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A. Preliminaries

We first present the following proposition, which computes the explicit form of the loss function and the gradient of the loss
function with respect to a and w.

Proposition 9 (Du et al. (2017)). Let � 2 [0, ⇡] be the angle between w and w⇤
. Then, the loss function L (w, a) and the

gradient w.r.t (w, a), i.e., raL (w, a) and rwL (w, a) have the following analytic forms.
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where g (�) = (⇡ � �) cos � + sin �.

As can be seen, both rwL (w, a) and raL (w, a) depend on �, which is the angle between w and w⇤. After injecting noise,
we have
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As a direct result, we have

E⇠t,✏traL (wt + ⇠t, at + ✏t) 6= raL (wt, at) ,

E⇠t,✏trwL (wt + ⇠t, at + ✏t) 6= rwL (wt, at) ,

which indicate that the perturbed gradient ra (wt + ⇠t, at + ✏t), rw (wt + ⇠t, at + ✏t) are biased estimates of the gradient
(as we mentioned in Section 2).

For notational simplicity, we introduce an auxiliary iterate ewt+1 and rewrite our perturbed GD algorithm as follows.

at+1 = at � ⌘raL (wt + ⇠t, at + ✏t) ,

ewt+1 = wt � ⌘
�
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>
t

�
rwL (wt + ⇠t, at + ✏t) ,

wt+1 = ProjS0(1) ( ewt+1) .

In the later proof, we use Ft = �{(w⌧ , a⌧ )
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p as the volume of p-dimensional ball B0(⇢).

B. d-Dimensional Polar Coordinate and Some Important Lemmas

To calculate the expectation in our following analysis, we often need the d-dimension polar coordinate system. Specifically,
if we write a vector ⌫ under Cartesian coordinate as ⌫ = (⌫1, ⌫2, ..., ⌫d), then under the polar coordinate, ⌫ can be written as
⌫ = (r, ✓1, ✓2, ..., ✓d�1), where

⌫1 = r cos(✓1),

⌫i = r⇧i�1
j=1 sin(✓j) cos(✓i), i = 2, ..., d � 1,

⌫d = r⇧d�1
j=1 sin(✓j),

where r � 0, 0  ✓i 2 [0, ⇡], i = 1, 2, ..., d � 2, ✓d�1 2 [0, 2⇡].
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To use polar coordinate to calculate integral, we also need the following Jacobian Matrix.

@(⌫1, ⌫2, ⌫3..., ⌫d)

@(r, ✓1, ✓2, ..., ✓d�1)
= rd�1 sind�2 ✓1 sind�3 ✓2 · · · sin ✓d�2.

The following important equation is required.
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Then we have the following useful lemma here.
Lemma 10. Let f (✓) be a positive bounded function defined on [0, ⇡], that is there exits a constant C � 0 such that
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Then we have

Ad (f) Ld (✏) + O (✏d) > Ad (f) Md > Ad (f) Hd (✏) � O (✏d) . (10)

Proof. For simplicity, we only give the proof of the left side. The proof of the right side follows similar lines.
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We give the lower bound on Ld (✏) � Md.
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Hence, we have
(Ld (✏) � Md) Ad (f) � �Cd✏. (11)

C. Proof for Phase I

C.1. Proof of Theorem 5

Proof. We first derive the dissipativity w.r.t a in region
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Combining the above inequality with Eg (�⇠) � 1 + C
p in Lemma 12, we get
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Following the similar lines above, we have the same results. Thus, the dissipativity w.r.t a holds in region AC2,C3

Next, we derive the dissipativity w.r.t w in region
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for some constant C.

For (12), recall that V (⇢w) is the volume of B0(⇢w). Then we have
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Now we prove (13). Denote that �x = \(x, w⇤). When ⇢w > 1, we have
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C.2. Proof Sketch for Theorem 6

Proof Sketch. The next lemma shows that that our initialization (w0, a0) is guaranteed to fall in a superset of AC2,C3 .

Lemma 11. Given a0 2 B0
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Our subsequent analysis considers two cases: Case (1) (w0, a0) 2 AC2,C3 and Case (2) (w0, a0) 2 AC3\AC2,C3 . Specifi-
cally, we first start with Case (1), and then show the algorithm will be able to escape from AC2,C3 in polynomial time and
enter AC3\AC2,C3 . Then we only need to proceed with Case (2).

Note that for AC2,C3 , the dissipativity holds only for the perturbed gradient with respect to a. Though the dissipativity does
not necessarily hold for w, we can show that the noise injection procedure guarantees a sufficiently accurate w for making
progress in a, as shown in the next lemma.
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Lemma 12. Suppose w, w⇤
2 S0(1) and ⇠ ⇠ unif(B0(⇢w)) 2 Rp
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We remark that Lemma 12 is actually the key to the convergence analysis for Phase I. It helps prove both Theorems 5 and 6.
The proof is highly non-trivial and very involved. See more details in Appendix C.4.2. Lemma 12 essentially shows that the
noise injection prevents w from being attracted to v⇤, and further prevents (w, a) from being attracted to the spurious local
optimum.

We then analyze Case (1), where (w0, a0) 2 AC2,C3 .
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As can be seen, after ⌧11 iterations, the algorithm enters AC3\AC2,C3 . Then our following analysis will only consider Case
(2), where (w0, a0) 2 AC3\AC2,C3 . We remark that although Theorem 4 no longer guarantees the dissipativity of the
perturbed gradient with respect to a, Lemma 13 can ensure the optimization error of at within Phase I to be nonincreasing
as long as t � ⌧11 with high probability.

We then continue to characterize the optimization error of wt. Recall that the noise injection prevents �w⇤ from being
attracted to �w⇤. Thus, we can guarantee that wt is sufficiently distant from �w⇤ after sufficiently many iterations, as
shown in the next lemma.
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Lemma 14 implies that the algorithm eventually attains KC4,ma,Ma , where the dissipativity of the perturbed gradient with
respect to w. Then we can bound the optimization error of wt by the next lemma.
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Then with at least probability 1 � �/3, we have

�t  5⇡/12 (15)
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for all t’s such that ⌧13  t  T = eO(⌘�2), where
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⌘
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Lemma 15 implies that after (wt, at) enters KC4,ma,Ma , it starts to make progress towards w⇤. Due to the large injected
noise, however, the optimization error of wt can only attain a large optimization error. Although the optimization error of at

is also large, (wt, at) can be guaranteed to escape from the spurious local optimum.

The proof of Lemmas 13–15 requires supermartingale-based analysis, which is very involved and technical. See more details
in the appendix C.4. Combining all above lemmas, we take T1 = ⌧11 + ⌧12 + ⌧13, and complete the proof of Theorem 6.

C.3. Some Important Lemmas

These lemmas give proper bounds that we will use in our later proof.
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C2

p
ka⇤

k
2
2,

for 8t  T = eO
⇣

1
⌘2

⌘
and some constant C2 > C1.

Proof. We only give the prove for the right side, and the left side follows similar lines.

We start with

E[1>a⇤1>at+1|Ft] =

✓
1 �

⌘ (k + ⇡ � 1)

2⇡

◆
1>a⇤1>at +

⌘ (k + Eg (�) � 1)

2⇡

�
1>a⇤�2



✓
1 �

⌘ (k + ⇡ � 1)

2⇡

◆
1>a⇤1>at +

⌘ (k + ⇡ � 1)

2⇡

�
1>a⇤�2 .

Denote Gt =
⇣
1 �

⌘(k+⇡�1)
2⇡

⌘�t ⇣
1>a⇤1>at �

�
1>a⇤�2

⌘
. Thus, we have

E[Gt+1|Ft]  Gt.

Denote Et = {8⌧  t,1>a⇤1>a⌧ �
�
1>a⇤�2


C2
p ka⇤

k
2
2} ⇢ Ft. We have

E[Gt+11Et |Ft]  Gt1Et  Gt1Et�1 .

Thus, Gt1Et�1 is a supermartingale with initial value G0.

We have the following bound.

dt , |Gt1Et�1 � E[Gt1Et�1 |Ft�1]|

=

✓
1 �

⌘ (k + ⇡ � 1)

2⇡

◆�t

⌘

������
k + ⇡ � 1

2⇡
1>a⇤1>✏t�1 +

Eg
�
�⇠t�1

�
� g

�
�⇠t�1

�

2⇡

�
1>a⇤�2

�����



✓
1 �

⌘ (k + ⇡ � 1)

2⇡

◆�t

⌘

 
(k + ⇡ � 1)k⇢a

2⇡
|1>a⇤

| +

�
1>a⇤�2

2

!

