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Appendix

A. BayesNAS Algorithm Derivation
A.1. Algorithm Derivation

In this subsection, we explain the detailed algorithm of updating hyper-parameters for the abstracted single motif as shown
in Figure 1e. The proposition about optimization objective will be illustrated firstly.

Proposition 2 Suppose the likelihood of the architecture parameters of a neural network w could be formulated as one
exponential family distribution p(Y |w,X, s) ∼ exp

(
−ED(Y; Net(X; w); s)

)
, where D = (X,Y) is the given dataset,

s stands for the uncertainty and ED(∗) represents the energy function over data. The sparse prior with super Gaussian
distribution for each architecture parameter has been defined in equation 11. The unknown architecture parameter of the
network w and hyperparameter s can be approximately obtained by solving the following optimization problem

min
w,s
L(w, s) (A.1.1)

specially, for the architecture parameter wo′
jk which is associated with one operation of the edge ejk (j < k), the optimization

problem could be reformulated as:

L(wo′
jk, s

o′
jk) = wo′

jkH(wo′
jk

∗
)wo′

jk + 2wo′
jk

[
g(wo′

jk

∗
)−H(wo′

jk

∗
)wo′

jk

∗]
+ wo′

jks
o′
jk

−1
wo′
jk

+ log |so′jk|+ log |H(wo′
jk

∗
) + so

′
jk

−1| − 2 log b(wo′
jk

∗
)

(A.1.2)

where wo′
jk

∗
is arbitrary, and

g(wo′
jk

∗
) , ∇ED(wo′

jk)|wo′
jk

∗ ,H(wo′
jk

∗
) , ∇∇ED(wo′

jk)|wo′
jk

∗

and

b(wo′
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∗
) , exp
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2
wo′
jk

∗
H(wo′
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∗
)wo′

jk

∗ −wo′
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∗
g(wo′

jk

∗
) + ED(wo′

jk

∗
)

)}

It should also be noted that so
′
jk represents the uncertainty of wo′

jk without considering the dependency between edge eo
′
jk and∑

i<j e
o
ij , where o′ and o stands for one possible operation in corresponding edges.

Proof Given the likelihood with exponential family distribution

p(Y |wo′
jk,X, s

o′
jk) ∼ exp

(
−ED(Y; Net(X; wo′

jk); so
′
jk)
)

as explained in equation 5, we define the prior of wo
′
jk with Gaussian distribution

p(wo
′
jk) = N (wo

′
jk|0, so

′
jk)

The marginal likelihood could be calculated as:

p(Y |wo′
jk)N (wo′

jk|0, so
′
jk)dwo′

jk =

∫
exp{−ED(wo′

jk)}N (wo′
jk|0, so

′
jk)dwo′

jk (A.1.3)

Typically, this integral is intractable or has no analytical solution.

The mean and covariance can be fixed if the family is Gaussian. Performing a Taylor series expansion around some point
wo′
jk

∗
, ED(wo′

jk) can be approximated as

ED(wo′
jk) ≈ ED(wo′

jk

∗
) + (wo′

jk −wo′
jk

∗
)g(wo′

jk

∗
) +

1

2
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∗
)H(wo′

jk

∗
)(wo′

jk −wo′
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) (A.1.4)
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where g(·) is the gradient and H(·) is the Hessian of the energy function E

g(wo′
jk

∗
) , ∇ED(wo′

jk)|wo′
jk

∗ (A.1.5a)

H(wo′
jk

∗
) , ∇∇ED(wo′

jk)|wo′
jk

∗ (A.1.5b)

To derive the cost function in equation A.1.2, we introduce the posterior mean and covariance:

mo′
jk = Co

′
jk ·

[
g(wo′

jk

∗
) + H(wo′

jk

∗
)wo′

jk

∗]
, (A.1.6a)

Co
′
jk =

[
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+ H(wo′

jk

∗
)

]−1

. (A.1.6b)

Then define the following quantities
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, (A.1.7a)
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) , exp
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}
, (A.1.7b)
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) ,
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)|, (A.1.7c)
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∗
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∗
. (A.1.7d)

Now the approximated likelihood p(Y|wo′
jk) is a exponential of quadratic, then Gaussian,

p(Y|wo′
jk)
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(A.1.8)

where
A(wo′
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∗
) = (2π)M/2b(wo′
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We can write the approximate marginal likelihood as

A(wo′
jk

∗
)

∫
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(A.1.9)

where
Ê(wo′

jk) =
1

2
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jkH(wo′
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1
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jk. (A.1.10)

Equivalently, we get

Ê(wo′
jk) =

1

2
(wo′

jk −mo′
jk)(Co

′
jk)−1(wo′

jk −mo′
jk) + Ê(Y), (A.1.11)

where mo′
jk and Co

′
jk are given in equation A.1.6. From equation A.1.6a and equation A.1.6b, the data-dependent term can

be re-expressed as
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(A.1.12)

Using equation A.1.11, we can evaluate the integral in equation A.1.9 to obtain
∫

exp
{
−Ê(wo′

jk)
}
dwo′

jk = exp
{
−Ê(Y)

}
2π|Co′jk|1/2. (A.1.13)

Applying a −2 log(·) transformation to equation A.1.9, we have
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(A.1.14)

Therefore we get the following cost function to be minimised in equation A.1.2 over wo′
jk, s

o′
jk,

L(wo′
jk, s

o′
jk) = wo′

jkH(wo′
jk

∗
)wo′

jk + 2wo′
jk

[
g(wo′

jk

∗
)−H(wo′

jk

∗
)wo′

jk

∗]
+ wo′
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−1
wo′
jk

+ log |so′jk|+ log |H(wo′
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∗
) + so

′
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−1| − 2 log b(wo′
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∗
).

