Importance of Noise in Training Neural Networks

A. Preliminaries

We first present the following proposition, which computes the explicit form of the loss function and the gradient of the loss
function with respect to a and w.

Proposition 9 (Du et al. (2017)). Let ¢ € [0, 7] be the angle between w and w*. Then, the loss function L (w, a) and the
gradient w.rt (w,a), i.e., VoL (w,a) and V,,L (w, a) have the following analytic forms.
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where g (¢) = (m — ¢) cos ¢ + sin ¢.

As can be seen, both V,, L (w, a) and V, L (w, a) depend on ¢, which is the angle between w and w*. After injecting noise,

we have

T
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As a direct result, we have

Ee, e, VoL (w + &, ar + €) # VoL (wy, ay),
E¢, e, VL (we + &yar + €) # Vo L (wy, ar)
which indicate that the perturbed gradient V, (w; + &, a; + €;), Vi, (Wi + &, ar + €;) are biased estimates of the gradient

(as we mentioned in Section 2).

For notational simplicity, we introduce an auxiliary iterate w;,; and rewrite our perturbed GD algorithm as follows.

agy1 = ap — VoL (wy + & ar + €;)
Wep1 = wp —n (I —ww]) Vo L (0 + &, ar + &)

wyy1 = Projg, (1) (Wi41) -

In the later proof, we use F; = o{(w,, a,) |7' < t}. as the sigma algebra generated by previous ¢ iterations and V' (p) =
#3-1) pP as the volume of p-dimensional ball By(p).

B. d-Dimensional Polar Coordinate and Some Important Lemmas

To calculate the expectation in our following analysis, we often need the d-dimension polar coordinate system. Specifically,
if we write a vector v under Cartesian coordinate as v = (vq, v, ..., V4), then under the polar coordinate, v can be written as
V= (’I", 91, 927 ceey 9d71)7 where

vy = rcos(6y),

v = rﬂj;ll sin(d;) cos(6;), i =2,...,d — 1,

rH?;ll sin(6;),

Va

wherer > 0,0<6; € [0,7], : =1,2,....,d — 2,041 € [0,27].
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To use polar coordinate to calculate integral, we also need the following Jacobian Matrix.

O(v1,ve,V5...,1q)
8(7', 01792, ceey 0[1_1)

=79 15in?2 0, sin? 30, - - -sinO,_o.

The following important equation is required.

VAT ()
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Osm () dx T+
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Then we have the following useful lemma here.

Lemma 10. Ler f (0) be a positive bounded function defined on [0, 7], that is there exits a constant C' > 0 such that
0< f(0) <C, V0 €[0,n]. For any € > 0 and positive integer d, define

T d 1 ™ T p27
Ad (f) S % / s / / f (91) sind72 91 SiIldi3 92 -+ -8in 9d72d91 s 'ded,h
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1 1—e 1+e
My = / rdYdr,  Lg(e) 2 / rd=ldr,  Hg(e) 2 / rd=Ldr,
0 0 0

Then we have
Aa(f)La(e) + O (ed) > Aq (f) Ma > Aa (f) Ha () — O (ed) . (10

Proof. For simplicity, we only give the proof of the left side. The proof of the right side follows similar lines.

We compute Ag (f).
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We give the lower bound on L4 (¢) — M.

Hence, we have
(La () = Mg) Aq (f) > —Cde. (11)

C. Proof for Phase I
C.1. Proof of Theorem 5

Proof. We first derive the dissipativity w.r.t @ in region

2 2 Cz C3
Acyc; = {(w,a) [-4(1Ta*)” <1Ta*1Ta—(1Ta")" < ?Ha*lli, a'a* < ?Ila*lli orlla —a* /2[5 > la*]l3, w € So (1)}

Assume (w,a) € Ac,.c;,and a'a* < %Ha*H;, we have

|2 203 |2
ool > (1= 250 ) o'
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Combining the above inequality with Eg (¢¢) > 1+ % in Lemma 12, we get

(—E¢, VoL (w+&,a+€),a" —a) = 1 (lTa — 17—(1*)2 + % (mr=1)a— (Eeg (¢e) — 1) a*)—r (a—a)

27
1 1 E -1
= o (1Ta—17a") 4 5 (r — Eeg (60)a” (0 —a) + 20 =Ly gy,
> L (r - Beg (o)) aTa + 20Ty
us 27
1 T« Beg(oe) — 1 2 Eeg(de) — 1 2
= g (r—Eeg (s aTa + 2L Ly gz BIUDTLy
Cs 9 C 2C'3 9 C C
> _ gk (1= * ~ _ _
> -+ (1222 e+ - a2 el

for some constant C3 < %.
Moreover, if (w,a) € Ac,.c, and |la — a* /2|3 > ||a*||3, we have

a' (a—a*)>0.

Following the similar lines above, we have the same results. Thus, the dissipativity w.r.t @ holds in region Ac, ¢,

Next, we derive the dissipativity w.r.t w in region

Keymm = {(w,a) | a'a* € [m, M], ww* >0y weS ()}

Assume (w,a) € K¢, m,m for some constant Cy € (—1,1] and 0 < m < M. We could write w as w = Y &_, ¢;v;,
where {v;}?_, is an orthonormal basis for R?, w* = vy, ||w|, = 1 and ¢; > C4. Without loss of generality, we assume

= (1,0,..., 0)T . We have the following equation.
(I —ww")(w* —w)=w* —w—ww v +ww w=uw" —ww w*

=(1,0,...,0)" — (2, c1ca, ...,clcp)T =1 - —cico ..., —clcp)T,

The norm of this vector is

I = ww )@ —w)], = /(1 - 32+ A(G + -+ 2)

—\/1—01 2+E(1-a)= \/l—c1

By E¢ (¢¢) < 2T in Lemma 12, we have

a’a* (m — Eegy) (1-&)

(—Ee¢ . (I—wa) VoL (w+E&a+e),w" —w) = 5 ]
™

% T ||a+€||§ Zi;&j (a; + &) (aj + ;) (cH—e)T a* sin ¢ 1 Z#j (ai +€)aj 1
+ Eee (w* —w ' w'w) + — _
2 2n or w+El o Jwtel,
= ald’ (v~ Ecde) (1—cf) +E¢ (w* — wTw*w)T (— ala’singe 1 _ Dip ity 1 > 3
2m 2 flw + €], 2w+ €,

‘We next show that

=0 (12)

):
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and

< 13
E <~ (15

for some constant C.

For (12), recall that V' (p,,) is the volume of By (p,, ). Then we have

E¢

(w* — w—rw*w)—r 13 / 1 (w* — u/—rw*w)—r xd
= :I/‘
Bo(pu) V (

||w+§||2 Puw) ||w+x||2

1 (w* — wTw*w)T T — (w* — w—'—w*w)—r w

Il
S

By (pw) V (Pw) ]l e
_ / 1 (w* — wTw*w)T xdx
By (pw) V (Pw) ll,
1 (w* — wTw*w)T x
" Jsutpu @ wTur w0 V (00) EP
+ / 1 (w* — wTw*w)T xd:c
By (pu),(w* —wTww) Ta<0 V (Pw) ll,

For any  such that (w* —w "

T . S -
w*w) x> 0, its symmetric point with respect to vector w is Z = 2w zw — x. We further
have

(w* — wTw*w)T T=(w"— wTw"kw)T Qw zw —z) = — (w* — wTw*w)T x < 0.