= (1 � �)�t M,



Importance of Noise in Training Neural Networks

where � = ⌘(k+⇡�1)
2⇡ and M = ⌘

✓
(k+⇡�1)k⇢a

2⇡ |1>a⇤
| +

(1>a⇤)2

2

◆
. Denote rt =

qPt
i=1 d2

i . Then Azuma’s Inequality

can be applied, and we have

P
✓

Gt1Et�1 � G0 � eO (1) rt log1/2

✓
1

⌘�

◆◆
= exp

0

@�

eO (1) r2
t log

⇣
1
⌘�

⌘

2
Pt

i=1 d2
i

1

A = exp

0

@�

eO (1) r2
t log

⇣
1

(⌘�)2

⌘

2
Pt

i=1 d2
i

1

A = eO
�
⌘2�

�
.

Therefore, with at least probability 1 � eO
�
⌘2�

�
, we have

Gt1Et�1  G0 + eO (1) rt log1/2

✓
1

⌘�

◆
.

We next prove that conditioning on Et�1, we have Et with at least probability 1 � eO
�
⌘2�

�
. Thus, ET holds with at least

probability 1 � �, when T = eO
⇣

1
⌘2

⌘
.

From Gt1Et�1  G0 + eO (1) rt log1/2
⇣

1
⌘�

⌘
, we know

1>a⇤1>at �
�
1>a⇤�2

 (1 � �)t
✓
1>a⇤1>a0 �

�
1>a⇤�2 + eO (1) rt log1/2

✓
1

⌘�

◆◆

 1>a⇤1>a0 �
�
1>a⇤�2 + eO (1) (1 � �)t rt log1/2

✓
1

⌘�

◆
.

We have

(1 � �)t rt = (1 � �)t M

vuut
tX

i=1

(1 � �)�2i = M

vuut
t�1X

i=0

(1 � �)2i

 M

s
1

1 � (1 � �)2


M
p

�

=

 
k + ⇡ � 1

2⇡
k⇢a|1>a⇤

| +

�
1>a⇤�2

2

!r
2⇡⌘

k + ⇡ � 1
.

(16)

By carefully choosing ⌘max = eO
⇣

1
k4p6

⌘
and let ⌘ = ⌘max

max{1,log 1
� } , we have

1>a⇤1>at �
�
1>a⇤�2 =

C1

p
ka⇤

k
2
2 + eO (1) log1/2

✓
1

⌘�

◆ 
k + ⇡ � 1

2⇡
k⇢a|1>a⇤

| +

�
1>a⇤�2

2

!r
2⇡⌘

k + ⇡ � 1


C2

p
ka⇤

k
2
2.

Lemma 17 (Bound on a>
t a⇤). Suppose

C1
p ka⇤

k
2
2  a>

0 a⇤
 Ma, E⇠t�1g (�t) � 1 + C2

p and

�A � 2
�
1>a⇤�2

 1>a⇤1>at �
�
1>a⇤�2


C3

p
ka⇤

k
2
2

holds for 8t  T = eO
⇣

1
⌘2

⌘
and some positive constants Ma, C1, C2 > C3. If we take ⌘  C

�
k4p6 max{1, log 1

� }
��1

,

then with at least probability 1 � �, we have

C4

p
ka⇤

k
2
2  a>

t a⇤
 A + Ma +

✓
1 +

C5

p

◆
ka⇤

k
2
2 + 2

�
1>a⇤�2

for 8t  T = eO
⇣

1
⌘2

⌘
and some positive constants C4, C5.
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Proof. We only give the proof for the left side, the right side follows similar lines.

E[a>
t+1a

⇤
|Ft] =

✓
1 �

⌘ (⇡ � 1)

2⇡

◆
a>

t a⇤ +
⌘ (Eg (�t) � 1)

2⇡
ka⇤

k
2
2 +

⌘

2⇡

⇣�
1>a⇤�2

� 1>a⇤1>at

⌘

�

✓
1 �

⌘ (⇡ � 1)

2⇡

◆
a>

t a⇤ + ⌘
C2 � C3

2⇡p
ka⇤

k
2
2.

Denote C = C2�C3
2⇡p ka⇤

k
2
2 and Gt =

⇣
1 �

⌘(⇡�1)
2⇡

⌘�t ⇣
a>

t a⇤
�

2⇡
⇡�1C

⌘
. The above inequality changes to

E[Gt+1|Ft] � Gt.

Denote Et = {8⌧  t, a>
⌧ a⇤

�
C4
p ka⇤

k
2
2} for some constant C4 = min{

C1
2 , C2�C3

2(⇡�1)}. Then, for all t, Gt+11Et satisfies

E[Gt+11Et |Ft] � Gt1Et � Gt1Et�1 .

Thus, {Gt+11Et} is submartingale.

We have the following bound of the difference between Gt+11Et and E[Gt+11Et ].

dt+1 , |Gt+11Et � E[Gt+11Et |Ft]|

= ⌘

✓
1 �

⌘ (⇡ � 1)

2⇡

◆�t�1 �����
⇡ � 1

2⇡
✏>
t a⇤ +

Eg (�⇠t) � g (�⇠t)

2⇡
ka⇤

k
2
2 �

1>a⇤1>✏t

2⇡

����

 ⌘

✓
1 �

⌘ (⇡ � 1)

2⇡

◆�t�1
 

⇡ � 1

2⇡
⇢aka⇤

k2 +
ka⇤

k
2
2

2⇡
+

|1>a⇤
|k⇢a

2⇡

!

= (1 � �)�t�1 M,

where � = ⌘(⇡�1)
2⇡ and M = ⌘

⇣
⇡�1
2⇡ ⇢aka⇤

k2 +
ka⇤k2

2
2⇡ + |1>a⇤|k⇢a

2⇡

⌘
.

Denote rt =
qPt

i=0 d2
i . By Azuma’s Inequality again, we have

P
✓

Gt1Et�1 � G0  � eO (1) rt log
1
2

✓
1

⌘�

◆◆
 exp

0

@�

eO (1) r2
t log

⇣
1
⌘�

⌘

2
Pt

i=0 d2
i

1

A = eO
�
⌘2�

�
.

Therefore, with at least probability 1 � eO
�
⌘2�

�
, we have

Gt1Et�1 � G0 � eO (1) rt log
1
2

✓
1

⌘�

◆
.

This means that when Et�1 holds, with at least probability 1 � eO
�
⌘2�

�
,

a>
t a⇤

� (1 � �)t
✓

a>
0 a⇤

�
2⇡

⇡ � 1
C � eO (1) rt log

1
2

✓
1

⌘�

◆◆
+

2⇡

⇡ � 1
C � C6 � eO (1) (1 � �)t rt log

1
2

✓
1

⌘�

◆
,

where C6 = min{
C1
p ka⇤

k
2
2,

2⇡
⇡�1C}. Following similar lines to (16), we have

(1 � �)t rt 
M
p

�
=

 
⇡ � 1

2⇡
⇢aka⇤

k2 +
ka⇤

k
2
2

2⇡
+

|1>a⇤
|k⇢a

2⇡

!r
2⇡⌘

⇡ � 1
.

With a proper step size ⌘ 
�
k4p6 max{1, log 1

� }
��1

, we then have

a>
t a⇤

� C6 � eO (1) log
1
2

✓
1

⌘�

◆ 
⇡ � 1

2⇡
⇢aka⇤

k2 +
ka⇤

k
2
2

2⇡
+

|1>a⇤
|k⇢a

2⇡

!r
2⇡⌘

⇡ � 1
�

C6

2
=

C4

p
ka⇤

k
2
2.
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C.4. Detailed Proof of Theorem 6

C.4.1. PROOF OF LEMMA 11

Proof. For any a 2 B0

⇣
|1>a⇤|p

k

⌘
, we have

1>a  kak1 

p

kkak2  |1>a⇤
|,

1>a � �kak1 � �

p

kkak2 � �|1>a⇤
|.

Thus, we have

|1>a|  |1>a⇤
|,

which is equivalent to the following inequality.

�2
�
1>a⇤�2

 1>a⇤1>a �
�
1>a⇤�2

 0.