It can be easily found that the first line of L is quadratic programming with `2 regularizer. The second line is all about the
hyperparameter so

′
jk.

Once the estimation on wo′
jk and so

′
jk are obtained, the cost function is alternatively optimised. The new estimated wo′

jk can

substitute wo′
jk

∗
and repeat the estimation iteratively.

�
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We note that in equation A.1.5, wo′
jk

∗
may not be the mode (i.e., the lowest energy state), which means the gradient term g

may not be zero. Therefore the selection of wo′
jk(1)

∗
remains to be problematic. We give the following Corollary to address

this issue, which is more general.

Corollary 1 Suppose

wo′
jk

∗
= arg min

wo′
jk

ED(wo′
jk) + wo′

jks
o′
jk

−1
wo′
jk, (A.1.15)

we define a new cost function

L̂(wo′
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jk) , ED(wo′

jk) + wo′
jks

o′
jk

−1
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jk + log |so′jk|+ log |H(wo′
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∗
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−1| − 2 log b(wo′
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∗
). (A.1.16)

Instead of minimising L(wo′
jk, s

o′
jk), we can solve the following optimization problem to get wo′

jk, s
o′
jk,

min
wo′

jk,s
o′
jk,
L̂(wo′

jk, s
o′
jk).

Proof Since the likelihood is
p(Y|wo′

jk) = exp{−ED(wo′
jk)},

then
min
wo′

jk

ED(wo′
jk) + wo′

jks
o′
jk

−1
wo′
jk

is exactly the regularised maximum likelihood estimation with `2 type regulariser.

We look at the first part of L(wo′
jk, s

o′
jk) in equation A.1.2, and define them as

L0(wo′
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o′
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jkH(wo′
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∗
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∗
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2
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(A.1.17)

where, given equation A.1.5,
g(wo′

jk) = ∇ED(wo′
jk)

H(wo′
jk) = ∇∇ED(wo′

jk).
(A.1.18)

Such quadratic approximation to ED(wo′
jk) + wo′

jks
o′
jk

−1
wo′
jk is actually the same as the approximation procedure in Trust-

Region Methods where a region is defined around the current iterate within which they trust the model to be an adequate
representation of the objective function (Nocedal & Wright, 2006, pp.65).

To obtain each step, we seek a solution of the subproblem at iteration t

min
wo′

jk

ED(wo′
jk(t− 1)) + wo′

jks
o′
jk(t− 1)

−1
wo′
jk

= min
wo′
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1

2
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jk −wo′
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(A.1.19)

Suppose

wo′
jk

∗
= arg min

wo′
jk

ED(wo′
jk) + wo′

jks
o′
jk

−1
wo′
jk,
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then inject wo′
jk

∗
into minwo′

jk,s
o′
jk,
L(wo′

jk, s
o′
jk), we can optimise equation A.1.16 instead of equation A.1.2, i.e.,

minwo′
jk,s

o′
jk,
L̂(wo′

jk, s
o′
jk).

�

A.2. Algorithm for Proxyless Tasks

In this Section, we propose iterative optimization algorithms to estimate wo′
jk and so

′
jk alternatively.

A.2.1. OPTIMIZATION FOR ARCHITECTURE PARAMETER wo′
jk AND SWITCH so

′
jk

We first target for the estimation of unknown parameter wo′
jk and hyperparameter so

′
jk. In the sequel, we show that the stated

program can be formulated as a convex-concave procedure (CCCP) for wo′
jk and so

′
jk.

Proposition 3 The following programme
min

wo′
jk,s

o′
jk

L(wo′
jk, s

o′
jk)

with the cost function defined as

L(wo′
jk, s

o′
jk) , wo′

jkH(wo′
jk

∗
)wo′

jk + 2wo′
jk

[
g(wo′

jk

∗
)−H(wo′

jk

∗
)wo′

jk

∗]
+ wo′

jks
o′
jk

−1
wo′
jk

+ log |so′jk|+ log |so′jk
−1

+ H(wo′
jk

∗
)|

(A.2.1)

can be formulated as a convex-concave procedure (CCCP), where wo′
jk

∗
can be arbitrary real vector.

Proof Fact on convexity: the function

u
(
wo′
jk, s

o′
jk

)
=wo′

jkH(wo′
jk

∗
)wo′

jk + 2wo′
jk

[
g(wo′

jk

∗
)−H(wo′
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∗
)wo′

jk

∗]
+ wo′

jks
o′
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−1
wo′
jk

∝(wo′
jk −wo′

jk

∗
)H(wo′

jk

∗
)(wo′

jk −wo′
jk

∗
) + 2wo′

jkg(wo′
jk

∗
) + wo′

jks
o′
jk

−1
wo′
jk

(A.2.2)

is convex jointly in wo′
jk, so

′
jk due to the fact that f(x, Y ) = xY−1x is jointly convex in x, Y (see, (Boyd & Vandenberghe,

2004, p.76)). Hence u as a sum of convex functions is convex.

Fact on concavity: the function

v(so
′
jk) = log |so′jk|+ log |so′jk

−1
+ H(wo′

jk

∗
)| (A.2.3)

is jointly concave in so
′
jk, Π. We exploit the properties of the determinant of a matrix

|A22||A11 −A12A
−1
22 A21| =

∣∣∣∣∣

(
A11 A12

A21 A22

)∣∣∣∣∣ = |A11||A22 −A21A
−1
11 A12|.

