Notation and Notions

Given two metric spaces (X, dX) and (Y, dY ), a function
f : X → Y is said to be Lipschitz continuous if there exists
a constant k ≥ 0 such that

dY (f(x1), f(x2)) ≤ k · dX(x1, x2),∀ x1, x2 ∈ X. (1)

In this paper and in most existing GANs, the metrics dX
and dY are by default Euclidean distance which we also
denote by ‖·‖. The smallest constant k is called the (best)
Lipschitz constant of f , denoted by k(f).

The first-order Wasserstein distance W1 between two proba-
bility distributions is defined as

W1(Pr,Pg) = inf
π∈Π(Pr,Pg)

E(x,y)∼π [d(x, y)], (2)

where Π(Pr,Pg) denotes the set of all probability measures
with marginals Pr and Pg. It can be interpreted as the
minimum cost of transporting the distribution Pg to the
distribution Pr. We use π∗ to denote the optimal transport
plan, and let Sr and Sg denote the supports of Pr and Pg,
respectively. We say two distributions are disjoint if their
supports are disjoint.

The Kantorovich-Rubinstein (KR) duality (Villani, 2008)
provides a way of more efficiently computing of Wasserstein

distance. The duality states that

W1(Pr,Pg) = supf Ex∼Pr [f(x)]− Ex∼Pg [f(x)],

s.t. f(x)− f(y) ≤ d(x, y), ∀x, ∀y.
(3)

The constraint in Eq. (3) implies that f is Lipschitz continu-
ous with k(f) ≤ 1. Interestingly, we have a more compact
dual form of the Wasserstein distance. That is,

W1(Pr,Pg) = supf Ex∼Pr [f(x)]− Ex∼Pg [f(x)],

s.t. f(x)− f(y) ≤ d(x, y), ∀x ∈ Sr,∀y ∈ Sg.
(4)

The proof for this dual form is given in Appendix A.5. We
see that this new dual relaxes the Lipschitz continuity con-
dition of the dual form in Eq. (3).

2.2. Generative Adversarial Networks (GANs)

Typically, GANs can be formulated as

min
f∈F

JD , Ez∼Pz [φ(f(g(z)))] + Ex∼Pr [ϕ(f(x))],

min
g∈G

JG , Ez∼Pz [ψ(f(g(z)))],
(5)

where Pz is the source distribution of the generator in Rm
and Pr is the target (real) distribution in Rn. The genera-
tive function g : Rm → Rn learns to output samples that
share the same dimension as samples in Pr, while the dis-
criminative function f : Rn → R learns to output a score
indicating the authenticity of a given sample. Here F and
G denote discriminative and generative function spaces, re-
spectively; and φ, ϕ, ψ: R→ R are loss metrics. We denote
the implicit distribution of the generated samples by Pg .

We list the choices of F , φ and ϕ in some representative
GAN models in Table 1. In these GANs, the gradient that
the generator receives from the discriminator with respect
to (w.r.t.) a generated sample x ∈ Sg is

∇xJG(x) , ∇xψ(f(x)) = ∇f(x)ψ(f(x)) · ∇xf(x), (6)

where the first term ∇f(x)ψ(f(x)) is a step-related scalar,
and the second term ∇xf(x) is a vector with the same di-
mension as xwhich indicates the direction that the generator
should follow for optimizing the generated sample x.

We use f∗ to denote the optimal discriminative function, i.e.,
f∗, arg minf∈F JD. For further notation, we let J̊D(x) ,

Pg(x)φ(f(x)) + Pr(x)ϕ(f(x)). It has JD =
∫
J̊D(x)dx.
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2.3. The Gradient Vanishing

The gradient vanishing problem has been typically thought
as a key factor for causing the nonconvergence of GANs,
i.e., the gradient becomes zero when the discriminator is
perfectly trained.

Goodfellow et al. (2014) addressed this problem by using
an alternative objective for the generator. Actually, only the
scalar∇f(x)ψ(f(x)) is changed. The Least-Squares GAN
(Mao et al., 2016), which aims at addressing the gradient
vanishing problem, also focused on∇f(x)ψ(f(x)).