By this symmetric property with respect to vector w, we know

E (w* — wTw*w)—r 13 1 (w* — wTw*w)—r xd
€ = T
l[w+€ll, Bo(pw) V (Pw) lw+ z|,
T
1 (w* — wTw*w) T
B /]Ew(pw),(w*—w—rw*w)—ra:>0 Vv (pw) H$||2
T
1 w* —wlww) =z
+/ ( ) dz
]Bw(p“,),(w*—wTw*w)Tm<O Vv (pw) ||$||2

=0.

Now we prove (13). Denote that ¢, = Z(x, w*). When p,, > 1, we have
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sin ¢¢ (w* — wTw*w)T 13

3
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Thus when p,, > C A;I“ , combining (12) and (13), we have for any v > 0

_ala gSind’E (v —wTww)' e Vi we ¢ (w —wTww)" ¢ > —.
2m llw + €]l 2m lw+&l,
Then we have
1+C.
(Bee (I~ wn”) VL (w+ & at ) w —w) > "Dy ez

C.2. Proof Sketch for Theorem 6
Proof Sketch. The next lemma shows that that our initialization (wo, ao) is guaranteed to fall in a superset of Ac, ¢, -

Lemma 11. Given ag € By (Ilj/%*‘) and wy € So(1), we have for any constant C5 > 0, (wog, ag) € Ac,, where

Ac, = {(w, a) ’ —4(1Ta")? <1Ta*1Ta - (1Ta")? < %Ha*”%, w € So(1)}.

Our subsequent analysis considers two cases: Case (1) (wo, ao) € Ac,,c, and Case (2) (wp, ag) € Ac, \Ac,,c,. Specifi-
cally, we first start with Case (1), and then show the algorithm will be able to escape from A, ¢, in polynomial time and
enter Ac, \Ac, c,. Then we only need to proceed with Case (2).

Note that for A, ¢, the dissipativity holds only for the perturbed gradient with respect to a. Though the dissipativity does
not necessarily hold for w, we can show that the noise injection procedure guarantees a sufficiently accurate w for making
progress in a, as shown in the next lemma.
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Lemma 12. Suppose w,w* € $So(1) and & ~ unif(Bgy(p,)) € RP. Define ¢¢ = Z(w + &, w*) € [0,7], ¢ = Z(w,w*)
and g(¢) = (m — ¢)cos(¢) + sin(¢). When p,, > Cgp? for some constant Cs, there exists some constant Cy such that

3m

1+ % < Egg((bg) <7 and Eg¢e < 1
p

forall ¢ € [0,7].

We remark that Lemma 12 is actually the key to the convergence analysis for Phase I. It helps prove both Theorems 5 and 6.
The proof is highly non-trivial and very involved. See more details in Appendix C.4.2. Lemma 12 essentially shows that the
noise injection prevents w from being attracted to v*, and further prevents (w, a) from being attracted to the spurious local
optimum.

We then analyze Case (1), where (wo, ap) € Ac,,c,-

Lemma 13. Suppose p° = C,,kp? > 1, p2 = C,, and (wo, ag) € Ac,.c,. Forany § € (0,1), we choose step size

19y —1
n=Cg (k4p6 - max {1,plog 5})
for some constant Cg. Then with at least probability 1 — 6 /3, we have
mg < a;ra* <M, and (wﬁwa‘ru) € 'Aca\ACQ,CS (14)

Sforall t’s such that 711 <t <T = 5(77_2), where
~ 1
T11 — O(B 10g7>.
n 1)

As can be seen, after 711 iterations, the algorithm enters A, \Ac, c,. Then our following analysis will only consider Case
(2), where (wp, ag) € Ac, \Ac,,c,- We remark that although Theorem 4 no longer guarantees the dissipativity of the
perturbed gradient with respect to a, Lemma 13 can ensure the optimization error of a; within Phase I to be nonincreasing
as long as t > 71 with high probability.

We then continue to characterize the optimization error of w;. Recall that the noise injection prevents —w* from being
attracted to —w*. Thus, we can guarantee that w; is sufficiently distant from —w™ after sufficiently many iterations, as
shown in the next lemma.

Lemma 14. Suppose p° = C,kp? > 1, p° = C,, (wo, ap) € Ac,\Ac,.cy and m, < al a* < M, holds for all t’s. For
any 6 € (0,1), we choose step size

n=Cg (k4p6 - max {l,plog %})_1

Sor some constant Cg. Then with at least probability 1 — 6 /3, there exists
~ 1 1

Tig = O(E log — log 7>
U

such that wl, w* > Cy for some constant Cy € (—1,0).

Lemma 14 implies that the algorithm eventually attains K¢, m, . a, . Where the dissipativity of the perturbed gradient with
respect to w. Then we can bound the optimization error of w; by the next lemma.

Lemma 15. Suppose p0, = Cy,kp? > 1, p° = C,, (w0, a0) € Kc,.m, .m, and m, < a a* < M, holds for all t’s. For
any d € (0,1), we choose step size

19y -1
_ 4.6 . -
n= Cg(k‘ D max{l,plog 5}) .
Then with at least probability 1 — § /3, we have

¢r < 5m/12 (15)
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forall t’s such that i3 <t <T = 6(7}72), where
~ 1
T13 — O(B 10g7>.
n 1)

Lemma 15 implies that after (w;, a;) enters Kcy,ma, M, it starts to make progress towards w*. Due to the large injected
noise, however, the optimization error of w; can only attain a large optimization error. Although the optimization error of a;
is also large, (w¢, a;) can be guaranteed to escape from the spurious local optimum.

The proof of Lemmas 13-15 requires supermartingale-based analysis, which is very involved and technical. See more details
in the appendix C.4. Combining all above lemmas, we take 77 = 711 + 712 + T13, and complete the proof of Theorem 6. [
C.3. Some Important Lemmas

These lemmas give proper bounds that we will use in our later proof.
Lemma 16 (Bound on (lTa"‘)2 —1"a*1"ay). Suppose —A < 17a*1Tay — (lTa*)2 < %Ha*”ifor some constants

C1,A > 0. Forany§ € (0,1), if we choose n < C (k4p6 max{1, log %})71 , then with at least probability 1 — §, we have
T %\2 T x4 T T %\2 02 %112
—A-2(1"a")" <1'a*1'a, — (17a*)" < =|la*|3,
p
forvt <T = O (n%) and some constant Cy > C'y.

Proof. We only give the prove for the right side, and the left side follows similar lines.