Then we have

v(so
′
jk) = log |so′jk|+ log |so′jk

−1
+ H(wo′

jk

∗
)|

= log

(
|so′jk||so

′
jk

−1
+ H(wo′

jk

∗
)|
)

= log

∣∣∣∣∣∣

(
H(wo′

jk

∗
)

−so
′
jk

)∣∣∣∣∣∣

= log
∣∣∣so′jk + H−1(wo′

jk

∗
)
∣∣∣+ log

∣∣∣H(wo′
jk

∗
)
∣∣∣

(A.2.4)

which is a log-determinant of an affine function of semidefinite matrices Π, so
′
jk and hence concave.
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Therefore, we can derive the iterative algorithm solving the CCCP. We have the following iterative convex optimization
program by calculating the gradient of concave part.

wo′
jk(t) = arg min

wo′
jk

u(wo′
jk, s

o′
jk(t− 1),H(wo′

jk

∗
)), (A.2.5)

so
′
jk(t) = arg min

so
′

jk�0
u(wo′

jk, s
o′
jk(t− 1),H(wo′

jk

∗
)) +∇so

′
jk
v(so

′
jk(t− 1),H(wo′

jk

∗
))so

′
jk(t− 1). (A.2.6)

�

A.2.2. DERIVATION OF ITERATIVE REWEIGHTED `1 ALGORITHM

Using basic principles in convex analysis, we then obtain the following analytic form for the negative gradient of v(so
′
jk) at

so
′
jk is (using chain rule):

∇so
′

jk
v
(
so
′
jk,H(wo′

jk

∗
)
)
|so′jk=so

′
jk(t−1)

=∇so
′

jk

(
log |so′jk

−1
+ H(wo′

jk

∗
)|+ log |so′jk|

)
|so′jk=so

′
jk(t−1)

=−
((so

′
jk(t− 1))−1 + H(wo′

jk

∗
))−1

(so
′
jk(t− 1))2

+
1

so
′
jk(t− 1)

(A.2.7)

Combined with equation A.1.6b, we denote a new hyper-parameter wo
′
ij as following:

ωo
′
jk(t) =

√
−

((so
′
jk(t− 1))−1 + H(wo′

jk(t)))−1

(so
′
jk(t− 1))2

+
1

so
′
jk(t− 1)

=

√
so
′
jk(t− 1)− Co

′
jk(t)

so
′
jk(t− 1)

(A.2.8)

Therefore, the iterative procedures equation A.2.5 and equation A.2.6 for wo′
jk(t) and so

′
jk(t) can be formulated as

[
wo′
jk(t), so

′
jk(t)

]

= arg min
so
′

jk(t)�0,wo′
jk(t)

(wo′
jk(t)−wo′

jk

∗
)H(wo′

jk

∗
)(wo′

jk(t)−wo′
jk

∗
)

+ 2wo′
jk(t)g(wo′

jk

∗
) +


 wo′

jk(t)
2

so
′
jk(t− 1)

+ ωo
′
jk(t)

2
so
′
jk(t− 1)




= arg min
wo′

jk(t)

wo′
jk(t)H(wo′

jk

∗
)wo′

jk(t)

+ 2wo′
jk(t)

(
g(wo′

jk

∗
)−H(wo′

jk

∗
)wo′

jk(t)∗
)

+


wo′

jk(t)
2

so
′
jk(t)

+ ωo
′
jk(t)

2
so
′
jk(t)


 .

(A.2.9)

Or in the compact form
[
wo′
jk(t), so

′
jk(t)

]

= arg min
wo′

jk(t)

wo′
jk(t)H(wo′

jk

∗
)wo′

jk(t) + 2wo′
jk(t)

(
g(wo′

jk

∗
)−H(wo′

jk

∗
)wo′

jk(t)∗
)

+ wo′
jk(t)

2
so
′
jk(t)

−1
+ ωo

′
jk(t)

2
so
′
jk(t).

(A.2.10)
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Since
wo′
jk(t)

2

so
′
jk(t)

+ ωo
′
jk(t)2so

′
jk(t) ≥ 2

∣∣∣∣
√
ωo
′
jk(t)

2 ·wo′
jk(t)

∣∣∣∣ ,

the optimal so
′
jk(t) can be obtained as:

so
′
jk(t) =

|wo′
jk(t)|

√
ωo
′
jk(t)

2
,∀i. (A.2.11)

wo′
jk(t) can be obtained as follows

wo′
jk(t) = arg min

wo′
jk

1

2
wo′
jk(t)H(wo′

jk(t)
∗
)wo′

jk(t) + wo′
jk(t)

(
g(wo′

jk(t)
∗
)−H(wo′

jk(t)
∗
)wo′

jk(t)
∗)

+ ‖ωo′jk ·wo′
jk(t)‖`1 .