By this inequality, we prove that a 2 AC3 .

C.4.2. PROOF OF LEMMA 12

Proof. For calculation simplicity, we rescale w and ⇠ by ⇢w. Specifically, For any w 2 S0(1), define ⌫ = ⇢�1
w w and

r⌫ , k⌫k2 = kwk2/⇢w = 1/⇢w, where ⇢w = ⌦
�
p2
�

and r⌫ = O
�
p�2

�
. Moreover, let ⇣ , ⇠/⇢w ⇠ unif(B0(1)). Then

we have \(v + ⇣, w⇤) = \(w + ⇣, w⇤).

Without loss of generality, we assume w⇤ = (1, 0, ..., 0)> . To calculate the expectation, we need to rewrite ⌫ in the
p-dimension polar coordinate system as discussed in Section B. Specifically, ⌫ can be written as ⌫ = (r, ✓1, ✓2, ..., ✓p�1),
where r � 0, ✓i 2 [0, ⇡], i = 1, 2, ..., p � 2, ✓p�1 2 [0, 2⇡] and ✓1 = arccos(⌫1/k⌫k) = \(w, w⇤). Moreover, under the
polar coordinate, ⌫ + ⇣ is expressed as (r⇣ , ✓⇣

1 , ✓⇣
2 , ..., ✓⇣

p�1). We then have

✓⇣
1 = arccos

⌫1 + ⇣1

k⌫ + ⇣k2

= \(v + ⇣, w⇤) = �⇠,

where ⇣ = (⇣1, ⇣2, · · · , ⇣p).
Therefore, for sufficiently large ⇢w we have

E⇠ (⇡ � �⇠) cos �⇠ + sin �⇠ = E⇣

⇣
⇡ � ✓⇣

1

⌘
cos ✓⇣

1 + sin ✓⇣
1

=

Z

B0(1)

✓
⇡ � arccos

⌫1 + x1

k⌫ + xk2

◆
⌫1 + x1

k⌫ + xk2

+ sin arccos
⌫1 + x1

k⌫ + xk2

�
1

V (1)
dx

=

Z

B⌫(1)

✓
⇡ � arccos

x1

kxk2

◆
x1

kxk2

+ sin arccos
x1

kxk2

�
�
�p

2 + 1
�

⇡p/2
dx

�

Z

B0(1�r⌫)

✓
⇡ � arccos

x1

kxk2

◆
x1

kxk2

+ sin arccos
x1

kxk2

�
�
�p

2 + 1
�

⇡p/2
dx

=

Z 1�r⌫

0
rp�1dr

�
�p

2 + 1
�

⇡p/2

Z ⇡

0
((⇡ � ✓1) cos ✓1 + sin ✓1) sinp�2 ✓1d✓1

Z ⇡

0
· · ·

Z ⇡

0

Z 2⇡

0
sinp�3 ✓2 · · · sin ✓p�2d✓2 · · · d✓p�1

We then apply Lemma 10 by taking f(✓) = (⇡ � ✓) cos ✓ + sin ✓ and get the following result.

E⇠ (⇡ � �⇠) cos �⇠ + sin �⇠

= Lp (r⌫) Ap (f) = MpAp (f) + (Lp (r⌫) � Mp) Ap (f)

=

�
⇣p

2

⌘
�

✓
p + 2

2

◆

�

✓
p + 1

2

◆2 � O

✓
1

p

◆
= 1 +

1

2p
+

1

8p2
+ · · · � O

✓
1

p

◆
= 1 + ⌦

✓
1

p

◆
,
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where the last equality is due to the Taylor expansion of first term at p = +1, i.e.

�
⇣p

2

⌘
�

✓
p + 2

2

◆

�

✓
p + 1

2

◆2 = 1 +
1

2p
+

1

8p2
+ o

✓
1

p2

◆
.

Similarly, we have

E⇠�⇠ = E⇣✓
⇣
1 =

Z

B⌫(1)

✓
arccos

x1

kxk2

◆
�
�p

2 + 1
�

⇡p/2
dx 

Z

B0(1+r⌫)

✓
arccos

x1

kxk2

◆
�
�p

2 + 1
�

⇡p/2
dx

=

 Z 1+r⌫

0
rp�1dr

�
�p

2 + 1
�

⇡p/2

Z ⇡

0
✓1 sinp�2 (✓1) d✓1

!✓Z ⇡

0
· · ·

Z ⇡

0

Z 2⇡

0
sind�3 ✓2 · · · sin ✓d�2d✓1 · · · d✓d�1

◆
.

We then apply Lemma 10 by taking g(✓) = ✓ and get the following result.

E⇠�⇠ = Hp (r⌫) Ap (g) = MpAp (g) + (Hp (r⌫) � Mp) Ap (g)

=
⇡

2
+ O

✓
1

p

◆


3⇡

4
.

C.4.3. PROOF OF LEMMA 13

Proof. Denote Et = {8⌧  t, a⌧ 2 AC2,C3}. Then, by Theorem 5, when (w, a) 2 AC2,C3 , we have

h�E⇠,✏raL (wt + ⇠, at + ✏) , a⇤
� ati �

C

p
kat � a⇤

k
2
2,

for some constant C.

We next bound the expectation of the norm of the perturbed gradient.

E⇠,✏kraL (wt + ⇠, at + ✏)k2
2 = E⇠,✏kraL (wt + ⇠, at + ✏) � raL (w⇤, a⇤)k2

2

= E⇠,✏

����
1

2⇡

�
11> + (⇡ � 1) I

�
(at + ✏ � a⇤) �

g (�⇠) � ⇡

2⇡
a⇤
����

2

2


1

2⇡2
E⇠,✏

���11> + (⇡ � 1) I
�
(at + ✏ � a⇤)

��2

2
+

1

2
ka⇤

k
2
2


(k + ⇡ � 1)2

⇡2

⇣
kat � a⇤

k
2
2 + ⇢2

a

⌘
+

1

2
ka⇤

k
2
2.

Therefore, the expectation E
h
kat+1 � a⇤

k
2
21Et

i
can be bounded as follows.

E
h
kat+1 � a⇤

k
2
21Et

i
= E

h
kat � a⇤

k
2
21Et

i
� 2E [h�⌘E⇠,✏raL (wt + ⇠, at + ✏) , a⇤

� ati1Et ]

+ E
h
k⌘raL (wt + ⇠, at + ✏)k2

21Et

i



 
1 � ⌘

C

p
+ ⌘2 (k + ⇡ � 1)2

⇡2

!h
Ekat � a⇤

k
2
21Et

i

+
⌘2 (k + ⇡ � 1)2

⇡2
⇢2

a +
⌘2

2
ka⇤

k
2
2

 (1 � �1)Ekat � a⇤
k
2
21Et�1 + b1,
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where �1 = ⌘ C
p � ⌘2 (k+⇡�1)2

⇡2 and b1 = ⌘2(k+⇡�1)2

⇡2 ⇢2
a + ⌘2

2 ka⇤
k
2
2.

Note that Et implies that kat � a⇤
k
2
2 �

1
4ka⇤

k
2
2, then we have

1

4
ka⇤

k
2
2P (Et)  E

h
kat � a⇤

k
2
21Et

i
 E

h
kat � a⇤

k
2
21Et�1

i
 (1 � �1)

t
ka0 � a⇤

k
2
2 +

b1

�1
. (17)

With our choice of small ⌘, we have �1 = O (⌘/p) 2 (0, 1), b1
�1


1
8ka⇤

k
2
2. Thus when t = eO

⇣
p
⌘

⌘
, we have P (Et) 

1
2 .

We recursively apply the same procedure with log 1
� times, and after T0 = eO

⇣
p
⌘ log 1

�

⌘
, we have P (ET0) < �, which

implies that with probability at least 1 � �, there exists ⌧11  T0 such that

C2

p
ka⇤

k
2
2  a>

⌧11
a⇤ and ka⌧11 � a⇤/2k

2
2  ka⇤

k
2
2,

for some constant C2. Moreover, ka⌧11 � a⇤/2k
2
2  ka⇤

k
2
2 further implies a>

⌧11
a⇤

 2ka⇤
k
2
2. Thus, we have

C2

p
ka⇤

k
2
2  a>

⌧11
a⇤

 2ka⇤
k
2
2.

Then by Lemma 16 and Lemma 17, we get the desired result.