We start with

E[17a*1 T ap|F] = (1 _ 77(k+2:1)> 17617 a, + n(k+ E;ﬂ.((b) -1) (lTa*)2

< (1 _ 77(k+ﬂ-—1)> 1Ta*1Tat + M (lTa*)Q.
2T 2

—t
Denote G; = (1 - "(k;iifl)) (1Ta*1Tat - (1Ta*)2). Thus, we have

E[Gi+1]F] < Gy

Denote & = {Vr <t,17a*1"a, — (1Ta*)2 < %Ha*”%} C F:. We have
E[Gis1ls, | Fi] < Gilg, < Gilg, .
Thus, G;1s, , is a supermartingale with initial value Gy.
We have the following bound.
di £ |G, , —E[Gils, ,|Fil|
_ (1_77<k+w—1>>‘t,7|_m—1

Eg (¢€t—1) -9 <¢§t—1) (lTa*)2

1TCL*1T€,¢_1 +

2 2 2
_ —t _ 1T*2
S<1_77(k+7r 1)) n((kﬂ ko7 e, (L107)
21 2 2

=(1-MN""M,
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T \2
where A = W and M = (Wr”;ﬂl)kp‘ﬂl—ra* + (1;)> Denote 7; = /> '_, d2. Then Azuma’s Inequality

can be applied, and we have

O (1)r2log (L O (1)r2log (

_ 1 ~

P <thlgt1 — Gy >0 (1)1 log? ()) =exp | — ( ) =exp | — ((no) ) =0 (n*0).
’I](S 221 1 z 222 1 z

Therefore, with at least probability 1 — O (1%5) , we have

~ 1
Glg, , < Go+ O (1) rlog'/? (776) .

We next prove that conditioning on &;_1, we have &; with at least probability 1 — O (772(5). Thus, &r holds with at least
probability 1 — §, when T" = 0] (n%)

From Gilg,_, < Go + O ()7, logl/2 (n5> we know

~ 1
17a*17a; — (1Ta*)2 <(1-)" <1Ta*1—ra0 - (lTa*)2 + 0 (1) r¢log!/? (5>>
n

<1Ta*1Tag — (1Ta*)2 +0(1) (1 =X rlog'/? <1) .

no
We have
(16)
2
k+m—1 170" 2
_ Lkpa\lTa*H— ( ) ™ )
21 2 k+m—1
By carefully choosing fjmax = O (lepﬁ> and let np = W we have
108 5
2
Ciy wy2  ~ L (k+7—1 (17a*) 27
lT*lTilT*2:7* O (1) log!/2 [ = P k.1 e
w170 - (170) = e+ O o (1) (T kg e+ B ) 2T
Cg .
<*H I3-
O

Lemma 17 (Bound on a; a*). Suppose %Ha*”é <aga* < My Ee, ,g(¢) >1+ % and
C
—A-2 (lTa*)2 <1'a*17a, — (lTa*)2 < —3||a*||§
p

holds for vVt <T = 0] (%2) and some positive constants M,,C1,Cy > Cs. If we take n < C (k4p6 max{1,log %})71 ,
then with at least probability 1 — 0, we have

C 2
p4\|a H2<ata <A+ M, + <1+> lla ||§+2(1Ta*)

forVt <T = 19) (%) and some positive constants Cy, Cs.
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Proof. We only give the proof for the left side, the right side follows similar lines.

Ela], 0" |F,] = (1 _ ’7(”1)) ofar+ TEI@) =D o2 0 (A7) ~17a"17a,)

2T 2T 2T
77(”_1) T % 02 _03 112
> (1 - %) as a +77Ww ll5-

—t
Denote C = Ca |l a* ||2 and G; = ( %) (a;'—a* - %C) The above inequality changes to

27rp

E[Gt+1|ft] > Gt.

Denote & = {Vr < t,a]a* > % St H } for some constant Cy = min{%, 2(7T 5 €21, Then, for all t, G114, satisfies
E[Gi11lg, | F] > Gilg, > Gilg, .
Thus, {Gi4+11¢,} is submartingale.

We have the following bound of the difference between G115, and E[Gi111,].

dis1 2 |Genils, — E[Geiils, | 7
771 .
(1T =D m =l r e Bg(e) —9 (@) e LTl
27 or ! o 2 o

—t—1 * (|2 T %
nir—1) ro1 el Ta kg
<pl1-12=~ Ui
<n(1-222) <2ﬂpmm+ L e

=(1=N""M,

mT—1 — * Il *H2 1"a* |k a
where)\:%anszﬁ(WT;PaHa Il + asz + | (STJ : )

Denote r; = 4/ EZ:O d?. By Azuma’s Inequality again, we have

~ a 6(1)r2log(i> I
P(Gle —Go<—-0(1)rlogz =] < _ — )
(Gt 6, —Go<—0(1)rlog <n5)> < exp SN O (n6)

Therefore, with at least probability 1 — 0] (n25 ) , we have
~ 1
Gilg, ., >Go—0O(1)rs log% () .
nd
This means that when &;_; holds, with at least probability 1 — O (),

~ 1 /1 27 ~ t 1 (1
— 2 > — — 2 J—
(1) r¢log (7]5)> +o 1C >Cs—O01)(1—A) rlog <n6> )

ala* > (1 -\ (a(—)ra*

where C = min{% la* ||2, =% C'}. Following similar lines to (16), we have

x (]2 *
M_(w& oy a3 uTmm> 2m1)

1- N < — = :
( /\)rt—\/X + m—1

2 palla”ll, 27 27
With a proper step size n < (k'4p6 max{1,log %}) -t , we then have

s (1N (=1 . a*||2 11T a*|kpa o Cs Cy,
%a>%—omby()< palla*lly + 12 | 'p) .

no 21 2m 2m m—1 2
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C.4. Detailed Proof of Theorem 6

C.4.1. PROOF OF LEMMA 11
[17a"]

vk

Proof. For any a € B ( ) , we have

1Ta < fall, < VEllal, < [17a"],
17a> —[all, > ~Vklal, > ~[17a"].
Thus, we have
117a| < [17a,
which is equivalent to the following inequality.
—9 (1Ta*)2 <17a*1Ta— (l'l'a*)2 <0.

By this inequality, we prove that a € Ac,. O

C.4.2. PROOF OF LEMMA 12

Proof. For calculation simplicity, we rescale w and & by p,,. Specifically, For any w € So(1), define v = p;,'w and
r £ vy = |wlly/pw = 1/pw, where py, = Q (p?) and 7, = O (p~2). Moreover, let ¢ £ £/p,, ~ unif(Bo(1)). Then
we have Z(v + (,w*) = Z(w + ¢, w™*).

Without loss of generality, we assume w* = (1,0, ..., O)T . To calculate the expectation, we need to rewrite v in the
p-dimension polar coordinate system as discussed in Section B. Specifically, v can be written as v = (1, 61,6, ..., 6p—1),
where r > 0,0; € [0,7], i =1,2,...,p— 2, 0,_1 € [0,27] and 6; = arccos(v1/||v||) = Z(w,w*). Moreover, under the
polar coordinate, v +  is expressed as (7€, 9?, 9§ e 9271). We then have

9§ = arccosHyyliéﬁ2 =Z(v+(w") = e,
where ¢ = ({1, G2, -+, ().