(A.2.12)
We can then inject this into equation A.2.11, which yields

so
′
jk(t) =

wo′
jk(t)

ωo
′
jk(t)

(A.2.13)

The update rules for so
′
jk without considering the dependency has been explained above. However, as illustrated in Sec .4,

the dependency between a node and its predecessors should not be disregarded. It means the dependency between edge eo
′
jk

and
∑
i<j e

o
ij should be taken into consideration, then Gaussian prior could be defined as equation 5 and equation 11:

p(w | s) =
∏

j<k

∏

o∈O

∏

o′∈O
p(wo

′
jk

∑

i<j

wojk) =
∏

j<k

∏

o∈O

∏

o′∈O
N (wo

′
jk

∑

i<j

woij |0, so
′
jk)

based on this prior, the uncertainty of wo′
jk(t) should be computed as:

γo
′
ij (t) =


 1∑
i<j

∑
o∈O

soij(t)
+

1

so
′
jk(t)




−1

(A.2.14)

As we found the expression of equation A.2.8, ωo
′
jk(t) is function of so

′
jk(t− 1), therefore so

′
jk(t) is function of so

′
jk(t− 1)

and wo′
jk(t). We notice that the update for wo′

jk(t) is to use the lasso or `1-regularised regression type optimization. The
pseudo code is summarised in Algorithm 1.

A.3. Algorithm for Proxy Tasks

Our algorithm can be easily transferred to the scenario of proxy tasks to find the cell. Suppose a network is assembled by
stacking O different kinds of cells together, such as ℵ1 normal cells and ℵO reduction cells in (Liu et al., 2019b). Then
optimal O cells are required to be designed in a NAS task. As explained before, we design a switch s for each architecture
parameter w to determine the “on-off” of the corresponding edge in our method. In order to find such optimal cells, we
propose that switches on the same position of the identical kind of cells should also be same. Based on this, the architecture
parameters could be divided into different groups. The general grouped architecture parameters are given as follows:

wo′
jk(t) =

[
wo′1
jk,1(t), . . . ,wo′ℵ1

jk,1 (t)
︸ ︷︷ ︸

ℵ1 elements

. . . wo′1
jk,O(t), . . . ,wo′ℵO

jk,O (t)
︸ ︷︷ ︸

ℵO elements

]
. (A.3.6)

Similar to equation A.2.11, if the group o is consist of ℵo elements, where o = 1, . . . , O, the optimal so
′
jk,o can be obtained

as:
ℵo∑

i=1


wo′

jk,o

>
(t)wo′

jk,o(t)

so
′
jk,o(t)

+ ωo
′i
jk,o(t)

2
so
′
jk,o(t)


 ≥ 2

∥∥∥∥∥∥∥

√√√√
ℵo∑

i=1

ωo
′i
jk,o(t)

2 ·wo′
jk,o(t)

∥∥∥∥∥∥∥
`2

, (A.3.7)
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Algorithm 2 The proposed Algorithm is transferable for cell selection on proxy tasks.

Initialization: γo
′
jk(0),ωo

′
jk(0),w(0) = 1; sparsity intensity λow ∈ R+; λ = 0.01; cost function LD in equation 16

Iteration:
for t = 1 to Tmax do

1. Maximum likelihood with regularization:

min
W,w

ED(·) + λw
∑

g

∑

j<k

∑

o′∈O
‖ωo′jk,g(t)wo′

jk,g‖2 + λ‖W‖22 (A.3.1)

2. Compute Hessian for w (equation C.2.2, C.3.1, C.3.2)
3. Update variables associated with w
while g ∈ (1, O); i < j < k; o, o′ ∈ O do

Co
′
jk(t) =

(
1

γo
′
jk(t− 1)

+ Ho′
jk(t)

)−1

(A.3.2)

ωo
′
jk(t) is given by A.3.9 and A.3.11 (A.3.3)

so
′
jk(t) is given by A.3.8 and A.3.10 (A.3.4)

γo
′
jk(t) is given by 6 or 8, γo

′
jk(t) =

[
γo
′
jk,1(t), . . . , γo

′
jk,1(t)

︸ ︷︷ ︸
ℵ1 elements

. . . γo
′
jk,O(t), . . . , γo

′
jk,O(t)

︸ ︷︷ ︸
ℵO elements

]
(A.3.5)

end while
4. Prune the architecture if the entropy

ln(2πeγo′
jk)

2 ≤ 0
5. Fix w = 1, train the pruned net in the standard way

end for

then

so
′
jk,o(t) =

∥∥∥wo′
jk,o(t)

∥∥∥
`2√∑ℵo

i=1 ω
o′i
jk,o(t)

2
,∀i. (A.3.8)

The calculation of ωo
′
jk,g for group o is:

ωo
′
jk,o(t) =

√√√√√
ℵo∑

i=1

√
γo
′i
jk,o(t− 1)− Co

′i
jk,o(t)

γo
′i
jk,o(t− 1)

2
(A.3.9)

and both s and ω for the different elements in identity group should keep the same:

so
′
jk(t) =

[
so
′
jk,1(t), . . . , so

′
jk,1(t)

︸ ︷︷ ︸
ℵ1 elements

. . . so
′
jk,O(t), . . . , so

′
jk,O(t)

︸ ︷︷ ︸
ℵO elements

]
(A.3.10)

ωo
′
jk(t) =

[
ωo
′
jk,1(t), . . . , ωo

′
jk,1(t)

︸ ︷︷ ︸
ℵ1 elements

. . . ωo
′
jk,O(t), . . . , ωo

′
jk,O(t)

︸ ︷︷ ︸
ℵO elements

]
(A.3.11)

It should be noted that the detailed derivation procedures can be referred to A.1 and A.2. The pseudo code is summarised in
Algorithm 2.