C.4.4. PROOF OF LEMMA 14

Proof. When ⇢w is sufficiently large, with probability 1 � �, the norm of perturbed gradient w.r.t. w, i.e., krwL(w, a)k, is
at least O (⇢w) once in log 1

� steps. Thus, with at least probability 1 � �, there exists t  log 1
� such that

w>
t w⇤ = �1 + O

�
⌘2⇢2

w

�
.

We take this point as w0 in the later proof. Recall that ewt = wt�1 � ⌘
�
I � wt�1w>

t�1

�
rwL and wt = ProjS0(1) ( ewt) .

Without loss of generality, we assume ew>
t+1w

⇤
 0, otherwise we already have 1 + w>

t+1w
⇤

� 1. Notice that k ewt+1k2 � 1,
we then have

1 + w>
t+1w

⇤ =1 +
ew>

t+1w
⇤

k ewt+1k2

� 1 + ew>
t+1w

⇤

=1 + w>
t w⇤

� ⌘w⇤> �
I � wtw

>
t

�
rwL(wt + ⇠, at + ✏)

=1 + w>
t w⇤ +

⌘

2⇡
(1 + w>

t w⇤)(1 � w>
t w⇤)(at + ✏)>a⇤ (⇡ � �⇠) � ⌘w⇤> �

I � wtw
>
t

� ⇣kat + ✏k2
2

2

+

P
i 6=j (at,i + ✏i) (at,j + ✏j)

2⇡
�

(at + ✏)> a⇤ sin �⇠

2⇡

1

kwt + ⇠k2

�

P
i 6=j (at,i + ✏i) a⇤

j

2⇡

1

kwt + ⇠k2

⌘
⇠.

Thus, we have

E
�
1 + w>

t+1w
⇤
|Ft

�
�(1 + w>

t w⇤)
⇣
1 +

⌘

2⇡
(1 � w>

t w⇤)a>
t a⇤ (⇡ � E⇠�⇠)

⌘

+ ⌘E⇠

�
w⇤

� w>
t w⇤wt

�T
✓

a>
t a⇤ sin �⇠

2⇡

1

kwt + ⇠k2

+

P
i 6=j at,ia⇤

j

2⇡

1

kwt + ⇠k2

◆
⇠

=(1 + w>
t w⇤)

⇣
1 +

⌘

2⇡
(1 � w>

t w⇤)a>
t a⇤ (⇡ � E⇠�⇠)

⌘
+

⌘

2⇡
a>

t a⇤E⇠
sin �⇠

�
w⇤

� w>
t w⇤wt

�T
⇠

kwt + ⇠k2

,

where the last line is due to (12).

We next show that

E⇠
sin �⇠

�
w⇤

� w>w⇤w
�T

⇠

kw + ⇠k2

� 0 (18)
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Let �x = \(x, w⇤).

E⇠
sin �⇠

�
w⇤

� w>w⇤w
�T

⇠

kw + ⇠k2

=

Z

Bw(⇢w)

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx. (19)

=

Z

Bw(⇢w)\B�w(⇢w)

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx (20)

+

Z

Bw(⇢w)\B�w(⇢w)

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx. (21)

Let’s calculate these two integrals separately. For the first integral,
Z

Bw(⇢w)\B�w(⇢w)

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx

=

Z

Bw(⇢w)\B�w(⇢w),(w⇤�w>w⇤w)>x>0

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx

+

Z

Bw(⇢w)\B�w(⇢w),(w⇤�w>w⇤w)>x<0

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx

By the symmetric property with respect to the origin, we have
Z

Bw(⇢w)\B�w(⇢w)

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx = 0.

For the second integral, let’s consider the the symmetric point of x with respect to the vector w, i.e., ex = 2w>xw � x. We
have the following properties:

kexk2 = kxk2, kw + xk2 = kw + exk2, and
�
w⇤

� w>w⇤w
�> ex = �

�
w⇤

� w>w⇤w
�>

x.

We further have

sin �ex =
p

1 � cos2 �ex =

s

1 �

✓
(w⇤)>ex
kexk2

◆2

=

s

1 �

✓
(2w>x(w⇤)>w � (w⇤)>x)

kxk2

◆2

=

vuut1 �

✓
(w⇤)>x

kxk2

◆2

+

 
(4w>x(w⇤)>w [(w⇤)>x � w>x(w⇤)>w]

kxk
2
2

!
.

Since x 2 Bw (⇢w) \B�w (⇢w) , we have kx + wk
2
2 � ⇢2

w � kx � wk
2
2, which implies w>x � 0. Moreover, when

,
�
w⇤

� w>w⇤w
�>

x > 0, we have (w⇤)>x � w>x(w⇤)>w � 0. Together with (w⇤)>w  0, a we have

sin �ex  sin �x.

Then the second integral can be estimated as follows.
Z

Bw(⇢w)\B�w(⇢w)

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx

=

Z

Bw(⇢w)\B�w(⇢w),(w⇤�w>w⇤w)>x>0

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx

+

Z

Bw(⇢w)\B�w(⇢w),(w⇤�w>w⇤w)>x<0

1

V (⇢w)

sin(�x)
�
w⇤

� w>w⇤w
�>

x

kxk2

dx

=

Z

Bw(⇢w)\B�w(⇢w),(w⇤�w>w⇤w)>x>0

1

V (⇢w)

�
w⇤

� w>w⇤w
�>

x

kxk2

(sin(�x) � sin(�ex))dx

�0
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Thus, combining the above calculations for two integrals, (18) is proved. Then with the fact that a>
t a⇤

� ma > 0 for all t,
we have

E
�
1 + w>

t+1w
⇤
|Ft

�
� (1 + w>

t w⇤)
⇣
1 +

⌘

2⇡
(1 � w>

t w⇤)a>
t a⇤ (⇡ � E⇠�⇠)

⌘

� (1 + C1
⌘

p
)(1 + w>

t w⇤),

for some positive constant C1.

Thus,

E
�
1 + w>

t w⇤�
� (1 + C1

⌘

p
)t(1 + w>

0 w⇤).

When t = eO( p
⌘ log 1

⌘ ), we have E
�
1 + w>

t w⇤�
� C2 for some constant C2 2 (�1, 0). Thus, with constant probability

we have 1 + w>
t w⇤

� C2. And We could have with at least probability 1 � �, 1 + w>
⌧12

w⇤
� C2 for some ⌧12 =

eO
⇣

p
⌘ log 1

⌘ log 1
�

⌘
.

C.4.5. PROOF OF LEMMA 15

Proof. Recall that we have �1 < C4  w>
0 w⇤

 0 and ma  a>
t a⇤

 Ma for all t.

Our proof has two steps.

Step 1: We show that w>
t w⇤ have a lower bound C4�1

2 with probability 1 � � for 8t  eO
⇣

1
⌘2

⌘
.

Denote Et = {8⌧  t, w>
⌧ w⇤

�
C4�1

2 } ⇢ Ft. Then if Et holds, we have (w⌧ , a⌧ ) 2 K(C4�1)/2,ma,Ma
for 8⌧  t. Recall

that ewt+1 is defined as

ewt+1 = wt �
�
I � wtw

>
t

�
rwL (wt + ⇠t, at + ✏t) ,

and

wt+1 = ProjS0
( ewt+1) .

By Theorem 5, when (w, a) 2 K(C4�1)/2,ma,Ma
, we have

h�E⇠,✏

�
I � ww>�

rwL (w + ⇠, a + ✏) , w⇤
� wi �

ma (1 + C4)

32
kw � w⇤

k
2
2 � �,

where � = O (k/⇢w).
Moreover, we have the bound on expectation of the norm of the perturbed (manifold) gradient.