Arjovsky & Bottou (2017) provided a new perspective for
understanding the gradient vanishing. They argued that Sr
and Sg are usually disjoint and the gradient vanishing stems
from the ill-behaving of traditional distance metrics, i.e., the
distance between Pr and Pg remains constant when they are
disjoint. The Wasserstein distance was thus used (Arjovsky
et al., 2017) as an alternative metric, which can properly
measure the distance between two distributions no matter
whether they are disjoint.

3. The Gradient Uninformativeness
In this paper we pay our main attention on the gradient di-
rection of the optimal discriminative function, i.e.,∇xf∗(x),
along which the generated sample x is updated. We show
that for many distance metrics, such a gradient may fail to
bring any useful information about Pr. Consequently, Pg
is not guaranteed to converge to Pr. We name this pheno-
menon as the gradient uninformativeness and argue that it
is a fundamental factor of resulting in nonconvergence and
instability in the training of traditional GANs.

The gradient uninformativeness is substantially different
from the gradient vanishing. The gradient vanishing is about
the scalar term ∇f(x)ψ(f(x)) in ∇xJG(x) or the overall
scale of ∇xJG(x), while the gradient uninformativeness
is about the direction of ∇xJG(x), which is defined by
∇xf∗(x). The two issues are orthogonal, though they some-
times exist simultaneously. See Table 1 for a summary of
issues for representative GANs.

Next, we discuss the gradient uninformativeness in the tax-
onomy of restrictions on the discriminative function space
F . We will show that for unrestricted GANs, gradient unin-
formativeness commonly exists; for restricted GANs, such
an issue might still exist; and with Lipschitz condition, it
generally does not exist.

3.1. Unrestricted GANs

For many GAN models, there is no restriction on F . Typical
cases includef -divergence based GANs, such as the vanilla
GAN (Goodfellow et al., 2014), Least-Squares GAN (Mao
et al., 2016) and f -GAN (Nowozin et al., 2016).

In these GANs, the value of the optimal discriminative func-
tion at each point f∗(x) is independent of other points and
only reflects the local densities Pr(x) and Pg(x):

f∗(x) = arg min
f(x)∈R

Pg(x)φ(f(x)) + Pr(x)ϕ(f(x)), ∀x.

Hence, for each generated sample x which is not surrounded
by real samples (there exists ε>0 such that for all y with 0<
‖y − x‖<ε, it holds that y /∈ Sr), f∗(x) in the surrounding
of x would contain no information about Pr. Thus∇xf∗(x),
the gradient that x receives from the optimal discriminative
function, does not reflect any information about Pr.

Typical situation is that Sr and Sg are disjoint, which is
common in practice according to (Arjovsky & Bottou, 2017).
To further distinguish the gradient uninformativeness from
the gradient vanishing, we consider an ideal case: Sr and
Sg are totally overlapped and both consist of n discrete
points, but their probability masses over these points are
different. In this case, ∇xf∗(x) for each generated sample
is still uninformative, but the gradient does not vanish.

3.2. Restricted GANs: Fisher GAN as an Instance

Some GANs impose restrictions on F . Typical instances are
the Integral Probability Metric (IPM) based GANs (Mroueh
& Sercu, 2017; Mroueh et al., 2017; Bellemare et al., 2017)
and the Wasserstein GAN (Arjovsky et al., 2017). We next
show that GANs with restriction on F might also suffer
from the gradient uninformativeness.

The optimal discriminative function of µ-Fisher IPM
Fµ(Pr,Pg), the generalized objective of the Fisher GAN
(Mroueh et al., 2017), has the following form:

f∗(x) =
1

Fµ(Pr,Pg)
Pr(x)− Pg(x)

µ(x)
, (7)

where µ is a distribution whose support covers Sr and Sg,
and 1

Fµ(Pr,Pg) is a constant. It can be observed that µ-Fisher
IPM also defines f∗(x) at each point according to the local
densities and does not reflect information of other locations.
Similar as above, we can conclude that for each generated
sample that is not surrounded by real samples, ∇xf∗(x) is
uninformative.