B. Structural Bayesian Deep Compression
In addition to applying the proposed Bayesian approach to address NAS problem, we also explore the possibility of our
method on network structural compression problem. In this section, we extend to compress deep neural networks by
proposing a series of generic and easily implemented reweighted group Lasso algorithms to solve maximization of marginal
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Algorithm 3 The proposed Algorithm is transferable for neural network compression.
Initialization: Initialization: ∀l = 1, . . . , L, ωl(0), γl(0) = 1; λl ∈ R+;
Iteration:

for t = 1 to Tmax do
1. Maximum likelihood with regularization:

min
W

ED(·) +

L∑

l=1

λlR(ωl(t) ◦W l) (B.0.1)

2. Compute the Hessian for fully connected layer and convolutional layers as Appendix. C.1 and C.2 respectively.
3. Update hyper-parameters:
{Update() specifies how to update parameters, detailed update rules are in Table S3}

γl(t)← Update(ωl(t− 1),W l(t)),Γl(t) = [γl(t)] (B.0.2)

Cl(t)←
(

(Γl(t))−1 + diag(Hl(t))
)−1

, (B.0.3)

αl(t)← − Cl(t)

γl(t)
2 +

1

γl(t)
{element-wise division} (B.0.4)

ωl(t)← Update(αl(t)) (B.0.5)

4. Prune the unimportant connections.
end for

likelihood
∫
p(Y |W)p(W)dW where p(W) can be specified as various sparse structured priors over network weights as

shown in Table S3. The proposed Algorithm is generic for the weights in fully connected and convolutional neural networks.
The training algorithm is iteratively indexed by t. Each iteration contains several epochs. Within each iteration t, there are
three parts, The first part is simply a reweighted group Lasso type optimization. In the regularization terms R(ωl ◦ W l),
each weight of layer l is scaled by a factor (ωl). The update of (ωl) needs the Hessian of each W l. The Hessian of each
layer can be computed recursively given the Hessian in the next layer through backward passing. The hyper-parameters
γl, Cl and ωl will be updated every iteration t with Tmax being the maximal iterations. αl is an introduced intermediate
variable during the update process. The pseudo code is summarized in Algorithm 3.

B.1. Structured Sparse Prior for Fully Connected and Convolutional Networks

For weight in the l-th convolutional layer W l ∈ RNl×Cl×ml×kl , some examples of the structured sparsity are shown in
Fig.S5. The corresponding sparse prior is given in the second column of Table S3. It should be noted that the prior for the
weight in fc layer could also be represented as this table with ml = kl = 1, Nl and Cl stands for the size of input feature
and output feature respectively.

B.2. Experiments

B.2.1. LENET-300-100 AND LENET-5 ON MNIST

We first perform LeNet-300-100 and LeNet-5 on MNIST dataset (LeCun, 1998). For LeNet-300-100, we apply shape-wise,
row-wise and column-wise regularization as shown in Fig. S5(a), S5(b) and S5(c), for the 2D weight matrices. The hyper-
parameters γ, ω and α are updated every ten epochs for a total of Tmax = 10 loops. The learned structure is 465− 37− 90
with 1.54% test error and 0.04 FLOPS (Molchanov et al., 2017b). Comparison with other methods can be found in Table S4.
For LeNet-5, we apply shape-wise and filter-wise regularization for the conv layer as shown in Fig. S5(a) and S5(j); row-wise
and column-wise regularization for fc layer as shown in Fig. S5(b) and S5(c). The learned structure is 5− 10− 65− 25
with 1.00% test error and 0.57 FLOPS. Comparison with other methods can be found in Table S5.
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(e) channel-wise(a) shape-wise (b) row-wise (c) column-wise (d) row & column-wise

(j) filter-wise(f) stack shape-wise (g) stack row-wise (h) stack column-wise (i) stack row & column-wise

Figure S5. some examples of structured sparsity for the 3D filters in Conv layer with extensions of (Wen et al., 2016). Coloured squares
mean the weights to be pruned. It should be noted that the FC layer can be easily enforced by (a)-(e).

B.2.2. RESNET-18 ON CIFAR-10

We also evaluate our algorithm on Cifar10 dataset using ResNet-18 as initialized backbone (He et al., 2016). In addition to
the input conv layer and output fc layer, the other 16 conv layers are separated into 8 blocks with 2 layers each. We apply
shape-wise and filter-wise regularization to the conv layer as shown in Fig. S5(a) and S5(j); row-wise and column-wise
regularization to the fc layer as shown in Fig. S5(b) and S5(c). The result is given in Table S6. It can be found that two Conv
layers in block 4 are pruned away which shows the potential of our method to reduce the number of layers.

C. Efficient Hessian Computation
C.1. Compute the Hessian of FC Layer

The mathematical operation in a fully-connected layer could be formulated as:

hoj = W o
ijai, ai = σ(hi) (C.1.1)

where hi is the pre-activation value for node i and ai is the activation value. σ() is the element-wise activation function.
Wo
ij stands for the weight matrix associated with operation o in edge eoij . In (Botev et al., 2017), a recursive method is

proposed to compute the Hessian H forWo
ij :

Ho
ij = ai · (ai)> ⊗Ho

j (C.1.2)

where ⊗ stands for Kronecker product; The pre-activation Hessian Ho
j is known and could be used to compute the

pre-activation Hessian recursively for the previous layer:

Hi = Bi(Wo
ij)
>Ho

jWo
ijBi +Di, Bi = diag(σ′(hi)), Di = diag(σ′′(hi) ◦

∂L

∂ai
) (C.1.3)