E⇠,✏

���I � ww>�
rwL (w + ⇠, a + ✏)

��2

2
=
E✏

⇣
(a + ✏)> a⇤

⌘2
E⇠ (⇡ � �)2

2⇡2
w⇤> �

I � ww>�w⇤

+ 2E⇠,✏

⇣
ka + ✏k2

2

2
+

P
i 6=j (ai + ✏i) (aj + ✏j)

2⇡
�

(a + ✏)> a⇤ sin �⇠

2⇡

1

kw + ⇠k2

�

P
i 6=j (ai + ✏i) a⇤

j

2⇡

1

kw + ⇠k2

⌘2
⇠> �

I � wwT
�
⇠


M2

a + ⇢2
aka⇤

k
2
2

2
+ C1k

2⇢2
w⇢2

a,

where C1 is a constant.
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Combine the above two inequalities, we get

E[k ewt+1 � w⇤
k
2
21Et |Ft] =kwt � w⇤

k
2
21Et � 2h�⌘E⇠t,✏trwL (wt + ⇠t, at + ✏t) , w⇤

� wti1Et

+ E⇠t,✏t

��⌘
�
I � wtw

>
t

�
rwL (wt + ⇠t, at + ✏t)

��2

2
1Et



✓
1 �

⌘ma (1 + C4)

16

◆
kwt � w⇤

k
2
21Et +

0

@⌘� +
⌘2
⇣
M2

a + ⇢2
aka⇤

k
2
2

⌘

2
+ ⌘2C1k

2⇢2
w⇢2

a

1

A1Et

= (1 � �2) kwt � w⇤
k
2
21Et + b21Et ,

where �2 = O (⌘/p), b2 = O (⌘k/⇢w) and b2
�2

 min{
1+C4

2 , 1
4} by proper choice of small ⌘ and large ⇢w.

We next show that kwt+1 � w⇤
k
2
2  k ewt+1 � w⇤

k
2
2. We first have the following inequality.

k ewt+1k
2
2 = kwtk

2
2 +

��⌘
�
I � wtw

>
t

�
rwL (wt + ⇠, at + ✏)

��2

2
� 1.

Since we have w>
t+1w

⇤
 1, we obtain

k ewt+1 � w⇤
k
2
2 = 1 + k ewt+1k

2
2 � 2k ewt+1k2w

>
t+1w

⇤

� 1 + 1 � 2w>
t+1w

⇤ = kwt+1 � w⇤
k
2
2.

The above inequality comes from a2
� 2ab + 1 � 2 � 2b , a + 1 � 2b for a � 1. Therefore, we have

E[kwt+1 � w⇤
k
2
21Et |Ft]  (1 � �2) kwt � w⇤

k
2
21Et + b21Et .

Denote Gt = (1 � �2)
�t
⇣
kwt � w⇤

k
2
2 �

b2
�2

⌘
, the above recursive relation becomes

E[Gt+11Et |Ft]  Gt1Et  Gt1Et�1 .

Thus, {Gt1Et} is a supermartingale.

We then have the following bound.

dt , |Gt1Et�1 � E[Gt1Et�1 |Ft�1]| = (1 � �2)
�t

|kwt � w⇤
k
2
2 � E[kwt � w⇤

k
2
2|Ft�1]|

 (1 � �2)
�t (⌘ (Ma + ⇢aka⇤

k2) + C2⌘k⇢w)

= (1 � �2)
�t M2,

where M2 = O (⌘k⇢w).

Denote rt =
qPt

i=0 d2
i . By Azuma’s Inequality,

P
✓

Gt1Et�1 � G0 � eO (1) rt log
1
2

✓
1

⌘2�

◆◆
 exp

0

@�

eO (1) r2
t log

⇣
1

⌘2�

⌘

2
Pt

i=0 d2
i

1

A = eO
�
⌘2�

�

Therefore, with at least probability 1 � eO
�
⌘2�

�
, we have

kwt � w⇤
k
2
2  (1 � �2)

t
✓

kw0 � w⇤
k
2
2 �

b2

�2

◆
+ eO (1) (1 � �2)

t rt log
1
2

✓
1

⌘2�

◆
+

b2

�2

 kw0 � w⇤
k
2
2 + eO (1)

M
p

�2
log

1
2

✓
1

⌘2�

◆
+

b2

�2

 3 � C4,
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where the last line is true by our choice of small ⌘.

The above inequality shows that w>
t w⇤

�
C4�1

2 holds with at least probability 1 � O
�
⌘2�

�
, which implies that Et holds

with at least probability 1 � O
�
⌘2�

�
when Et�1 holds. Hence, with at least probability 1 � �, we have w>

t w⇤
�

C4�1
2 for

all t  eO
⇣

1
⌘2

⌘
.

Step 2: We show that if the result in Step 1 holds, there exists ⌧13 = eO
⇣

p
⌘ log 1

�

⌘
such that �⌧13 

⇡
3 and �t stays in the

region
n

�
���� 

5⇡
12

o
with probability 1 � � during the later eO

⇣
1
⌘2

⌘
steps.

Following similar lines to Step 1, we have
E[Gt+1|Ft]  Gt,

where Gt = (1 � �2)
�t
⇣
kwt � w⇤

k
2
2 �

b2
�2

⌘
.

Thus, recall that �2 = O(⌘/p), b2
�2


1
4 , and let t = eO

⇣
p
⌘

⌘
, and we know that

E[kwt � w⇤
k
2
2|Ft�1]  (1 � �2)

t
kw0 � w⇤

k
2
2 +

b2

�2


1

2
.

By Markov Inequality, we know

P
⇣
kwt � w⇤

k
2
2 � 1

⌘


1

2
.

We recursively apply the above inequality with log 1
� times. Then, with at most ⌧13 = eO

⇣
1
⌘ log 1

�

⌘
,we have

P
⇣
�⌧13 

⇡

3

⌘
= P

⇣
kw⌧13 � w⇤

k
2
2  1

⌘
� 1 � �.

For notational simplify, we assume �0 
⇡
3 in the later proof. We will show that �t stays in the region

n
�
���� 

5⇡
12

o
with

high probability during the later eO
⇣

1
⌘2

⌘
steps.

Denote Ht = {8⌧  t, �⌧ 
5⇡
12 }. With the similar argument in Step 1, when Ht�1 holds, with at least probability

1 � eO
�
⌘2�

�
, we have

kwt � w⇤
k
2
2  (1 � �2)

t
✓

kw0 � w⇤
k
2
2 �

b2

�2

◆
+

b2

�2
+ eO (1) (1 � �2)

t rt log
1
2

✓
1

⌘�

◆

 kw0 � w⇤
k
2
2 +

b2

�2
+ eO (1)

M
p

�2
log

1
2

✓
1

⌘�

◆
 1.4,

which implies that �t 
5⇡
12 , i.e., Ht holds.

Hence, for all t  T = eO
⇣

1
⌘2

⌘
, we have �t 

5⇡
12 with at least probability 1 � �.

Combining the above two steps, with probability 1 � �, we have �t  5⇡/12 for all t’s such that ⌧13  t  T = eO(⌘�2),
where ⌧13 = eO

⇣
p
⌘ log 1

�

⌘
.

D. Proof for Phase II

D.1. Technical Lemma

The next lemma shows that perturbed GD imitates the behavior of GD, when the noise is small enough. Thus, it can finally
converge to the global optimum.
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Lemma 18. Denote g (�) = (⇡ � �) cos � + sin �, ⇠ ⇠ unif (B0 (1)) 2 Rd
and w 2 Rd

, kwk2 = 1. Define

�⇠ = arccos
v> (w + ⇢⇠)

kvk2 kw + ⇢⇠k2

, � = arccos
v>w

kvk2 kwk2

.

Suppose � 
⇡
2 and ⇢ < 1. Then we have

E⇠�⇠  U (1)
� (⇢) , E⇠ (⇡ � g (�⇠))

2
 U (2)

� (⇢) , E⇠g (�⇠) � U (3)
� (⇢) .

where lim
⇢!0

U (1)
� (⇢) = �, lim

⇢!0
U (2)

� (⇢) = (⇡ � g (�))2, lim
⇢!0

U (3)
� (⇢) = g (�) and U (1)

� (⇢), U (2)
� (⇢) is non-decreasing,

U (3)
� (⇢) is non-increasing. Moreover, we have

|E⇠�⇠ � �| = O (⇢) , |E⇠ (⇡ � g (�⇠))
2

� (⇡ � g (�))2 | = O (⇢) , |E⇠g (�⇠) � g (�) | = O (⇢) .

Proof. Without loss of generality, let v = (1, 0, ..., 0)>. Then since � 
⇡
2 , we have w1 � 0.

We find the upper bound of �⇠ = arccos w1+⇢⇠1

kw+⇢⇠k2
, when ⇢ and w are fixed. �⇠ could be explained as the angle between

X and v, where X = w + ⇢⇠ 2 Bw (⇢). Thus, �⇠ achieves the maximum when X is tangent to Bw (⇢). This means that
(w + ⇢⇠)> ⇢⇠ = 0 and k⇠k2 = 1, which is equivalent to w>⇠ + ⇢ = 0 and k⇠k2 = 1. This leads to kw + ⇢⇠k2 =

p
1 � ⇢2.