Therefore, for sufficiently large p,, we have

E¢ (m — ¢¢) cos e + sin g = E, (7r - 0%) cos 05 + sin 65
/ |:< I/1+LE1> v+ 21 . l/1-|-$1:| 1
T — arccos + sinarccos ————— | ——dx
Bo(1) [+ zlly /[l + lv+zly] V(1)
r+1
:/ |:<7T‘ — arccos Tt ) "L | Sinarccos ] %
B, (1) 2l / Nzl lll]

re+1
Z/ [(W—arccos 1 ) T | sinarccos — }(Q/Q)da:
Bo(1-r,) 1zlly /NIl Izl ] P

1—r, T P 4 1 T
= / rpfldry / ((mr — 61) cos 6y + sin 6y) sin? 2 ,d6,
0 wP/2 0

T T 27
/ . / / S 3 0y - - sin0,_odls - - d6,_,
0 0 0

We then apply Lemma 10 by taking f(6) = (7 — 6) cos 6 + sin 6 and get the following result.

E¢ (1 — ¢¢) cos e + sin ¢
= Ly (1) Ap (f) = MpAp (f) + (Lyp (r) — M) Ap (f)

(Gt (M) =1id i lvo(Y)=1va(l).

F(p+1)2 2p  8p?
2
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where the last equality is due to the Taylor expansion of first term at p = +0o0, i.e.

F@)F(p;%) L1 0(12>_

1ﬂ(p+1)2 2p  8p?
2

Similarly, we have

(241 '(2+1
E¢ e :Egefz/ (arccos o ) (5 7 )dx</ (arccos o ) (5 72 )dx
B, (1) zlly ) 7P Bo(1+r,) lzlly ) 7P

147, T D 1 T T T 27
= / rpldr(2+2)/ 61 sin? =2 (61) df (/ // sind_392~~sin0d_2d91~~d9d_1>.
0 e/ 0 0 o Jo

We then apply Lemma 10 by taking g(6) = 6 and get the following result.

E¢pe = Hp ) Ap (9) = My A, (9) + (Hp (ry) — Mp) Ap (9)

C.4.3. PROOF OF LEMMA 13

Proof. Denote &, = {V7 < t,a, € Ac, ¢, }- Then, by Theorem 5, when (w, a) € Ac, c,, we have

<_]E§,svaL (UJt + f, a —+ 6) 70,* — at> Z

w,
¢ 2
5||at —a’|,

for some constant C.

We next bound the expectation of the norm of the perturbed gradient.

Ee.||VoL (w; + & ar + €)ll5 = Ee | VoL (we + €, ar + €) — VoL (w*,a”)|3

1 T g(de) —m ’
= Ee.c %(11 +(7T—1)I)(at+€—a*)—Ta* ,
1 T (12 1 112
< 53Bed| (117 + (1 = ) 1) @ + e = )5 + 50”3
(k—’_ﬂ—_]‘)z %112 1 %112
< 5 (llar = @I+ 02) + Slla” 3

Therefore, the expectation E [Hatﬂ —a* ||§]l &} can be bounded as follows.

E[llacts = a*[306,) =B [lla: — a* 306, | = 2E[(~7Ee. VuL (wr + & a1+ €) 0" — ar)la]

+E [InVaL (we + & a0+ )31
C k+m—1)> .
(1 Syt 772(7T2)> [EH% —a* |31,

n? (k + —1)?
+1( ;r )

IN

2
2, N 2
- Po + 5”0‘*”2

(1 - A1) Ela; —a*|3Le,_, + b1,

IN
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C 9 (k+r—1)? 2(k4m—1)% o 2 2
where Ay =775 — 7 % and by = n(WiTzr)Pa + 5 lla*][5.

Note that &; implies that ||a; — a*||§ > i||a*||§, then we have

1 * * * * b
7la 5B (&) <E [la —a*l316,| <E[llae —a”ll306,, | < (12" lao —a”ll3 + 3 (17

With our choice of small 75, we have Ay = O (1/p) € (0,1),% < L|la*|3. Thus whent = O (%), we have P (&) < 1.

We recursively apply the same procedure with log% times, and after Ty = 9] (% log %) , we have P (&r,) < 4, which
implies that with probability at least 1 — 9, there exists 711 < Tg such that

Cy 2 2
—2la*|3 < ), a* and [lar,, —a*/2||5 < ||a*|3,

for some constant Cs. Moreover, |la,,, —a /2H2 < ||a* ||2 further implies a a* < 2Ha*|\g. Thus, we have

02 2 2
ol < af, " < 2”3

Then by Lemma 16 and Lemma 17, we get the desired result. O

C.4.4. PROOF OF LEMMA 14

Proof. When p,, is sufficiently large, with probability 1 — 0, the norm of perturbed gradient w.r.t. w, i.e., ||V, L(w, a)||, is
at least O (p,,) once in log % steps. Thus, with at least probability 1 — 4, there exists ¢ < log% such that

wiw* = —1+0 (1p3,) .

We take this point as wy in the later proof. Recall that w; = wy—1 — 1 (I — wy—qw," ;) V,, L and wy = Projs, 1) (@) -
Without loss of generality, we assume w;lw* < 0, otherwise we already have 1 + w,, Lqw* > 1. Notice that |[w;41]], > 1,
we then have

"’T *

1w
||wt+1|\2
=1+wtw — pw* (I wtwt)V L(ws + & a¢ +€)

1—|—wt+1w =1+ >1—|—{DtT+1w*

a; + €

ol 2L )= )+ Ta" — de) — T (1 - w) (Ll
LSt te) (@0 a@tsinge 1 Siyleita)d )¢
2m 27 [[we + €, 2m l|we +&lly />

Thus, we have
E(1+wt+1w |.7-'t) 1+wt w™) (1+%(1—w2—w )a;'— *(W—quﬁg))

¢ a*sin ¢¢ 1 N D i Q1,0 1 ) ¢
2m llwe + £l 2 [lwe + €],

+ B¢ (w* — w:w*wt)T <a

sin ¢¢ (w* — wt—rw*wt)Tf
[we + €l

)

=1+ w]w) (14 30 (1—ww)al a* (7 — Beoe) ) + 5-a] a'Ee

where the last line is due to (12).
We next show that
sin ¢¢ (w* — wTw*w)Tf

0 18
Tw €I, (%)

3
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Let ¢, = Z(x, w*).

B sin g¢ (w* —w ' w w) § 1 sin(¢g) (w* — wTw*w)—r z (19)
[lw +&ll, Bu(pw) V (Pw) ]l
T
1 sin(¢y) (w* —wTw*w) =z
:/ in(¢z) ( ) dx (20)
Bu (pw) B (pw) V (pw) ||x||2
T
1 sin(¢,) (w* —w'w*w) =z
+/ (¢ )( ) dz. (21)
B (Pw)\B—w (pw) V (pw) ||17||2
Let’s calculate these two integrals separately. For the first integral,
/ 1 sin(¢,) (w* — wTw*w)T z
x
Bu (pw)NB_w (pw) Vv (pw) H33||2
/ 1 sin(¢,) (w* — wTw*w)T z
= :I/.
Bu (pw)NB_ 1 (pw ), (w* —w T w*w) T 2>0 Vv (,Ow) H.I||2

+/ 1 sin(¢,) (w* — w—'—w*w)T z
B (Pw)NB_w (po),(w* —w T w*w) T £<0 Vv (pw) HIHQ

By the symmetric property with respect to the origin, we have

T

/ 1 sin(¢,) (w* — wTw*w)T x
Bu (o) B_w (pw) v (Pw) Hxllg

For the second integral, let’s consider the the symmetric point of 2 with respect to the vector w, i.e., Z = 2w ' zw — 2. We
have the following properties:

dr = 0.