In order to reduce computation complexity, the original pre-activation Hessian H and Hessian H in Eq C.1.2-C.1.3 are
replaced with their diagonal values for recursive computation. Thus the matrix multiplication could be reduced to vector
multiplication. The hessian calculation process could be reformulated as:

Ho
ij = a2

i ⊗Ho
j (C.1.4)

Hi = B2
i ◦ (((Wo

ij)
>)2Ho

j ) +Di, Bi = σ′(Hi), Di = σ′′(Hi) ◦
∂L

∂ai
(C.1.5)
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Table S3. Hyper-parameter update rule in Algorithm3 for CNN
Category sparse prior Rl(ω ◦W) ωl γl

(a) Shape-wise
∏
cl

∏
ml

∏
kl

N (0, γcl,ml,klInl
)

Cl∑
cl=1

Ml∑
ml=1

Kl∑
kl=1

‖ωl:,cl,ml,kl
◦W l

:,cl,ml,kl
‖2

ωlo =
√∑

cl

∑
ml

∑
kl

|αl:,cl,ml,kl
|

ωl:,cl,ml,kl
= ωlo · Il:,cl,ml,kl

γlo =
‖Wl

:,cl,ml,kl
‖2

ωl
:,cl,ml,kl

(t−1)

γl:,cl,ml,kl
= γlo · Il:,cl,ml,kl

(b) Row-wise
∏
cl

∏
ml

N (0, γcl,ml
Inlkl)

Cl∑
cl=1

Ml∑
ml=1

‖ω:,cl,ml,: ◦W l
:,cl,ml,:

‖2
ωlo =

√∑
cl

∑
ml

|αl:,cl,ml,:
|

ωl:,cl,ml,:
= ωlo · Il:,cl,ml,:

γlo =
‖Wl

:,cl,ml,:
‖2

ωl
:,cl,ml,:

(t−1)

γl:,cl,ml,:
= γlo · Il:,cl,ml,:

(c) Column-wise
∏
cl

∏
kl

N (0, γcl,klInlml
)

Cl∑
cl=1

Kl∑
kl=1

‖ωl:,cl,:,kl ◦W
l
:,cl,:,kl

‖2
ωlo =

√∑
cl

∑
kl

|αl:,cl,:,kl |

ωl:,cl,:,kl = ωlo · Il:,cl,:,kl

γlo =
‖Wl

:,cl,:,kl
‖2

ωl
:,cl,:,kl

(t−1)

γl:,cl,:,kl = γlo · Il:,cl,:,kl

(d) Row & column-wise
∏
cl

∏
mlkl

N (0, γcl,mlklInl
)

W̄ l = [W l
:,cl,ml,:

,W l
:,cl,:,kl

]
ω̄l = [ωl:,cl,ml,:

, ωl:,cl,:,kl ]
Cl∑
cl=1

∑ ‖ω̄l ◦ W̄ l‖2

ωlo =
√∑

cl

∑
ml

|αl:,cl,ml,:
|+∑

cl

∑
kl

|αl:,cl,:,kl |

ωl:,cl,ml,:
= ωlo · Il:,cl,ml,:

ωl:,cl,:,kl = ωlo · Il:,cl,:,kl

γlo = ‖W̄ l‖2
ω̄l(t−1)

γl:,cl,ml,:
= γlo · Il:,cl,ml,:

γl:,cl,:,kl = γlo · Il:,cl,:,kl

(e) Channel-wise
∏
cl

N (0, γclInlmlkl)
Cl∑
cl=1
‖ωl:,cl,:,: ◦W

l
:,cl,:,:

‖2
ωlo =

√∑
cl

|αl:,cl,:,:|

ωl:,cl,:,: = ωlo · Il:,cl,:,:

γlo =
‖Wl

:,cl,:,:
‖2

ωl
:,cl,:,:

(t−1)

γl:,cl,:,: = γlo · Il:,cl,:,:

(f) Group shape-wise
∏
ml

∏
kl

N (0, γml,klInlcl)
Ml∑
ml=1

Kl∑
kl=1

‖ωl:,:,ml,kl
◦W l

:,:,ml,kl
‖2

ωlo =
√∑
ml

∑
kl

|αl:,:,ml,kl
|

ωl:,:,ml,kl
= ωlo · Il:,:,ml,kl

γlo =
‖Wl

:,:,ml,kl
‖2

ωl
:,:,ml,kl

(t−1)

γl:,:,ml,kl
= γlo · Il:,:,ml,kl

(g) Group row-wise
∏
ml

N (0, γml
Inlclkl)

Ml∑
ml=1

‖ωl:,:,ml,:
◦W l

:,:,ml,:
‖2

ωlo =
√∑
ml

|αl:,:,ml,:
|

ωl:,:,ml,:
= ωlo · Il:,:,ml,:

γlo =
‖Wl

:,:,ml,:
‖2

ωl
:,:,ml,:

(t−1)

γl:,:,ml,:
= γlo · Il:,:,ml,:

(h) Group column-wise
∏
kl

N (0, γklInlclml
)

Kl∑
kl=1

‖ωl:,:,:,kl ◦W
l
:,:,:,kl

‖2
ωlo =

√∑
kl

|αl:,:,:,kl |

ωl:,:,:,kl = ωlo · Il:,:,:,kl

γlo =
‖Wl

:,:,:,kl
‖2

ωl
:,:,:,kl

(t−1)

γl:,:,:,kl = γlo · Il:,:,:,kl

(i) Group row & column-wise
∏
mlkl

N (0, γmlklInlcl)
W̄ l = [W l

:,:,ml,:
,W l

:,:,:,kl
]