Therefore, to get the upper bound of �⇠, we need the lower bound of ⇠1. This is formulated as following,

min ⇠1 s.t.
X

i

wi⇠i + ⇢ = 0,
X

i

w2
i = 1,

X

i

⇠2
i = 1.

By the Lagrange multiplier method, we have ⇠⇤
1 = �

p
(1 � ⇢2) (1 � w2

1) � ⇢w1. Thus,

�⇠  arccos

✓
w1

p
1 � ⇢2 � ⇢

q
1 � w2

1

◆
, U (1)

� (⇢) .

Moreover, with the same argument above, we have

�⇠ � arccos

✓
w1

p
1 � ⇢2 + ⇢

q
1 � w2

1

◆
.

Therefore, we have |E⇠�⇠ � �| = |E⇠�⇠ � arccos w1|  C1⇢.

Since g (�) is decreasing, (⇡ � g (�))2 is increasing and both of them are Lipschitz continuous, we have

E⇠ (⇡ � g (�⇠))
2



⇣
⇡ � g

⇣
U (1)

� (⇢)
⌘⌘2

, U (2)
� (⇢) , E⇠g (�⇠) � g

⇣
U (1)

� (⇢)
⌘
, U (3)

� (⇢) ,

|E⇠ (⇡ � g (�⇠))
2

� (⇡ � g (�))2 |  C2⇢, |E⇠g (�⇠) � g (�) |  C3⇢.

By simple manipulation, one can easily verify that lim
⇢!0

U1
� (⇢) = �, lim

⇢!0
U2

� (⇢) = (⇡ � g (�))2, lim
⇢!0

U3
� (⇢) = g (�) and

U (1)
�

0
(⇢) � 0, U (2)

�

0
(⇢) � 0, U (3)

�

0
(⇢)  0.

D.2. Proof for Theorem 7

Proof. When ⇢w < 1, we have

E⇠
sin �⇠

�
w⇤

� w>w⇤w
�>

⇠

kw + ⇠k2

 C1

q
1 � (w>w⇤)2⇢w = O(⇢w)
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Taking ⇢w = O
⇣

�
kp

⌘
to be small enough and combining (12), we have

h�E⇠,✏

�
I � ww>�

rwL (w + ⇠, a + ✏) , w⇤
� wi �

a>a⇤ (⇡ � E⇠�⇠)

2⇡

�
1 � (w>w⇤)2

�
� �

=
a>a⇤ (⇡ � E⇠�⇠)

4⇡

�
1 + w>w⇤�

kw � w⇤
k
2
2 � �

�
m (1 + C9)

16
kw � w⇤

k
2
2 � �.

Given small enough ⇢w, by Lemma 18 and kw � w⇤
k
2
2  C10�, we have

h�E⇠,✏raL (w + ⇠, a + ✏) , a⇤
� ai =

1

2⇡

�
1>a � 1>a⇤�2 +

1

2⇡
((⇡ � 1) a � (E⇠g (�⇠) � 1) a⇤)> (a � a⇤)

=
1

2⇡

�
1>a � 1>a⇤�2 +

1

2⇡
(⇡ � E⇠g (�⇠)) a⇤> (a � a⇤) +

⇡ � 1

2⇡
ka � a⇤

k
2
2

�
⇡ � 1

2⇡
ka � a⇤

k
2
2 � �.

D.3. Proof Sketch for Theorem 8

Proof Sketch. The perturbed GD is already in the solution set of Phase I, which is actually in the dissipative region
KC9,m,M . The first lemma shows that even if the noise is reduced, our proposed algorithm never escape this set.

Lemma 19. Define �t(⇠) = \(xt + ⇠, x⇤). Assume there exists some constant C8 such that 1 + C8/p  E⇠g(�t(⇠))  ⇡
and E⇠�t(⇠) 

3⇡
4 for all t. Suppose

0 < ma  a>
0 a⇤

 Ma and �0 
5

12
⇡.

For any � 2 (0, 1), we choose step size

⌘ = C11

⇣
max

n
k4p6,

k2p

�

o
max

n
1, p log

1

�
log

1

�

o⌘�1

for some constant C11. Then with at least probability at lease 1 � �/3, we have for all t  T = eO(⌘�2),

0 < m0
a  a>

t a⇤
 M 0

a and �t 
11

24
⇡,

where m0
a = ma/2, M 0

a = 3Ma.

Lemma 19 shows that throughout sufficiently many iterations of Phase II, (wt, at)’s are at least as accurate as the initial
solution with high probability. Thus, we can guarantee that the perturbed GD algorithm stays away from the spurious local
optimum, and the benign optimization landscape in Theorem 7 holds.

The next lemma characterizes the convergence properties of the perturbed GD algorithm for w.

Lemma 20. Suppose �t 
11
24⇡ and 0 < m0

a  a>
t a⇤

 M 0
a hold for all t. For any � > 0, we choose ⇢1

w  C1
w

�
kp < 1

and ⇢a  C1
a for small enough constant C1

w and C1
a . For any � 2 (0, 1), we choose step size

⌘ = C11

⇣
max

n
k4p6,

k2p

�

o
max

n
1, p log

1

�
log

1

�

o⌘�1

for some constant C11. Then with at least probability at least 1 � �/3, we have

kwt � w⇤
k
2
2  C12�
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for all t’s such that ⌧21  t  eO(⌘�2), where C12 is a constant and

⌧21 = eO
⇣p

⌘
log

1

�
log

1

�

⌘
.

Lemma 20 shows that at ⌧21 iterations, the perturbed GD algorithm enters Rm0
a,M 0

a,C12 . Then we can characterize its
convergence properties for a, as shown in the next lemma.

Lemma 21. Suppose (wt, at) 2 Rm0
a,M 0

a,C12 holds for all t. For any � > 0, we choose ⇢1
w  C1

w
�
kp < 1 and ⇢a  C1

a for

small enough constant C1
w and C1

a . For any � 2 (0, 1), we choose step size

⌘ = C11

⇣
max

n
k4p6,

k2p

�

o
max

n
1, p log

1

�
log

1

�

o⌘�1

for some constant C11. Then with at least probability 1 � �/3, we have

kat � a⇤
k
2
2  �

for all t’s such that ⌧22  t  eO(⌘�2), where

⌧22 = eO
⇣p

⌘
log

1

�
log

1

�

⌘
.

Similar to Lemmas 13–15, the proof of Lemmas 19–21 also requires supermartingale-based analysis. See more details in
Appendix D.

Combining the above lemmas together, we take T2 = ⌧21 + ⌧22, and complete the proof of Theorem 8.

D.4. Detailed Proof of Theorem 8

D.4.1. PROOF OF LEMMA 19

Proof. Since �0 
5⇡
12 , we have g (�0) > 1.4. By Lemma 18, conditions E⇠�⇠ 

3⇡
4 and 1 + O

⇣
1
p

⌘
 E⇠g (�⇠)  ⇡ are

satisfied with our choice of small noise level ⇢w. Recall that 1>a01>a⇤
�
�
1>a⇤�2 is bounded. Then, using Lemma 16,

we have 1>at1>a⇤
�
�
1>a⇤�2 is still bounded in the same order for 8t  eO

�
⌘�2

�
with probability 1 � �/3. Combined

with Lemma 17, with probability 1 � �/3 we have m0
a  a>

t a⇤
 M 0

a in the following eO
�
⌘�2

�
steps, where m0

a = ma/2,
M 0

a = 3Ma. Then, following the same arguments in Step 2 of the proof of Lemma 6, we have �t 
1
2

�
⇡
2 + 5⇡

12

�
= 11⇡

24 in
the following eO

�
⌘�2

�
steps with probability 1 � �/3. Therefore, combining the above results together, we have the desired

results.

D.4.2. PROOF OF LEMMA 20

Proof. Recall that we have �t 
11⇡
24 and m0

a  a>
t a⇤

 M 0
a for all t. This implies that w>

t w⇤
� 0.1. Thus, we have

(wt, at) 2 K0.1,m0
a,M 0

a
for all t.

The following two steps proof is similar with Lemma 15.

Step 1: We show that there exists ⌧21 = eO
⇣

1
⌘ log 1

� log 1
�

⌘
such that kw⌧21 � w⇤

k
2
2  �/2 holds with at least probability

1 � �.