_ _ T . T
Izl = llz|ly, |lw+ 2|y = ||w+ 2|y, and (w* —wTw*w) = (w* —w w*w) T.

We further have

s = VI eston s V (“Fr, )2:%‘((21“@*)%(w*)TI))Q

(B4

(w) Tz > (AwTz(w*) Tw [(w*)Te — wT z(w*) Tw)

1 + : .
]l ]2

Since # € By (puw) \B_w (puw) , we have ||z 4+ w|> > p2 > |l — wl|5, which implies w T

 (w* — wTw*w)T x> 0, we have (w*) Tz — w ' z(w*) "w > 0. Together with (w*) Tw < 0, a we have

x > 0. Moreover, when

sin ¢z < sin @,
Then the second integral can be estimated as follows.
/ 1 sin(¢,) (w* — wTw*w)T z
Bu (pw)\B—w (pw) V (Pw) 1l
-

/ 1 sin(¢y) (w* —w uﬁ"w)T z
= X
B (pw) \B_w (pw)s(w* —w T w*w) T >0 Vv (pw) ||37||2

T

1 sin(¢,) (w* — wTw*w)T z

“.
B (Pw)\B_w (pw)s(w* —wT w*w) T <0 Vv (pw) ||Z‘H2

_/ 1 (w* - wTw*w)Tx(
Bu (pw)\B—w (puw),(w* —w T w*w) T >0 Vv (pu;) H‘THQ
>0

sin(¢z) — sin(¢z))dx
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Thus, combining the above calculations for two integrals, (18) is proved. Then with the fact that atT a* > mg > 0forall t,
we have

E (14wl w*|F) > (14w w) (1 + %(1 —w, wa, a* (7 — E§¢§))

> (1+Clg)(1+ij*),

for some positive constant C'.

Thus,

E (14w w) > (1+ clg)fu +wd w*).

When t = 5(% log %), we have E (1 + w/ w*) > C, for some constant Cy € (—1,0). Thus, with constant probability
we have 1 + th w* > Cy. And We could have with at least probability 1 — §, 1 + wl _w* > Cy for some 15 =

T12

5(%logilog%>. O

C.4.5. PROOF OF LEMMA 15
Proof. Recall that we have —1 < Oy < wg w* < 0and m, < a/a* < M, forall .

Our proof has two steps.

Step 1: We show that w,” w* have a lower bound C42flwith probability 1 — ¢ for vVt < 0] (77—12)

Denote & = {V7 < t,w] w* > 042*1} C Fi. Then if & holds, we have (w;,a;) € K(c,—1)/2,m.,m, for V7 < t. Recall
that w1 is defined as

Wiyl = Wy — (I - wtw;r) VoL (wi + &, ai + €),

and

Wi41 = ProjSO (ﬂ;t+1) .

By Theorem 5, when (w, a) € K(c,—1)/2,m,, M, We have

mg (1 + 04)

(~Eee (I —ww") VoL (w+&ate),w —w) > 5

2
[w = w3 =7,

where v = O (k/py).
Moreover, we have the bound on expectation of the norm of the perturbed (manifold) gradient.

E. ((a + €)T a*)2 E¢ (7 — ¢)2

e |(7 = we™) VoL (w+ €.+ 2 = W (1= ww)

272
L 9E (||a +ell3 n izg (@it €)(aj +¢€5) (a4 €)' a*sin e 1
AN 2 o w el

Ding (@i +€)aj 1 2

- = I—ww”
s Taealy) (e

M2 201, (|2

< Matoallatly | opee 2

- 2

where C is a constant.
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Combine the above two inequalities, we get
E[| @1 — w* 306, | Fe] =[lwe — w|51e, — 2(—nBe, ¢, VoL (wy + &, ar + €) ,w* — wy) g,
2
+ Ee, e H77 (I - wtwt—r) VL (wt + &y a + €t>H2]lgt

w12
1_ MM (14 Cy) "’ (Mg +pilla Hz)
16 2

<

)th—w*llgﬂffﬂr my + +n*C1k*ppn | s,

= (1= o) Jws — w*|31g, + bolg,,

where Ao = O (n/p), ba = O (nk/p,) and % < min{ 1+2047 1} by proper choice of small 7 and large p,,.
We next show that ||w;41 — w* ||§ < ||Wg1 — w* ||§ We first have the following inequality.

@13 = llwells + ||n (I — wew]) Vi L (wy + €, ar + G)Hz > 1

Since we have wg_lw* < 1, we obtain

~ 2 ~ 2 ~
[ @1 — w*||5 =1+ |Weg1lly — 2/|@es1 lgwi g w*

> 1412w w* = |[weq — w*||§
The above inequality comes from a?—2ab+1>2—-2b< a+ 1> 2bfora > 1. Therefore, we have

Elllwirr — w2165 < (1= Ao) lwr — w [2Le, + bl

Denote Gy = (1 — Xo) ™" (||wt - w*||§ - %), the above recursive relation becomes

E[Gii1ls,

Fi] < Gilg, < Gilg, .
Thus, {G1¢,} is a supermartingale.

We then have the following bound.

dy 2 |Gils,_, — E[Gils, | Fio1]l = (1= X2) ™" [Jlwe — w*||5 — E[Jjw; — w*||5|Fe-1]]
< (1=X2) " (0 (Ma + palla®lly) + Cankpu)
= (1—Xo) " My,

where M> = O (nkpy).

Denote 7 = />._, d2. By Azuma’s Inequality,

~ 1
P (Gt]l(g’tl —Go>01)ry 1og% ()) <exp|— . =0 (7725)
020 230 d
Therefore, with at least probability 1 — O (1%3), we have
12 ¢ w2 b2 ~ ¢ 11 ba
e — w2 < (1= 2) (o — w2 = 22 )+ 5(1) (1~ Aa)' rlog? () + 2
2 7725 A2

~ M i 1 b
< HwO _w*Hg +O(1) 7log; (2> + 22

§3_047
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where the last line is true by our choice of small 7.

The above inequality shows that w, w* > % holds with at least probability 1 — O (772 5), which implies that &; holds
with at least probability 1 — O (7?0) when &;_; holds. Hence, with at least probability 1 — &, we have w, w* > €41 for

alltgé(n%).

Step 2: We show that if the result in Step 1 holds, there exists 713 = 9] (% log %) such that ¢, < % and ¢, stays in the
region {gb‘(b < ‘%} with probability 1 — ¢ during the later 9] (#) steps.

Following similar lines to Step 1, we have
E[Gi+1]F] < G,

where G; = (1 — )\2)_t (”wt - w*||§ - %)

Thus, recall that Ao = O(n/p), A—z < i, andlett = O (%) , and we know that

ba

E([lwy — w*[[51Fe-1] < (1= Ao)" [lwo — w5 + N S

1
5
By Markov Inequality, we know
1
P (Jlwn -l > 1) < 3.

We recursively apply the above inequality with log times. Then, with at most 713 = O (% log %) ,we have
P (¢ < 5) =P (llwn, —w'lf<1) > 1-4.