3.3. The Wasserstein GAN

As shown by Gulrajani et al. (2017), the gradient of the
optimal discriminative function in the KR dual form of the
Wasserstein distance has the following property:

Proposition 1. Let π∗ be the optimal transport plan in
Eq. (2) and xt = tx + (1 − t)y with 0 ≤ t ≤ 1. If the
optimal discriminative function f∗ in Eq. (3) is differen-
tiable and π∗(x, x) = 0 for all x, then it holds that

P(x,y)∼π∗

[
∇xtf∗(xt) =

y − x
‖y − x‖

]
= 1. (8)
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This proposition indicates: (i) for each generated sample x,
there exists a real sample y such that ∇xtf∗(xt) = y−x

‖y−x‖
for all linear interpolations xt between x and y, i.e., the
gradient at any xt is pointing towards the real sample y;
(ii) these (x, y) pairs match the optimal coupling π∗ in the
optimal transport perspective. It implies that WGAN is able
to overcome the gradient uninformativeness as well as the
gradient vanishing.

Our concern turns to the reason why WGAN can avoid
gradient uninformativeness. To address this question, we
alternatively apply the compact dual of the Wasserstein
distance in Eq. (4) and study the optimal discriminative
function.

Since there is generally no closed-form solution for f∗ in
Eq. (4), we take an illustrative example, but the conclusion
is general. LetZ ∼ U [0, 1] be a uniform variable on interval
[0, 1], Pr be the distribution of (1, Z) in R2, and Pg be the
distribution of (0, Z) in R2. According to Eq. (4), we have
an optimal f∗ as follows

f∗(x) =

{
1, ∀x ∈ Sr;
0, ∀x ∈ Sg.

(9)

Though having the constraint “f(x) − f(y) ≤ d(x, y),
∀x ∈ Sr,∀y ∈ Sg,” the Wasserstein distance in this dual
form also only defines the values of f∗(x) on Sr and Sg . For
each generated sample xwhich is isolated or at the boundary
(there does not exist ε > 0 such that it holds y ∈ Sr ∪ Sg
for all y with 0 < ‖y − x‖ < ε), the gradient of f∗(x)
is theoretically undefined and thus cannot provide useful
information about Pr. We can consider the more extreme
case where Sg are isolated points to make it clearer.

These examples imply that Lipschitz condition would be
critical for resolving the gradient uninformativeness prob-
lem. Motivated by this, we study the general formulation of
GANs with Lipschitz constraint, which leads to a family of
more general GANs that we call Lipschitz GANs. We will
see that in Lipschitz GANs, the similarity measure between
Pr and Pg might not be some Wasserstein distance, but they
still perform very well.

4. Lipschitz GANs
Lipschitz continuity recently becomes popular in GANs.
It was observed that introducing Lipschitz continuity as a
regularization of the discriminator leads to improved stabil-
ity and sample quality (Arjovsky et al., 2017; Kodali et al.,
2017; Fedus et al., 2017; Miyato et al., 2018; Qi, 2017).

In this paper, we investigate the general formulation of
GANs with Lipschitz constraint, where the Lipschitz con-
stant of discriminative function is penalized via a quadratic
loss, to theoretically analyze the properties of such GANs.
In particular, we define the Lipschitz Generative Adversarial

Nets (LGANs) as:

min
f∈F

Ez∼Pz [φ(f(g(z)))] + Ex∼Pr [ϕ(f(x))] + λ · k(f)2,

min
g∈G

Ez∼Pz [ψ(f(g(z)))]. (10)

In this work, we further assume that the loss functions φ
and ϕ satisfy the following conditions:

φ′(x) > 0, ϕ′(x) < 0,

φ′′(x) ≥ 0, ϕ′′(x) ≥ 0,

∃ a, φ′(a) + ϕ′(a) = 0.