By Theorem 7, for (w, a) 2 K0.1,m0
a,M 0

a
, we have

h�E⇠,✏

�
I � ww>�

rwL (w + ⇠, a + ✏) , w⇤
� wi �

11ma

160
kw � w⇤

k
2
2 � Ma⇢w,

where Ma⇢w = O(�/p) is a small constant by our choice of ⇢w.
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Also, we have the bound on the expectation of the norm of the perturbed (manifold) gradient.

E⇠,✏

���I � ww>�
rwL (w + ⇠, a + ✏)

��2

2


M2
a + ⇢2

aka⇤
k
2
2

2
+ C1k

2⇢2
w,

for some constant C1.

Thus, denote �3 = 11ma⌘
160 and b3 = 11ma

1280 ⌘�. We have

E[k ewt+1 � w⇤
k
2
2|Ft] = kwt � w⇤

k
2
2 � 2h�⌘E⇠t,✏t

�
I � wtw

>
t

�
rwL (wt + ⇠t, at + ✏t) , w⇤

� wti

+ E⇠t,✏t

��⌘
�
I � wtw

>
t

�
rwL (wt + ⇠t, at + ✏t)

��2

2



✓
1 �

11ma⌘

160

◆
kwt � w⇤

k
2
2 + ⌘Ma⇢w +

⌘2
⇣
M2

a + ⇢2
aka⇤

k
2
2

⌘

2
+ C1⌘

2k2⇢2
w

 (1 � �3) kwt � w⇤
k
2
2 + b3,

where the last line is due to our choice of small parameters ⇢a, ⇢w and ⌘.

With same argument in the proof of Lemma 15, and we have

k ewt+1 � w⇤
k
2
2 � kwt+1 � w⇤

k
2
2.

Hence, denote Et = {8⌧  t, kw⌧ � w⇤
k
2
2 �

�
2 }, with our choice of ⌘ and t = eO

⇣
p
⌘ log 1

�

⌘
, we have

�

2
P (Et)  Ekwt � w⇤

k
2
2 = (1 � �3)Ekwt�1 � w⇤

k
2
2 + b3

 (1 � �3)
t
kw0 � w⇤

k
2
2 +

b3

�3


1

4
�.

Thus, we have P (Et)  0.5 and recursively apply the above lines for log 1
� times, we know there exists ⌧21 =

eO
⇣

p
⌘ log 1

� log 1
�

⌘
such that kw⌧21 � w⇤

k
2
2 

�
2 with at least probability 1 � �.

Step 2: We show that if kw0 � w⇤
k
2
2 

�
2 , wt stays in the region

n
w
���kw � w⇤

k
2
2  �

o
in the following eO

⇣
1
⌘2

⌘
steps with

at least probability 1 � �.

Denote Gt = (1 � �3)
�t
⇣
kwt � w⇤

k
2
2 �

b3
�3

⌘
and Ht = {8⌧  t, kw⌧ � w⇤

k
2
2  �} ⇢ Ft. From Step 1, we have

E[Gt+11Ht |Ft]  Gt1Ht  Gt1Ht�1 .

Thus, {Gt1Ht} is a supermartingale.

To apply Azuma’s Inequality, we first have to bound the difference between Gt+11Ht and E[Gt+11Ht |Ft].

dt+1 , |Gt+11Ht � E[Gt+11Ht |Ft]|  (1 � �3)
�t�1

|kwt+1 � w⇤
k
2
2 � E[kwt+1 � w⇤

k
2
2|Ft]|

 (1 � �3)
�t�1 C2⌘�

1
2 k = (1 � �3)

�t�1 M3,

where �3 = eO (⌘/p), M3 = eO
⇣
⌘�

1
2 k
⌘

.

Denote rt =
qPt

i=0 d2
i . By Azuma’s Inequality, we get

P
✓

Gt1Ht�1 � G0 � eO (1) rt log
1
2

✓
1

⌘2�

◆◆
 exp

0

@�

eO (1) r2
t log

⇣
1

⌘2�

⌘

2
Pt

i=0 d2
i

1

A = eO
�
⌘2�

�
.
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Therefore, with at least probability 1 � eO
�
⌘2�

�
, we have

kwt � w⇤
k
2
2  (1 � �3)

t
✓

kw0 � w⇤
k
2
2 �

b3

�3

◆
+ eO (1) (1 � �3)

t rt log
1
2

✓
1

⌘2�

◆
+

b3

�3

 kw0 � w⇤
k
2
2 + eO (1)

M3
p

�3
log

1
2

✓
1

⌘2�

◆
+

b3

�3
 �,

where the last line holds, since we can always find ⌘  ⌘max = eO
⇣

�
k2p

⌘
to satisfy the condition.

The above inequality shows that if Et holds, then Et+1 holds with at least probability 1 � eO
�
⌘2�

�
. Hence, with at least

probability 1 � �, we have kwt � w⇤
k
2
2  � for all t  T = eO

⇣
1
⌘2

⌘
.

Combining the above two steps, with probability 1��, we have kwt � w⇤
k
2
2  C12� for all t’s such that ⌧21  t  eO(⌘�2),

where C12 is a constant and ⌧21 = eO
⇣

p
⌘ log 1

� log 1
�

⌘
.

D.4.3. PROOF OF LEMMA 21

Proof. Our proof has two steps.
Step 1: We show that with probability at least 1 � �, there exists ⌧22 = eO

⇣
1
⌘ log 1

� log 1
�

⌘
such that ka⌧22 � a⇤

k
2
2  �/2.

Recall that (wt, at) 2 Rm0
a,M 0

a,C12 holds for all t. Then by Theorem 7, we have

h�E⇠,✏raL (w + ⇠, a + ✏) , a⇤
� ai �

⇡ � 1

2⇡
ka � a⇤

k
2
2 � �.

Following similar lines to the proof of Lemma 13, we have the bound on the expectation of the norm of the perturbed
gradient.

E⇠,✏kraL (w + ⇠, a + ✏)k2
2 = E⇠,✏kraL (w + ⇠, a + ✏) � raL (w⇤, a⇤)k2

2

= E⇠,✏

����
1

2⇡

�
11> + (⇡ � 1) I

�
(a + ✏ � a⇤) �

g (�⇠) � ⇡

2⇡
a⇤
����

2

2


1

2⇡2
E⇠,✏

���11> + (⇡ � 1) I
�
(a + ✏ � a⇤)

��2

2
+ � 

(k + ⇡ � 1)2

⇡2

⇣
ka � a⇤

k
2
2 + ⇢2

a

⌘
+ �.

Combined the above two, with ⌘max = eO
�
�/k2p

�
and ⌘  ⌘max, we have

E[kat+1 � a⇤
k
2
2|Ft] = kat � a⇤

k
2
2 � 2h�⌘E⇠t,✏traL (wt + ⇠t, at + ✏t) , a⇤

� ati + E⇠t,✏tk⌘raL (wt + ⇠t, at + ✏t)k
2
2



 
1 �

(⇡ � 1) ⌘

⇡
+ ⌘2 (k + ⇡ � 1)2

⇡2

!
kat � a⇤

k
2
2 + 2⌘� + ⌘2� +

(k + ⇡ � 1)2

⇡2
⌘2⇢2

a



 
1 �

(⇡ � 1) ⌘

⇡
+ ⌘2 (k + ⇡ � 1)2

⇡2

!
kat � a⇤

k
2
2 + 3⌘�

Thus, when ⌘ 
⇡2

25(k+⇡�1)2
, we have

E[kat+1 � a⇤
k
2
2 � 5�|Ft] 

 
1 �

(⇡ � 1) ⌘

⇡
+ ⌘2 (k + ⇡ � 1)2

⇡2

!⇣
kat � a⇤

k
2
2 � 5�

⌘
� 0.2⌘� + 5

(k + ⇡ � 1)2

⇡2
⌘2�



 
1 �

(⇡ � 1) ⌘

⇡
+ ⌘2 (k + ⇡ � 1)2

⇡2

!⇣
kat � a⇤

k
2
2 � 5�

⌘

= (1 � �4)
⇣
kat � a⇤

k
2
2 � 5�

⌘
.
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Denote Et = {8⌧  t, ka⌧ � a⇤
k
2
2 � 12�}. When t �

log

✓
ka0�a⇤k2

2
�

◆

�4
= eO

⇣
1
⌘ log 1

�

⌘
, we have

12�P (Et)  Ekat � a⇤
k
2
2 = (1 � �4)

t (ka0 � a⇤
k
2
2 � 5�) + 5�  (1 � �4)

t
ka0 � a⇤

k
2
2 + 5�  6�.