For notational simplify, we assume ¢y < % in the later proof. We will show that ¢, stays in the region {qb‘qﬁ < %} with
high probability during the later O (%) steps.
}-

Denote 4 = {Vr < t,¢, < —g
1-0 (n?0), we have

With the similar argument in Step 1, when 71 holds, with at least probability

w* * ba bo ~ 1 /1
Jur = w13 < (1= %) (oo = w1 = 2 )+ 24 G0 (1 =)' retoe? (o)

b ~ It
< |lwo — w*||§ + /\722 +0 (1) —=log? () < 1.4,

which implies that ¢; < 27, i.e., #; holds.

Hence, forallt < T = O ( ) we have ¢; < 2 T with at least probability 1 — J.
Combining the above two steps, with probability 1 — J, we have ¢, < 57/12 for all ’s such that 75 <t < T = 5(77*2),
where 713 = O(% log %)

O

D. Proof for Phase 11

D.1. Technical Lemma

The next lemma shows that perturbed GD imitates the behavior of GD, when the noise is small enough. Thus, it can finally
converge to the global optimum.
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Lemma 18. Denote g (¢) = (m — ¢) cos ¢ + sin ¢, & ~ unif (By (1)) € R? and w € RY,

w||, = 1. Define

v’ (w+ p€) viw

(¢ = arccos ———————=—, ¢ = arccos —————-—.
1]l lw + pélly” [0l lwll,

Suppose ¢ < 5 and p < 1. Then we have
Eege <UL (), Ee(m—g(9)> <UL (0), Eeg(de) 2 UL (p).

where lim Uq(f) (p) = o, [1)1_I>I%J Uf) (p) = (7 — g () lim Uq(f’) (p) = g (&) and Uq(bl) (p), Uf) (p) is non-decreasing,

p—0 p—0

Uf’) (p) is non-increasing. Moreover, we have
[Ecoe — 0l =0(p),  [Ee(r—9(60)" — (1= g(6)’|=0(p), [Ecg(de) = 9(9)| =0 (p).

Proof. Without loss of generality, let v = (1,0, ..., O)T. Then since ¢ < Z, we have wy > 0.

wi+p&1
Tw+pEll,
X and v, where X = w + p§ € B, (p). Thus, ¢ achieves the maximum when X is tangent to B,, (p). This means that

(w+p€) " p¢ = 0and €]l = 1, which is equivalent to w " & + p = 0 and ||€||, = 1. This leads to ||w + p€||, = /1 — p2.
Therefore, to get the upper bound of ¢,, we need the lower bound of &;. This is formulated as following,

mingy st Y wi&i+p=0, Y wi=1> &=1

We find the upper bound of ¢¢ = arccos when p and w are fixed. ¢¢ could be explained as the angle between

By the Lagrange multiplier method, we have &§ = —+/(1 — p2) (1 — w?) — pw;. Thus,
¢e < arccos (wlx/l —p2—pr/1— w%) = U(;l) (p).

Moreover, with the same argument above, we have

¢e > arccos (wlx/l —p2+py/1 —w%) .

Therefore, we have |E¢¢s — ¢| = [E¢pe — arccoswq| < Cqp.

Since g (¢) is decreasing, (m — g (¢))” is increasing and both of them are Lipschitz continuous, we have
2
Ee(r—g(6)° < (n =g (UL (0)) 208 (), Eeg(0c) 29 (U5 () 2 UL (),
[Ee (1 — g (0¢)* — (1 — g (9))°| < Cap, |Eeg(d¢) —g(d)] < Csp.
. . . . . . 1 _ . 2 _ _ 2 . 3 _
By simple manipulation, one can easily verify that [1)12% Us (p) = &, [1)1_1% Us (p) = (m—g(9))", Fl)l_I}r(l) U3 (p) = g (¢) and

Ui (o) = 0.0 () 2 0,U8 () <0 =

D.2. Proof for Theorem 7

Proof. When p,, < 1, we have

-
sin ¢¢ (w* — wTw*w) 13 \/7

E < Ciy/1 — (wTw*)2py = O(py

T Jwrdl W e = Ole)
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Taking p,, = O (klp) to be small enough and combining (12), we have

aTa* (ﬂ' — Eg(bg)

(—E¢,e (I — wa) Vol (w4 & a+€),w" —w) > (1 _ (wTw*)2> —

27
T % _E
— a a (7T f(vbf) (1+wTw*) HW—U)*H;—’Y
47
m(1+ Cy «
Z%HW—W I3 —-

Given small enough p,,, by Lemma 18 and |jw — w* ||§ < Cho7, we have

(—E¢, VoL (w+&,a+€),a" —a)= % (1Ta — 1Ta*)2 + % (m—1)a— (Eeg (¢e) — 1) a*)T (a—a")
1

1 -1
= 5 (1Ta—1Ta")" + — (1= Eeg (6¢)) a” (a—a") + "~ [la—a’[3

T—1
2

2
la— a2~ .

D.3. Proof Sketch for Theorem 8

Proof Sketch. The perturbed GD is already in the solution set of Phase I, which is actually in the dissipative region
Kcy,m, - The first lemma shows that even if the noise is reduced, our proposed algorithm never escape this set.

Lemma 19. Define ¢.(§) = Z(x + &, x*). Assume there exists some constant Cs such that 1 + Cg/p < Eeg(¢:(§)) <7
and E¢¢4(€) < ?ﬂffor all t. Suppose

5
0<ma§aga*§Ma and (bogﬁw.

Forany 6 € (0,1), we choose step size

n= C’11<max{k4 G,kip}maX{l,plogilog;})l

for some constant Cy. Then with at least probability at lease 1 — §/3, we have forallt < T = O(n~2),

11
0<ml, <ala* <M and qbtgﬂ

T,
where m!, = my /2, M), = 3M,.

Lemma 19 shows that throughout sufficiently many iterations of Phase II, (w¢, a;)’s are at least as accurate as the initial
solution with high probability. Thus, we can guarantee that the perturbed GD algorithm stays away from the spurious local
optimum, and the benign optimization landscape in Theorem 7 holds.

The next lemma characterizes the convergence properties of the perturbed GD algorithm for w.

Lemma 20. Suppose ¢; < é—iﬂ' and 0 < m!, < a/ a* < M/ hold for all t. For any v > 0, we choose p} < C&,klp <1

and p, < C! for small enough constant C} and C}. For any 6 € (0,1), we choose step size

n= Cu(max{k4 6,k’2yp}max{l,p10gi10g(15})l

for some constant C11. Then with at least probability at least 1 — §/3, we have

we — w*||3 < Chay
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Sfor all t’s such that To; <t < 6(7772), where C'15 is a constant and
~ 1 1
To1 = O(B log — log f).
noCy 9

Lemma 20 shows that at 73; iterations, the perturbed GD algorithm enters R,/ a¢.c,,. Then we can characterize its
convergence properties for a, as shown in the next lemma.