(11)

The assumptions for the losses φ and ϕ are very mild. Note
that in WGAN φ(x) = ϕ(−x) = x is used, which satisfies
Eq. (11). There are many other instances, such as φ(x) =
ϕ(−x) = − log(σ(−x)), φ(x) = ϕ(−x) = x +

√
x2 + 1

and φ(x) = ϕ(−x) = exp(x). Meanwhile, there also exist
losses used in GANs that do not satisfy Eq. (11), e.g., the
quadratic loss (Mao et al., 2016) and the hinge loss (Zhao
et al., 2016; Lim & Ye, 2017; Miyato et al., 2018).

To devise a loss in LGANs, it is practical to let φ be be an
increasing function with non-decreasing derivative and set
φ(x) = ϕ(−x). Moreover, the linear combinations of such
losses still satisfy Eq. (11). Figure 13 illustrates some of
these loss metrics.

Note that φ(x) = ϕ(−x) = − log(σ(−x)) is the objective
of vanilla GAN. As we have shown, the vanilla GAN suffers
from the gradient uninformativeness problem. However, as
we will show next, when imposing the Lipschitz regular-
ization, the resulting model as a specific case of LGANs
behaves very well.

4.1. Theoretical Analysis

We now present the theoretical analysis of LGANs. First,
we consider the existence and uniqueness of the optimal
discriminative function.

Theorem 1. Under Assumption (11) and if φ or ϕ is strictly
convex, the optimal discriminative function f∗ of Eq. (10)
exists and is unique.

Note that although WGAN does not satisfy the condition in
Theorem 1, its solution still exists but is not unique. Specifi-
cally, if f∗ is an optimal solution then f∗+α for any α ∈ R
is also an optimal solution. The following theorems can be
regarded as a generalization of Proposition 1 to LGANs.

Theorem 2. Assume φ′(x) > 0, ϕ′(x) < 0, and the opti-
mal discriminator f∗ exists and is smooth. We have
(a) For all x ∈ Sr ∪ Sg, if it holds that ∇f∗(x)J̊D(x) 6= 0,

then there exists y ∈ Sr ∪ Sg with y 6= x such that
|f∗(y)− f∗(x)| = k(f∗) · ‖y − x‖;

(b) For all x ∈ Sr ∪Sg−Sr ∩Sg , there exists y ∈ Sr ∪Sg
with y 6= x such that |f∗(y)−f∗(x)| = k(f∗) · ‖y−x‖;
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(c) If Sr = Sg and Pr 6= Pg, then there exists (x, y) pair
with both points in Sr∪Sg and y 6= x such that |f∗(y)−
f∗(x)| = k(f∗) · ‖y − x‖ and∇f∗(x)J̊D(x) 6= 0;

(d) There is a unique Nash equilibrium between Pg and f∗

under the objective JD + λ · k(f)2, where it holds that
Pr = Pg and k(f∗) = 0.

The proof is given in Appendix A.2. This theorem states
the basic properties of LGANs, including the existence of
unique Nash equilibrium where Pr = Pg and the existence
of bounding relationships in the optimal discriminative func-
tion (i.e., ∃y 6= x such that |f∗(y)−f∗(x)| = k(f∗)·‖y−x‖).
The former ensures that the objective is a well-defined dis-
tance metric, and the latter, as we will show next, eliminates
the gradient uninformativeness problem.

It is worth noticing that the penalty k(f) is in fact nec-
essary for Property-(c) and Property-(d). The reason is
due to the existence of the case that ∇f∗(x)J̊D(x) = 0 for
Pr(x) 6= Pg(x). Minimizing k(f) guarantees that the only
Nash equilibrium is achieved when Pr = Pg. In WGAN,
minimizing k(f) is not necessary. However, if k(f) is not
minimized towards zero, ∇xf∗(x) is not guaranteed to be
zero at the convergence state Pr = Pg where any function
subject to 1-Lipschitz constraint is an optimal f∗ in WGAN.
It implies that minimizing k(f) also benefits WGAN.

