Improved Dynamic Graph Learning through Fault-Tolerant Sparsification -
Supplement

Chun Jiang Zhu' Sabine Storandt’> Kam-Yiu Lam® Song Han' Jinbo Bi'

A. More Studies on Fault-tolerant Subgraphs

(Parter & Peleg, 2013) studied FT-BFS tree of optimal size
O(n*®), which contains a BFS tree from a source in the
presence of 1 vertex/edge failure. The extensions to 2 fail-
ures and approximate BF'S trees are referred to, e.g. (Parter,
2015; Parter & Peleg, 2014). Distance/connectivity sen-
sitivity oracles are data structures similar to F'T spanners,
but not restricted to graph structures, e.g. (Demetrescu
et al., 2008; Duan & Pettie, 2017). (Chechik et al., 2017)
constructs an oracle of super-quadratic size capable of an-
swering (1 + ¢)-approximate distance query resilient to
f = o(logn/loglogn) failures. Many other related re-
search on FT graph structures include but not limited to FT
routing schemes (Chechik, 2011), FT labelling (Abraham
et al., 2016), and FT reachability preservers (Baswana et al.,
2016).

B. Proof of Theorem 1

In this section, we prove Theorem 1, where the bounds are
achieved by Algorithm 2 (FTSS).

Proof. (Theorem 1.) By Theorem 4 in the paper and Induc-
tion, for every i € [1, [log p]], the event that the inequality

(1—¢€/[logp])'La—r = Le,—r = (1+€¢/[logp])'La-r
holds and the expected size is
O(fni + nilog? nlog? p/e? +m/2%),

happens with probability at least (1 — 1/n?)%. Since FTSS
outputs H = Grig,) When i = [logp] as the final FT
spectral sparsifier, it satisfies the desirable properties w.h.p..

O

"University of Connecticut *University of Konstanz *City
University of Hong Kong. Correspondence to: Jinbo Bi
<jinbo.bi@uconn.edu>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

C. Parallel and Distributed Algorithms

The CRCW PRAM model is a shared memory architecture
supporting concurrent read and concurrent write operations
into any memory location by multiple processors. When
there are simultaneous write operations by two or more
processors into a memory location, both of them will suc-
ceed. The performance measures are the completion time as
well as the work complexity defined as the sum of the total
number of time points each processor is working. For the
synchronized distributed model, there is an underlying net-
work where each node has its own memory and a processor
and any two nodes are connected by a link if there is an edge
in the network. The computation operates in synchronized
rounds, where each round involves passing of messages
through links following by local computation at each node.
The performance measures include number of rounds, to-
tal number of messages (communication complexity) and
maximum length of any message.

We first show parallel and distributed algorithms for con-
structing f-EFT (logn)-spanners H for an input graph G.
Combining (Chechik et al., 2010) and (Baswana & Sen,
2007), we have the following algorithms through f iter-
ations of computation. In the ith iteration, we construct
a spanner H; for the graph G — 23;11 H; by the graph
spanner algorithms of Baswana and Sen under either the
CRCW PRAM model or the synchronized distributed model
(Baswana & Sen, 2007). Edges in H; with j < 7 will not
participate in the computation by declaring themselves out.
The returned H is the union of the edges in each H,. We
then have the following two theorems by combining Theo-
rem 5.2 from (Chechik et al., 2010) with Theorems 5.1 and
5.4 from (Baswana & Sen, 2007).

Theorem 1. For an n-vertex m-edge graph G, an f-EFT
(logn)-spanner for G of expected size O(fnlogn) can
be constructed in the CRCW PRAM model, w.h.p. using
O(fmlogn) work in O(f logn) time.

Theorem 2. For an n-vertex m-edge graph G, an f-EFT
(log n)-spanner for G of expected size O(fnlogn) can
be constructed in the synchronized distributed model in
O(flog® n) rounds and O(fmlogn) communication com-
plexity, using messages of size O(logn).

Improved Dynamic Graph Learning through Fault-Tolerant Sparsification

Algorithm 1 Light-FTCS

Algorithm 2 FTCS

Require: G(V, E), f > 0,e € (0,1),Cc > 0,c>1

Ensure: H
Set w as the maximum ratio of the weights of two edges in G;
Construct an (f + C.clogwlog® n/e?)-FT (logn)-MST J for

H+ J;
for eachedge e € G — J do

With probability 0.25, add e to H with a new weight 4W (e);
end for

Algorithms 1 and 2 can be extended to the CRCW PRAM
and the synchronized distributed models by using the above
algorithm in the respective model for constructing f-EFT
(log n)-spanners in Line 1 of Algorithm 1 (Light-FTSS). In
the rest part of Algorithm 1, the uniform sampling for each
edge is independent and can be naturally implemented in
the parallel and distributed models. Algorithm 2 only calls
Algorithm 1 (in the parallel or distributed model) for a few
times sequentially.