Lemma 21. Suppose (wy,as) € Run: m2 0., holds for all t. For any v > 0, we choose p < Ci)klp < landp, < C} for
small enough constant CL, and C. For any § € (0, 1), we choose step size

n= Cu(max{k:4 6,]?}max{l,plogi10g§})l

Sor some constant C11. Then with at least probability 1 — 6 /3, we have
* (12
llar —a™[l3 <~

Sfor all t’s such that To5 <t < 6(77_2), where

~ 1 1
Tog = O(E log — log 7).
noCy o

Similar to Lemmas 13-15, the proof of Lemmas 19-21 also requires supermartingale-based analysis. See more details in
Appendix D.

Combining the above lemmas together, we take 75 = 751 + Ta2, and complete the proof of Theorem 8. O

D.4. Detailed Proof of Theorem 8
D.4.1. PROOF OF LEMMA 19

Proof. Since ¢ < 3%, we have g (¢9) > 1.4. By Lemma 18, conditions E¢¢¢ < 3% and 1 + O (%) < Eeg(¢¢) < mare

satisfied with our choice of small noise level p,,. Recall that 1 Tag1 "a* — (lTa*)2 is bounded. Then, using Lemma 16,
we have 17a;1"a* — (lTa*)2 is still bounded in the same order for V¢ < O (77’2) with probability 1 — 6/3. Combined
with Lemma 17, with probability 1 — §/3 we have m/, < a,/ a* < M, in the following 9] (n™2) steps, where m, = mq/2,

M = 3M,. Then, following the same arguments in Step 2 of the proof of Lemma 6, we have ¢; < % (g + %T) = 12%4’7 in
the following O (77_2) steps with probability 1 — §/3. Therefore, combining the above results together, we have the desired

results. O

D.4.2. PROOF OF LEMMA 20

Proof. Recall that we have ¢, < LT and m/, < a] a* < M], for all ¢. This implies that w, w* > 0.1. Thus, we have
(w,at) € Ko-l,mg,M,; for all ¢.

The following two steps proof is similar with Lemma 15.

Step 1: We show that there exists 751 = O (% log = log %) such that [|w,,, — w*||5 < ~/2 holds with at least probability
1-9.

By Theorem 7, for (w, a) € ICO_ng“M(/l, we have

11m,
<—E576(I—wa)VwL(w—l—i,a—Fe),w*—w>> n

%112
= 7160 ||1U—’LU ||2_Mapw7

where M, p,, = O(v/p) is a small constant by our choice of p,,.
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Also, we have the bound on the expectation of the norm of the perturbed (manifold) gradient.

2 20 %12
Eg’eH(I_ wa) va (’UJ +§,G+E)H§ S M‘M + Clk2p12u>

for some constant C;.

Thus, denote \3 = 111’(?5’7 and by = L%y, We have

E[[| @41 — w31 F] = llwy = w*[[5 = 2(=nBe, e, (I —wiw,") Vi L (wy + &, ar + €) ,w* — wy)
2
+ Ee¢, ||77 (I — wtth) VL (we + &, ar + et)||2
* 12
7 (M2 + p2lla )
2

+ i’k s,

11mgn .2
< (1= MY o w4 b+
< (1= 29) e~ w3+ b,

where the last line is due to our choice of small parameters p,, p,, and 7.

With same argument in the proof of Lemma 15, and we have

|@err = w5 = [[wper — w?l3.
Hence, denote &; = {Vr < t, ||w, — w*||§ > 7}, with our choice of  and t = 9] (% log %), we have

1B (6) < Bl — w = (- A By — 'l + by

. by 1
< (=2 flwo —w'll3 + > < 37
3

Thus, we have P(&;) < 0.5 and recursively apply the above lines for log% times, we know there exists 701 =

9] (% log % log %) such that ||w,,, — w* ||§ < 7 with at least probability 1 — 4.

Step 2: We show that if |jwg — w*||§ < 7, wy stays in the region {w’ lw — w*||§ < ’y} in the following O (%z) steps with
at least probability 1 — 4.

Denote G = (1 — A3) ™" (||wt - w*||§ - %,) and 74 = {V1 <t ||w, — w*||§ <~} C F;. From Step 1, we have

E[Gii1l4|Ft] < Gy < Gil s, .-

Thus, {G1 5 } is a supermartingale.

To apply Azuma’s Inequality, we first have to bound the difference between G111 5 and E[Gyy11 54 | F].

dis1 2 |Ger1log — E[GeLog | Fi| < (1= 2A3) ™ 7 Jlwerr — w5 = Effwegr — w*[[5| 7]

< (1=2a) " Oy = (1= Xg) ™' Mg,
where A5 = O (n/p), M3 = 9] (nfy%k).

Denote r; = 4/ Z::O d?. By Azuma’s Inequality, we get

~ 1 1
P <Gt]l%_1 —Go>0(1)relog? (7725>> <exp|— =0 (7725) .



Importance of Noise in Training Neural Networks

Therefore, with at least probability 1 — O (n25 ) , we have

b ~ 1 (1
o =013 < (0= (o = w13 = 22 ) + O () (12 retog? (55) + 5

N ~ M. 11 b
< flun = w3+ O (1) J og? () + 2 <

where the last line holds, since we can always find 1 < Npax = 9] (k%p) to satisfy the condition.

The above inequality shows that if &; holds, then &} holds with at least probability 1 — 0] (7725). Hence, with at least
probability 1 — 4, we have ||w; — w*||§ <~yforallt <T = O (n%)

Combining the above two steps, with probability 1 — d, we have ||w; — w* ||§ < Cyoyforall t’s such that 791 <t < 5(77_2),

where O, is a constant and 75, = O (% log % log %) O

D.4.3. PROOF OF LEMMA 21
Proof. Our proof has two steps.
Step 1: We show that with probability at least 1 — §, there exists 720 = O (%} log % log %) such that ||a,, — a* ||§ < 7/2.

Recall that (w¢, at) € Rom: M, ¢y, holds for all t. Then by Theorem 7, we have

m—1
<_E£,evaL (w+£7a+€)7a*_a> 2 Ha_a*Hg_’Y-

2T

Following similar lines to the proof of Lemma 13, we have the bound on the expectation of the norm of the perturbed
gradient.

Eeo|Val (w+&a+e)l; =Bl VoL (w+ & a+€) = VoL (w*,a")|3

! (117 + (7 — 1) 1) (a-l—e—a*)—ma* i

:]E ell=—
Sell o 2

2

1 T 2 (k+m—1)° T
< 5aBe(I1T +(r-DI)(ate—a )’2+7§T(Ha—a ||2+Pa)+7~

Combined the above two, with pax = O (v/k?*p) and n < nax, We have

Elllait1 — a*|51F] = las — a*[|3 — 2(—nE¢, ., VaL (we + &, ar + &) ,a* — ar) + B¢, ¢, [nVaL (w + &, ar + &) |3

(r—1)n (k+7—1)> o (k+m—1)°
S<1— Sl lar = a5 + 207 + 0y + ——5—n"p;

m—1 k+m—1)> .
<<1—( W)n+n2< — )>H%—GH§+&W

Thus, when n < m, we have
. (r—1)n (k+7m—1) . (k+7m—1)
IMWHl—a@—ﬁﬂfﬂé<1— —— @%—aﬂg—ﬁj—ﬁﬁw+5——;7—*ﬁv
-1 E+7—1)>2
S(l—“r )"+nﬂ +W2 ))OMrﬂfﬁ—5ﬂ
Vi T

=(1— M) (llat —a*|3 - 57) )
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llao—a~I3
¥

log ~
Denote & = {V7 <t,|la, — a*||3 > 12+}. When t > ( > =0 (% log %), we have

129P (&) < Ellas —a”[l3 = (1 = Aa)" ([lao — a*[|3 = 57) + 57 < (1 = M) [|lag — a”[|3 + 57 < 6.