4.2. Refining the Bounding Relationship

From Theorem 2, we know that for any point x, as long
as J̊D(x) does not hold a zero gradient with respect to
f∗(x), f∗(x) must be bounded by another point y such that
|f∗(y)− f∗(x)| = k(f∗) · ‖y − x‖. We further clarify that
when there is a bounding relationship, it must involve both
real sample(s) and fake sample(s). More formally, we have

Theorem 3. Under the conditions in Theorem 2, we have

1) For any x ∈ Sg, if ∇f∗(x)J̊D(x) > 0, then there must
exist some y ∈ Sr with y 6= x such that f∗(y)−f∗(x) =
k(f∗) · ‖y − x‖ and ∇f∗(y)J̊D(y) < 0;

2) For any y ∈ Sr, if ∇f∗(y)J̊D(y) < 0, then there must
exist some x ∈ Sg with y 6= x such that f∗(y)−f∗(x) =

k(f∗) · ‖y − x‖ and ∇f∗(x)J̊D(x) > 0.

The intuition behind the above theorem is that samples from
the same distribution (e.g., the fake samples) will not bound
each other to violate the optimality of J̊D(x). So, when
there is strict bounding relationship (i.e., it involves points
that hold ∇f∗(x)J̊D(x) 6= 0), it must involve both real and
fake samples. It is worth noticing that if only it is not the
overlapping case, all fake samples hold∇f∗(x)J̊D(x) > 0,
while all real samples hold∇f∗(y)J̊D(y) < 0.

Note that there might exist a dozen real and fake samples
that bound each other. Under the Lipschitz continuity condi-
tion, the bounding relationship on the value surface of f∗ is

the basic building block that connects Pr and Pg , and each
fake sample with ∇f∗(x)J̊D(x) 6= 0 lies in at least one of
these bounded relationships. Next we will further interpret
the implication of bounding relationship and show that it
guarantees meaningful ∇xf∗(x) for all involved points.

4.3. The Implication of Bounding Relationship

Recall that the Proposition 1 states that∇xtf∗(xt) = y−x
‖y−x‖ .

We next show that it is actually a direct consequence of
bounding relationship between x and y. We formally state
it as follows:

Theorem 4. Assume function f is differentiable and its
Lipschitz constant is k, then for all x and y which satisfy
y 6= x and f(y)−f(x) = k · ‖y−x‖, we have∇xtf(xt) =
k · y−x
‖y−x‖ for all xt = tx+ (1− t)y with 0 ≤ t ≤ 1.

In other words, if two points x and y bound each other in
terms of f(y)− f(x) = k · ‖y − x‖, there is a straight line
between x and y on the value surface of f . Any point in this
line holds the maximum gradient slope k, and the gradient
direction at any point in this line is pointing towards the
x→ y direction. The proof is provided in Appendix A.4.

Combining Theorems 2 and 3, we can conclude that when
Sr and Sg are disjoint, the gradient ∇xf∗(x) for each gen-
erated sample x ∈ Sg points towards some real sample
y ∈ Sr, which guarantees that ∇xf∗(x)-based updating
would pull Pg towards Pr at every step.

In fact, Theorem 2 provides further guarantee on the conver-
gence. Property-(b) implies that for any generated sample
x ∈ Sg that does not lie in Sr, its gradient ∇xf∗(x) must
point towards some real sample y ∈ Sr. And in the fully
overlapped case, according to Property-(c), unless Pr = Pg ,
there must exist at least one pair of (x, y) in strict bound-
ing relationship and ∇xf∗(x) pulls x towards y. Finally,
Property-(d) guarantees that the only Nash equilibrium is
Pr = Pg where ∇xf∗(x) = 0 for all generated samples.

5. Empirical Analysis
In this section, we empirically study the gradient uninforma-
tiveness problem and the performance of various objectives
of Lipschitz GANs. The anonymous code is provided in the
supplemental material.

5.1. Gradient Uninformativeness in Practice

According to our analysis, ∇xf∗(x) for most traditional
GANs is uninformative. Here we investigate the practical
behaviors of the gradient uninformativeness. Note that the
behaviors of GANs without restriction on F are essentially
identical. We choose the Least-Squares GAN whose f∗ is
relatively simple as the representative and study it with a set
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(a) Disjoint Case (b) Overlapping Case (c) Mode Collapse

Figure 1: Practical behaviors of gradient uninformativeness: noisy gradient. Local greedy gradient leads to mode collapse.

of synthetic experiments which benefits the visualization.