ω̄l = [ωl:,:,ml,:
, ωl:,:,:,kl ]∑ ‖ω̄l ◦ W̄ l‖2

ωlo =
√∑
ml

|αl:,:,ml,:
|+∑

kl

|αl:,:,:,kl |

ωl:,:,ml,:
= ωlo · Il:,:,ml,:

ωl:,:,:,kl = ωlo · Il:,:,:,kl

γlo = ‖W̄ l‖2
ω̄l(t−1)

γl:,:,ml,:
= γlo · Il:,:,ml,:

γl:,:,:,kl = γlo · Il:,:,:,kl

(j) Filter-wise
∏
nl

N (0, γnl
Iclmlkl)

Nl∑
nl=1
‖ωlnl,:,:,:

◦W l
nl,:,:,:

‖2
ωlo =

√∑
nl

|αlnl,:,:,:
|

ωlnl,:,:,:
= ωlo · Ilnl,:,:,:

γlo =
‖Wl

nl,:,:,:
‖2

ωl
nl,:,:,:

(t−1)

γlnl,:,:,:
= γlo · Ilnl,:,:,:

Table S4. Comparison of the learned architecture with other methods using LeNet-300-100 on MNIST dataset
Method Pruned Architecture Error Rate (%) FLOPs (M)
Baseline 784-300-100 1.39 0.53

SBP ((Neklyudov et al., 2017)) 245-160-55 1.60 0.10
BC-GNJ ((Louizos et al., 2017)) 278-98-13 1.80 0.06
BC-GHS ((Louizos et al., 2017)) 311-86-14 1.80 0.06

Practical `0((Louizos et al., 2018)) 219-214-100 1.40 0.14
Practical `0 ((Louizos et al., 2018)) 266-88-33 1.80 0.05

Proposed method 465-37-90 1.54 0.04

Where diag() means the operation to extract the diagonal values of input variable. If we compute Hessian with the
approximate method as Eq C.1.4-C.1.5, the multiply accumulate operation (MACs) for the pre-activatiion Hessian H
and Hessian H could be reduced from n(2m2 + 2n2 + 4mn + 3m − 1) to n(2 + 4m) with W ∈ Rn×m. (e.g. with
n = 100,m = 100, the original method requires 107.97 MMACs compared with only 0.04 MMACs for the approximate
method.)

C.2. Compute the Hessian of Conv Layer

Although the Hessian of weight matrix has been widely used in second-order optimization techniques to speed up the
training process (LeCun et al., 1990; Amari, 1998), it still remains infeasible to calculate explicit Hessian directly due to
the intensive computation burden (Martens & Grosse, 2015; Botev et al., 2017). Moreover, as most of current deep neural
networks include plenty of Convolutional (Conv) layers, it further increases the difficulty of calculation due to the indirect
convolution operation. Inspired by the Hessian calculation methods for Fully Connected (FC) layers as shown in (Botev
et al., 2017), we propose a recursive and efficient method to compute the Hessian of Conv layers by converting Conv layers
to FC layers (Ma & Lu, 2017). Therefore Hessian of the resulting equivalent FC layer is ready to be obtained. The detailed
calculation procedures are explained in the following:

Suppose a convolution operation o is selected between node i and j (i < j). The corresponding input vector, weight
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Table S5. Comparison of the learned architecture with other methods using LeNet-5 on MNIST dataset
Method Pruned Architecture Error Rate (%) FLOPs (M)
Baseline 20-50-800-500 0.83 8.85

SBP ((Neklyudov et al., 2017)) 3-18-284-283 0.90 0.69
BC-GNJ ((Louizos et al., 2017)) 8-13-88-13 1.00 1.09
BC-GHS ((Louizos et al., 2017)) 5-10-76-16 1.00 0.57

Practical `0((Louizos et al., 2018)) 20-25-45-462 0.90 4.49
Practical `0 ((Louizos et al., 2018)) 9-18-65-25 1.00 1.55

Proposed method 5-10-65-25 1.00 0.57

Table S6. Sparsity for each layer in ResNet-18 on Cifar10 dataset
conv1 conv2-5 conv6-9 conv10-13 con14-17 FC layer Total Test error

22.80%

10.06%
22.87%
20.05%
12.99%

9.24%
5.45%
4.94%
10.73%

20.64%
15.04%
10.77%
4.61%

1.43%
0.19%

0
0

10.33% 2.96%

6.58%
(baseline)

6.23%
(our method)

and output vector of this edge are denoted as Bi ∈ Rb×Ci×Hi×Wi ,Wo
ij ∈ RC

o
j×Ci×mo

ij×koij and Boj ∈ Rb×C
o
j×Ho

j×W o
j

respectively, where b is the batch size, Ci, Hi, Wi are the size of input channel, height and width; Coj is the size of output
channel, mo

ij × koij is the kernel dimension; Ho
j and W o

j are the size of output height and width.

As in (Ma & Lu, 2017), Bi is converted to two dimensional matrix for FC layer, with dimension (bHo
jW

o
j )× (Cim

o
ijk

o
ij).

Similarly, the dimension of Boj is changed from b× Coj ×Ho
j ×W o

j to (bHo
jW

o
j )× Coj . The dimension ofWo

ij is changed
to R(Cim

o
ijk

o
ij)×Co

j . The input vector, output vector and weight for the FC layer are denoted as Mi, Mo
j andWoM

ij .