Therefore, P (&) < 0.5. Recursively applying the above lines with log % times, we know that with at least probability 1 — 9,
there exists T30 = O (% log % log %) such that ||a., — CL*HS < 12+. Rescaling 7y, we get the desired result.

Step 2: We show that, if ||ag — a*||§ < 7/2, then a; stays in the region {a‘ la — a*||§ < fy} in the next O (n%) steps with
probability at least 1 — 6.

Denote Gy = (1 — \yg) " <||at - a*||§ - 5’y> and 7% = {V7 < t,|la; — a*||§ < 67y}. With the same argument in Step 1,
we have
E[GtJrl]ljg ‘]:t] < Gt]ljft < Gt]lﬁﬂ,l-

Thus, {G1 5 } is a supermartingale.
To use Azuma’s Inequality, we first have to bound the difference between G111 5 and E[G111 54| F].
dip1 = |Gip1log — ElGra Lo | 7]l

—t— * 12 * (12
= (1= X) """ lagss — a*ll; — Eflas1 — a*|5]F]

1.

< (1= A) Ok + ConPE?) = (1= M) 7 My,

for some positive constant C; and Cs, where Ay = 19) (n), My = 19) (nfﬁk).

Denote r; = 4/ Z::O d?. By Azuma’s Inequality,

~ 1 1
P (Gt]l;gl —Go>0(1)r¢log? (7725>> <exp | —

Therefore, with at least probability 1 — O (1%3), we have

* * A 1
Jar = a3 < (1= A0)" (llao = a*I5 = 5) + O (1) (1 = A)" e log? (ngé) +59
9  ~ M 1 1
<llag — a*||5+ 0O (1) —=1log? | — | + 57 < 6+,
< lloo —a*l;+ 0 (1) = low? ( g5 ) +59 < 69
where the last line holds, since we can always find n < Npax = O k%p) to satisfy the condition. The above inequality

shows that if 7% holds, then 7, holds with at least probability 1 — o) (1725 ) Hence, with at least probability 1 — J, we
have ||a; — a* ||§ <6yforallt <T =0 (n%) Rescaling 7, we have the desired results for Step 2.

Combining the above two steps, with at least probability 1 — J, we have ||a; — a* ||§ < ~ for all £’s such that 75 < t <
O(n™2), where 799 = 6(% log X log %) -

E. An Additional Experiment for Training Overparameterized Neural Network

Our additional experiment still considers the regression problem under the realizable setting, where the response is generated
by a noiseless teacher network

y=f(Zuw",a") = (@) o(ZTw").
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The student network h, however, adopts a different architecture and contains two convolutional filters, i.e.,
WZ,w,u,a,b) =a' o(Z "w)+b'o(Z" v),

where v € RP and b € R*. Compared with the teach network, the student network is overparameterized. We then learn the
overparameterized student network by solving the following optimization problem:

min F(w,v,a,b) subjectto w'w=1andv v =1, (22)

w,v,a,b

where F(w,v,a,b) = %Ez(h(Z,w,v,a,b) — f(Z,w*,a*))2.

Unfortunately, F'(w, v, a, b) and VF (w, v, a, b) do not admit analytical forms. Therefore, we randomly sample n realizations
of Z (denoted by Z;, ¢ = 1,...n), and solve a finite sample approximation of (22),

T

min F,(w,v,a,b) subjectto w'w=1landv'v=1, (23)

w,v,a,b

where Fn(wa v, @, b) = % Z?:l(h(zi’ w,v,a, b) - f(Zia ’U}*, a*))z’

For our experiment, we choose k = 10 and p = 15. The first 5 entries of a* all equal to 1/+/10 and the remaining entries of
a* all equal to —1/+/10. w* is randomly generated over the unit sphere. We choose n = 10, 000, and expect (23) to have
an optimization landscape to (22).

We run the gradient descent algorithm to solve (23). The initialization is chosen at
w=—w*, v=—w", a= 11" + (7 = DI)"}(11" — I)a* and by = 0.
We choose the step size 7 = 1075 and run for 108 iterations. We eventually observe ||V F},(w, v, a,b)||, < 10~* and
F,(w,v,a,b) > 0.15. We suspect that the gradient descent algorithm approaches some spurious local optimum.
F. Convergence Analysis for Perturbed-SGD

We then can characterize the estimation error of the stochastic gradient as follows.
Lemma 22. Suppose that for any 6,¢ > 0, w € So(1) and a € By(R), given a mini-batch size

1 1
m= p01y (p7 ka Ra 7710g > ’
€ é

with at least probability 1 — 0, we have

vaz(w,a) — Vwﬁ(w,a)Hj <e and HVQE(w,a) - Vaﬁ(w,a)Hz <e.

The proof of Lemma 22 is straightforward (by simple union bound and the concentration properties of sub-exponential
random variable), and therefore omitted. Lemma 22 implies that as long as the batch size is sufficiently large, we can show
the mini-batch stochastic gradient is sufficiently accurate with high probability. Then we can adapt the convergence analysis
in Section 3, and show that P-SGD can avoid spurious local optimum with high probability in Phase I.

Theorem 23 (P-SGD escapes the spurious local optimum). Suppose ||a*||, < R, p% = COkp? > 1, p% = C?, ag €

By ( |1\T/%*‘) and wy € So(1). Forany § € (0,1), we choose a small enough step size

1 —1
n= (p01y <p7 k7R7 IOg (5>)

1
m = p01y (pa ka Rv 10g (S) )

and a large enough mini batch-size
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then with at least probability 1 — §, we have

5
magatTa*SMa and ¢t§1—27r

for all t’s such that ﬁ <t< 5(77_2), where m,, and M, are some constants and

ﬁ = poly (p, k, R,log %)

Similarly, for Phase II, we can show that P-SGD converges to the global optimum with high probability.

Theorem 24 (P-SGD converges to the global optimum). Suppose ||a*[|, < R, ¢g < 57, 0 < mq < ag a* < M,. For
any v > 0, we choose pl < C’iﬁ < land p, < C} for small enough constant C., and C}. For any 6 € (0,1), we

choose a small enough step size
11 1\
n= pOIy pakvR77u10g77log7 )
Yooy T9o

1 1
m = p01y <p7 k7R7 *,10g > ’
y 1)

and a large enough batch size

then with at least probability 1 — 0, we have
lwe —w*[; < Cigy and Jay —a*|3 <~

for all t’s such that fg <t<T= 5(77’2), where C13 is a constant and

~ 1 1
T2 = pob’(pu k7 R7 L] log 7)'
y 0

The proof of Lemma 22 is straightforward and therefore omitted, as the error of the mimi-batch stochastic gradient has been
well controlled by a sufficiently large batch-size.