The results are shown in Figure 1. We find that the gradient
is very random, which we believe is the typical practical
behavior of the gradient uninformativeness. Given the non-
deterministic property of f∗(x) for points out of Sr ∪ Sg,
∇xf∗(x) is highly sensitive to the hyper-parameters. We
actually conduct the same experiments with a set of different
hyper-parameters. The rest is provided in Appendix B.

In Section 3, we discussed the gradient uninformativeness
under the circumstances that the fake sample is not sur-
rounded by real samples. Actually, the problem of∇xf∗(x)
in traditional GANs is more general, which can also be
regarded as the gradient uninformativeness. For example,
in the case of Figure 1b where the real and fake samples
are both evenly distributed in the two regions with different
densities, f∗(x) is constant in each region and undefined
outside. It theoretically has zero ∇xf∗(x) for inner points
and undefined∇xf∗(x) for boundary points. They in prac-
tice also behave as noisy gradient. We note that in the
totally overlapping and continuous case, ∇xf∗(x) is also
ill-behaving, which seems to be an intrinsic cause of mode
collapse, as illustrated in Figure 1c where Pr and Pg are
both devised to be Gaussian(s).

5.2. Verifying∇xf∗(x) of LGANs

One important theoretical benefit of LGANs is that∇xf∗(x)
for each generated sample is guaranteed to point towards
some real sample. We here verify the gradient direction of
∇xf∗(x) with a set of φ and ϕ that satisfy Eq. (11).

The tested objectives include: (a) φ(x) = ϕ(−x) = x; (b)
φ(x) = ϕ(−x) = − log(σ(−x)); (c) φ(x) = ϕ(−x) =
x +
√
x2 + 1; (d) φ(x) = ϕ(−x) = exp(x). And they

are tested in two scenarios: two-dimensional toy data and
real-world high-dimensional data. In the two-dimensional
case, Pr consists of two Gaussians and Pg is fixed as one
Gaussian which is close to one of the two real Gaussians,
as illustrated in Figure 2. For the latter case, we use the
CIFAR-10 training set. To make solving f∗ feasible, we use
ten CIFAR-10 images as Pr and ten fixed noise images as

Pg. Note that we fix Pg on purpose because to verify the
direction of∇xf∗(x), learning Pg is not necessary.

The results are shown in Figures 2 and 3, respectively. In
Figure 2, we can see that the gradient of each generated
sample is pointing towards some real sample. For the high
dimensional case, visualizing the gradient direction is non-
trivial. Hence, we plot the gradient and corresponding in-
crements. In Figure 3, the leftmost in each row is a sample
x from Pg and the second is its gradient ∇xf(x). The inte-
riors are x+ ε · ∇xf(x) with increasing ε and the rightmost
is the nearest real sample y from Pr. This result visually
demonstrates that the gradient of a generated sample is to-
wards a real sample. Note that the final results of Figure 3
keep almost identical when varying the loss metric φ and ϕ
in the family of LGANs.

5.3. Stabilized Discriminative Functions

The Wasserstein distance is a very special case that has
solution under Lipschitz constraint. It is the only case where
both φ and ϕ have constant derivative. As a result, f∗

under the Wasserstein distance has a free offset, i.e., given
some f∗, f∗ + α with any α ∈ R is also an optimal. In
practice, it behaves as oscillations in f(x) during training.
The oscillations affect the practical performance of WGAN;
Karras et al. (2017) and Adler & Lunz (2018) introduced
regularization to the discriminative function to prevent f(x)
drifting during the training. By contrast, any other instance
of LGANs does not have this problem. We illustrate the
practical difference in Figure 5.