Therefore, P (Et)  0.5. Recursively applying the above lines with log 1
� times, we know that with at least probability 1 � �,

there exists ⌧22 = eO
⇣

1
⌘ log 1

� log 1
�

⌘
such that ka⌧22 � a⇤

k
2
2  12�. Rescaling �, we get the desired result.

Step 2: We show that, if ka0 � a⇤
k
2
2  �/2, then at stays in the region

n
a
���ka � a⇤

k
2
2  �

o
in the next eO

⇣
1
⌘2

⌘
steps with

probability at least 1 � �.

Denote Gt = (1 � �4)
�t
⇣
kat � a⇤

k
2
2 � 5�

⌘
and Ht = {8⌧  t, kat � a⇤

k
2
2  6�}. With the same argument in Step 1,

we have
E[Gt+11Ht |Ft]  Gt1Ht  Gt1Ht�1 .

Thus, {Gt1Ht} is a supermartingale.

To use Azuma’s Inequality, we first have to bound the difference between Gt+11Ht and E[Gt+11Ht |Ft].

dt+1 , |Gt+11Ht � E[Gt+11Ht |Ft]|

= (1 � �4)
�t�1

���kat+1 � a⇤
k
2
2 � E[kat+1 � a⇤

k
2
2|Ft]

���1Ht

 (1 � �4)
�t�1 (C1⌘�

1
2 k + C2⌘

2k2) = (1 � �4)
�t�1 M4,

for some positive constant C1 and C2, where �4 = eO (⌘), M4 = eO
⇣
⌘�

1
2 k
⌘

.

Denote rt =
qPt

i=0 d2
i . By Azuma’s Inequality,

P
✓

Gt1Ht�1 � G0 � eO (1) rt log
1
2

✓
1

⌘2�

◆◆
 exp

0

@�

eO (1) r2
t log

⇣
1

⌘2�

⌘

2
Pt

i=0 d2
i

1

A = eO
�
⌘2�

�
.

Therefore, with at least probability 1 � eO
�
⌘2�

�
, we have

kat � a⇤
k
2
2  (1 � �4)

t
⇣
ka0 � a⇤

k
2
2 � 5�

⌘
+ eO (1) (1 � �4)

t rt log
1
2

✓
1

⌘2�

◆
+ 5�

 ka0 � a⇤
k
2
2 + eO (1)

M
p

�4
log

1
2

✓
1

⌘2�

◆
+ 5�  6�,

where the last line holds, since we can always find ⌘  ⌘max = eO
⇣

�
k2p

⌘
to satisfy the condition. The above inequality

shows that if Ht holds, then Ht+1 holds with at least probability 1 � eO
�
⌘2�

�
. Hence, with at least probability 1 � �, we

have kat � a⇤
k
2
2  6� for all t  T = eO

⇣
1
⌘2

⌘
. Rescaling �, we have the desired results for Step 2.

Combining the above two steps, with at least probability 1 � �, we have kat � a⇤
k
2
2  � for all t’s such that ⌧22  t 

eO(⌘�2), where ⌧22 = eO
⇣

p
⌘ log 1

� log 1
�

⌘
.

E. An Additional Experiment for Training Overparameterized Neural Network

Our additional experiment still considers the regression problem under the realizable setting, where the response is generated
by a noiseless teacher network

y = f(Z, w⇤, a⇤) = (a⇤)>�(Z>w⇤).



Importance of Noise in Training Neural Networks

The student network h, however, adopts a different architecture and contains two convolutional filters, i.e.,

h(Z, w, u, a, b) = a>�(Z>w) + b>�(Z>v),

where v 2 Rp and b 2 Rk. Compared with the teach network, the student network is overparameterized. We then learn the
overparameterized student network by solving the following optimization problem:

min
w,v,a,b

F (w, v, a, b) subject to w>w = 1 and v>v = 1, (22)

where F (w, v, a, b) = 1
2EZ(h(Z, w, v, a, b) � f(Z, w⇤, a⇤))2.

Unfortunately, F (w, v, a, b) and rF (w, v, a, b) do not admit analytical forms. Therefore, we randomly sample n realizations
of Z (denoted by Zi, i = 1, ...n), and solve a finite sample approximation of (22),

min
w,v,a,b

Fn(w, v, a, b) subject to w>w = 1 and v>v = 1, (23)

where Fn(w, v, a, b) = 1
2n

Pn
i=1(h(Zi, w, v, a, b) � f(Zi, w⇤, a⇤))2.

For our experiment, we choose k = 10 and p = 15. The first 5 entries of a⇤ all equal to 1/
p

10 and the remaining entries of
a⇤ all equal to �1/

p
10. w⇤ is randomly generated over the unit sphere. We choose n = 10, 000, and expect (23) to have

an optimization landscape to (22).

We run the gradient descent algorithm to solve (23). The initialization is chosen at

w = �w⇤, v = �w⇤, a0 = (11> + (⇡ � 1)I)�1(11>
� I)a⇤ and b0 = 0.

We choose the step size ⌘ = 10�5 and run for 108 iterations. We eventually observe krFn(w, v, a, b)k2 < 10�4 and
Fn(w, v, a, b) > 0.15. We suspect that the gradient descent algorithm approaches some spurious local optimum.

F. Convergence Analysis for Perturbed-SGD

We then can characterize the estimation error of the stochastic gradient as follows.

Lemma 22. Suppose that for any �, ✏ > 0, w 2 S0(1) and a 2 B0(R), given a mini-batch size

m = poly

✓
p, k, R,

1

✏
, log

1

�

◆
,

with at least probability 1 � �, we have

���rw
bL(w, a) � rwL(w, a)

���
2

2
 ✏ and

���ra
bL(w, a) � raL(w, a)

���
2

2
 ✏.

The proof of Lemma 22 is straightforward (by simple union bound and the concentration properties of sub-exponential
random variable), and therefore omitted. Lemma 22 implies that as long as the batch size is sufficiently large, we can show
the mini-batch stochastic gradient is sufficiently accurate with high probability. Then we can adapt the convergence analysis
in Section 3, and show that P-SGD can avoid spurious local optimum with high probability in Phase I.

Theorem 23 (P-SGD escapes the spurious local optimum). Suppose ka⇤
k2  R, ⇢0

w = C0
wkp2

� 1, ⇢0
a = C0

a , a0 2

B0

⇣
|1>a⇤|p

k

⌘
and w0 2 S0(1). For any � 2 (0, 1), we choose a small enough step size

⌘ =

✓
poly

✓
p, k, R, log

1

�

◆◆�1

and a large enough mini batch-size

m = poly

✓
p, k, R, log

1

�

◆
,
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then with at least probability 1 � �, we have

ma  a>
t a⇤

 Ma and �t 
5

12
⇡

for all t’s such that bT1  t  eO(⌘�2), where ma and Ma are some constants and

bT1 = poly
⇣
p, k, R, log

1

�

⌘
.

Similarly, for Phase II, we can show that P-SGD converges to the global optimum with high probability.

Theorem 24 (P-SGD converges to the global optimum). Suppose ka⇤
k2  R, �0 

5
12⇡, 0 < ma  a>

0 a⇤
 Ma. For

any � > 0, we choose ⇢1
w  C1

w
�p
kp

< 1 and ⇢a  C1
a for small enough constant C1

w and C1
a . For any � 2 (0, 1), we

choose a small enough step size

⌘ =

✓
poly

✓
p, k, R,

1

�
, log

1

�
, log

1

�

◆◆�1

,

and a large enough batch size

m = poly

✓
p, k, R,

1

�
, log

1

�

◆
,

then with at least probability 1 � �, we have

kwt � w⇤
k
2
2  C13� and kat � a⇤

k
2
2  �

for all t’s such that bT2  t  T = eO(⌘�2), where C13 is a constant and

bT2 = poly
⇣
p, k, R,

1

�
, log

1

�

⌘
.

The proof of Lemma 22 is straightforward and therefore omitted, as the error of the mimi-batch stochastic gradient has been
well controlled by a sufficiently large batch-size.