Secondly, Mi, Mo
j and HoM

j are decomposed into a total of bHo
jW

o
j row vectors with (Mi)

n ∈ RCim
o
ijk

o
ij , (Mo

j )n ∈ RC
o
j

and (HoM
j )n ∈ RC

o
j (n = 1, . . . , bHo

jW
o
j ) respectively. It is easy to understand that (Mi)

n, (Mo
j )n could be regarded as

the input vector and output vector of a FC layer with weight matrixWoM
ij . Then we can obtain the Hessian Ho

ij forWo
ij as

follows:
(HoM

ij )n = (Mi)
n · (Mi)

n> ⊗ (HoM
j )n (C.2.1)

(HoM
j )n is the pre-activation Hessian which could be computed recursively. With (HoM

j )n known, the pre-activation
Hessian for (Mi)

n could be calculated as:

(HM
i )n = (Bi)

nWoM
ij

>
(HoM

j )nWoM
ij (Bi)

n + (Di)
n

(Bi)
n = diag

(
σ′((hi)

n)
)

(Di)
n = diag

(
σ′′((hi)

n)
∂L

∂(Mi)n

)

where (hi)
n is the pre-activation value for FC layer and L means the loss function. The pre-activation Hessian HM

i could
be obtained after concatenating all (HM

i )n as

HM
i = [diag((HM

i )1); . . . ; diag((HM
i )bH

o
jW

o
j )] (C.2.2)

the Hessian HoM
ij forWoM

ij can be obtained as:

HoM
ij =

1

bHo
jW

o
j

bHo
jW

o
j∑

n=1

(HoM
ij )n (C.2.3)

It should be noted that as pre-activation Hessian is a recursive variable for convolutional layer and Hessian will be used for
updating hyper-parameters which will be introduced later, both HM

i and HoM
ij should be converted back to conv type before

imparting to next layer with dimension Rb×Ci×Hi×Wi and RC
o
j×Ci×mo

ij×koij .
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As analyzed in Sec C.1, the Hessian calculation may cost a lot of time and resource. In order to address this problem, we
propose the following approximate method:

HoM
ij = E(Mi)

2 ⊗ E(HoM
j ) (C.2.4)

HM
i =

[
ĤM
i ; . . . ; ĤM

i

]

︸ ︷︷ ︸
(bHoutWout)

, ĤM
i = (Bi)

2 ◦ ((WoM
ij )2E(HoM

j )>) +Di (C.2.5)

where Bi = E(σ′(hi)), Di = E(σ′′(hi) ◦ ∂L
∂Mi

); E() returns a vector which stands for the mean value of input variable
along feature map. An approximate pre-activation Hessian is calculated without decomposition of input variables, which
saves more than bHo

jW
o
j times multiply-accumulate operations (MACs).

C.3. Compute the Hessian of Architecture Parameter

After we have the computation method for the Hessian of a Convolutional layer, we need to consider the Hessian of an
architecture parameter. Now the output from node i to j under operation o becomes woijBi, where woij is the architecture
parameter and Bi stands for the input vector.

Inspired by (Botev et al., 2017), the Hessian for woij could be computed recursively as Ho
ij = E(

∑
(Bi)

2Hj), where Hj is
supposed to be the known pre-activation Hessian for Bj and Hi is the pre-activation Hessian for Bi.

Hi =
∑
o∈O

(wo
ij)

2Hj . (C.3.1)

Since Bi and Hj are independent of each other, the Hessian Ho
ij could also be calculated more efficiently:

Ho
ij = (E(|Bi|)2Hj (C.3.2)

where E will return the mean.

D. Detailed Settings of Experiments
D.1. Architecture Search on CIFAR-10

Data Pre-processing and Augmentation Techniques We employ the following techniques in our experiments: centrally
padding the training images to 40× 40 and then randomly cropping them back to 32× 32; randomly flipping the training
images horizontally; normalizing the training and validation images by subtracting the channel mean and dividing by the
channel standard deviation.

Implementation Details of Operations The operations include: 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and 5 ×
5 dilated convolutions, 3 × 3 max pooling, 3 × 3 average pooling, and skip connection. All operations are of stride one
(excluded the ones adjacent to the input nodes in the reduction cell, which are of stride two) and the convolved feature maps
are padded to preserve their spatial resolution. Convolutions are applied in the order of BN-ReLU-Conv and the depthwise
separable convolution is always applied twice (Zoph et al., 2018; Real et al., 2019; Liu et al., 2018a; 2019b).

Detailed Training Settings The network parameters are optimized using momentum SGD, with initial learning rate
ηθ = 0.1, momentum 0.9, and weight decay 1× 10−4. The batch size employed is 16 and the initial number of channels is
16.

D.2. Architecture evaluation on CIFAR-10

Additional Enhancement Techniques Following existing works (Zoph et al., 2018; Liu et al., 2018a; Pham et al., 2018;
Real et al., 2019; Liu et al., 2019b), we employ the following additional enhancements: cutout (DeVries & Taylor, 2017).

D.3. Architecture transferability evaluation on CIFAR-10

Detailed Training Settings The network is trained with batch size 128, SGD optimizer with weight decay 3 × 10−4,
momentum 0.9 and initial learning rate 0.1, which is decayed using cosine annealing.

D.4. Cells for λow = 0.007
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Figure S6. Normal cell found by BayesNAS with λo
w = 0.007.

Figure S7. Reduction cell found by BayesNAS with λo
w = 0.007.