5.4. Max Gradient Penalty (MaxGP)

LGANs impose penalty on the Lipschitz constant of the dis-
criminative function. There are works that investigate differ-
ent implementations of Lipschitz continuity in GANs, such
as gradient penalty (GP) (Gulrajani et al., 2017), Lipschitz
penalty (LP) (Petzka et al., 2017) and spectral normalization
(SN) (Miyato et al., 2018). However, the existing regulariza-
tion methods do not directly penalize the Lipschitz constant.
According to (Adler & Lunz, 2018), Lipschitz constant k(f)
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(a) x (b) − log(σ(−x))

(c) x+
√
x2 + 1 (d) exp(x)

Figure 2: ∇xf∗(x) in LGANs point towards real samples. Figure 3: ∇xf∗(x) gradation with CIFAR-10.

is equivalent to the maximum scale of ‖∇xf(x)‖. Both GP
and LP penalize all gradients whose scales are larger than
the given target Lipschitz constant k0. SN directly restricts
the Lipschitz constant via normalizing the network weights
by their largest eigenvalues. However, it is currently unclear
how to effectively penalize the Lipschitz constant with SN.

To directly penalize Lipschitz constant, we approximate
k(f) in Eq. (10) with the maximum sampled gradient scale:

k(f) ' max
x

∥∥∇xf(x)
∥∥. (12)

Practically, we follow (Gulrajani et al., 2017) and sample x
as random interpolation of real and fake samples. We pro-
vide more details of this algorithm (MaxGP) in Appendix C.

According to our experiments, MaxGP in practice is usually
comparable with GP and LP. However, in some of our syn-
thetic experiments, we find that MaxGP is able to achieve
the optimal discriminative function while GP and LP fail,
e.g., the problem of solving f∗ in Figure 3. Also, in some
real data experiments, we find the training with GP or LP
diverges and it is able to converge if we switch to MaxGP,
e.g., the training with metric φ(x) = ϕ(−x) = exp(x).

5.5. Benchmark with Unsupervised Image Generation

To quantitatively compare the performance of different ob-
jectives under Lipschitz constraint, we test them with un-
supervised image generation tasks. In this part of experi-
ments, we also include the hinge loss φ(x) = ϕ(−x) =
max(0, x+ α) and quadratic loss (Mao et al., 2016), which
do not fit the assumption of strict monotonicity. For the
quadratic loss, we set φ(x) = ϕ(−x) = (x + α)2. To
make the comparison simple, we fix ψ(x) in the objective
of generator as −x. We set α = 1.0 in the experiment.

The strict monotonicity assumption of φ and ϕ is critical

in Theorem 2 to theoretically guarantee the existences of
bounding relationships for arbitrary datas. But if we further
assume Sr and Sg are limited, it is possible that there exists
a suitable λ such that all real and fake samples lie in a strict
monotone region of φ and ϕ: for the hinge loss, it would
mean 2α < k(f) · ‖y − x‖ for all y ∈ Sr and x ∈ Sg .

The results in terms of Inception Score (IS) (Salimans et al.,
2016) and Frechet Inception Distance (FID) (Heusel et al.,
2017) are presented in Table 2. For all experiments, we
adopt the network structures and hyper-parameter setting
from (Gulrajani et al., 2017), where WGAN-GP in our im-
plementation achieves IS 7.71± 0.03 and FID 18.86± 0.13
on CIFAR-10. We use MaxGP for all experiments and
search the best λ in [0.01, 0.1, 1.0, 10.0]. We use 200, 000
iterations for better convergence and use 500k samples to
evaluate IS and FID for preferable stability. We note that IS
is remarkably unstable during training and among different
initializations. By contrast, FID is fairly stable.

From Table 2, we can see that LGANs generally work better
than WGAN. Different LGANs have relatively similar final
results, while the objectives φ(x) = ϕ(−x) = exp(x) and
φ(x) = ϕ(−x) = x +

√
x2 + 1 achieve the best perfor-

mances. The hinge loss and quadratic loss with a suitable
λ turn out to also work pretty good. We plot the training
curves in terms of FID in Figures 4 and 6. Due to page
limitation, we leave more results and details in Appendix D.

6. Related Work
WGAN (Arjovsky et al., 2017) based on the KR dual does
not suffer from the gradient uninformativeness problem. We
have shown that the Lipschitz constraint in the KR dual
of the Wasserstein distance can be relaxed. With the new
dual form, the resulting model suffers from the gradient
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Table 2: Quantitative comparisons with unsupervised image generation.

Objective CIFAR-10 Tiny ImageNet
IS FID IS FID

x 7.68± 0.03 18.35± 0.12 8.66± 0.04 16.47± 0.04

exp(x) 8.03± 0.03 15.64± 0.07 8.67± 0.04 14.90± 0.07
− log(σ(−x)) 7.95± 0.04 16.47± 0.11 8.70± 0.04 15.05± 0.07

x+
√
x2 + 1 7.97± 0.03 16.03± 0.09 8.82± 0.03 15.11± 0.06

(x+ 1)2 7.97± 0.04 15.90± 0.09 8.53± 0.04 15.72± 0.11
max(0, x+ 1) 7.91± 0.04 16.52± 0.12 8.63± 0.04 15.75± 0.06

Figure 4: Training curves on CIFAR.

Figure 5: f∗(x) in LGANs is more stable. Left: WGAN. Right: LGANs. Figure 6: Training curves on Tiny.

uninformativeness problem.

We have shown that Lipschitz constraint is able to ensure
the convergence for a family of GAN objectives, which
is not limited to the Wasserstein distance. For example,
Lipschitz continuity is also introduced to the vanilla GAN
(Miyato et al., 2018; Kodali et al., 2017; Fedus et al., 2017),
achieving improvements in the quality of generated samples.
As a matter of fact, the vanilla GAN objective φ(x) =
ϕ(−x) = − log(σ(−x)) is an special case of our LGANs.
Thus our analysis explains why and how it works. (Farnia &
Tse, 2018) also provide some analysis on how f -divergence
behaviors when combined with Lipschitz. However, their
analysis is limited to the symmetric f -divergence.

Fedus et al. (2017) also argued that divergence is not the pri-
mary guide of the training of GANs. However, they thought
that the vanilla GAN with a non-saturating generator objec-
tive somehow works. According to our analysis, given the
optimal f∗, the vanilla GAN has no guarantee on its conver-
gence. Unterthiner et al. (2017) provided some arguments
on the unreliability of∇xf∗(x) in traditional GANs, which
motivates their proposal of Coulomb GAN. However, the
arguments there are not thorough. By contrast, we identify
the gradient uninformativeness problem and link it to the
restrictions on F . Moreover, we have accordingly proposed
a new solution, i.e., the Lipschitz GANs.

Some work studies the suboptimal convergence of GANs
(Mescheder et al., 2017; 2018; Arora et al., 2017; Liu et al.,
2017; Farnia & Tse, 2018), which is another important direc-
tion for theoretically understanding GANs. Despite the fact

that the behaviors of suboptimal can be different, we think
the optimal should well-behave in the first place, e.g., infor-
mative gradient and stable Nash equilibrium. Researchers
found that applying Lipschitz continuity condition to the
generator also benefits the quality of generated samples
(Zhang et al., 2018; Odena et al., 2018). And (Qi, 2017)
studied the Lipschitz condition from the perspective of loss-
sensitive with a Lipschitz data density assumption.

7. Conclusion
In this paper we have studied one fundamental cause of
failure in the training of GANs, i.e., the gradient uninforma-
tiveness issue. In particular, for generated samples which
are not surrounded by real samples, the gradients of the
optimal discriminative function ∇xf∗(x) tell nothing about
Pr. That is, in a sense, there is no guarantee that Pg will
converge to Pr. Typical case is that Pr and Pg are disjoint,
which is common in practice. The gradient uninformative-
ness is common for unrestricted GANs and also appears in
restricted GANs.

To address the nonconvergence problem caused by uninfor-
mative ∇xf∗(x), we have proposed LGANs and shown that
it makes∇xf∗(x) informative in the way that the gradient
for each generated sample points towards some real sample.
We have also shown that in LGANs, the optimal discrim-
inative function exists and is unique, and the only Nash
equilibrium is achieved when Pr = Pg where k(f∗) = 0.
Our experiments shown LGANs lead to more stable discrim-
inative functions and achieve higher sample qualities.
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