We now prove the complexity summarized in Theorems
5 and 6. We first prove the complexity of Algorithm 1.
By a proof similar to that of Theorem 6, we can prove
that w.h.p. the returned H is an f-VFT (f-EFT) (1 £ ¢)-
spectral sparsifier for G. However, the size bound becomes
O(fnlogn+nlog® n/e? 4 m/2) because the size of span-
ners by the parallel and distributed EFT-spanner algorithms
is larger by a factor of log n according to Theorems 1 and
2. For the parallel algorithm, the work complexity of Line 1
(spanner construction) is O(fmlogn + mlog®n/e?) and
the work of Line 3 (random sampling) is O(m), which is
dominated by Line 1. The time complexity of Lines 1 and 3
are O(f logn + log® n/e?) and O(1), resp.. Therefore, its
work and time complexity are O(fm logn + mlog® n/e?)
and O(flogn + log® n/e®), resp.. For the distributed al-
gorithm, the number of rounds and the communication
complexity of Line 1 are O(flog?n + log*n/e?) and
O(fmlogn + mlog® n/e?), which also dominate one and
m, resp., of Line 3. So the total number of rounds and the
communication complexity are the same as those of Line 1.
We then prove the complexity of Algorithm 2. By applying
the result of Algorithm 1 a logarithmic number of times
as in the proof of Theorem 1, we can prove the desirable
complexity summarized in Theorems 2 and 3.

D. Proposed Algorithms for FT Cut
Sparsifiers and Their Proof
The algorithms are summarized in Algorithms 3 and 4.

Now we prove the following theorem summarizing the main
properties of Algorithm 3. We will use Theorem 4 in the
proof.

Require: G(V,E), f >0,e€ (0,1),p>1,Cc >0,c>1
Ensure: H
Go — G;
for i € [1, [log p]] do
G; < Light-FTCS(Gi-1, f,€¢/[log p], Ce, ¢);
end for
H < Gpiog o1

Theorem 3. For an n-vertex m-edge graph G, a positive
integer f, a parameter ¢ € (0, 1), a constant C. > 0 and a
parameter ¢ > 1, Algorithm 3 constructs an f-VFT (f-EFT)
(1+¢€)-cut sparsifier for G, with probability at least 1 —n ™.

Theorem 4. (Fung et al., 2011) Let H be obtained from
a graph G with weights in (1/2, 1] by independently sam-
pling edge e with probability p. > p/Ag(e), where p =
C.clog® n/4€%, and A (e) is the local edge connectivity of
edge e, C. is an explicitly known constant. Then H is a
(1 % €)-cut sparsifier with probability 1 — n™°.

Proof. (Theorem 3.) Suppose without loss of generality that
the maximum edge weight in G is 1. Following a common
technique handling weighted graphs (Roditty et al., 2008),
we decompose G into log w edge-joint subgraphs G; for
i € [1, [logw]], where each G; contains the edges with
weights in the interval (2701 2] and also the edges in
J; = J/270+D with J being the FT MST returned by Line
2 in Algorithm 3.

By the definition of f-FT a-MST, even in the presence
of at most f faults F', the connectivies of each edge of
G;—F—J;inG;—Fisatleast C.clog wlog® n/e® = 4pc/,
for ¢ = clogw and p = C.c’ log® n/4€. Assume that all
edges in J; have weights in (27 (F1 27, We can then
apply Theorem 4 by setting p. = 1 fore € J; — F, and
pe = 0.25 for e € G; — F — J;. In this way, we get that
H; — Fis a (1+¢€)-cut sparsifier of G; — F with probability
1 — n—cloew By definition, H; is an f-FT (1 4 €)-cut
sparsifier of G; with probability 1 — n=¢1°8%_ [t is easy to
see the decomposibility of FT (1 =+ €)-cut sparsifier. Then,

H is an f-FT (1 %+ €)-cut sparsifier of G with probability
1— n—clogw‘

We can remove the assumption on J; as follows. One can
find a subgraph J! of J;, by possibly splitting weights and
dropping small weights, such that J/ is an f-FT a-MST
of G;. We can then apply the previous paragraph on G}, =
(G;— J;)UJ! to get that H! is an f-FT (1 =+ e¢)-cut sparsifier
of G,. Since G; = G,U(J; — J}) and H; = H/U(J; — J]),
we have that H; is an f-FT (1 +£ ¢)-cut sparsifier of G;.

The proof of Theorem 7 is similar to the proof of Theorem
1, and thus is omitted here.

Improved Dynamic Graph Learning through Fault-Tolerant Sparsification

E. More Stability Bounds for Subsequent
Learning Tasks

Spectral clustering is to find k disjoint subset assignment
such that the assignments are smooth over the underlying
graph. Let 3. with ¢ € [1, k] be the cluster indicator vec-
tors and (3,,«x be the matrix contaning those k indicators
as columns. Note that the columns in 3 are orthonormal
to each other, i.e., ,BT,B = I. SC can be formulated as
the following optimization problem relaxed from the NP-
hard problem of computing the minimum of Ratio-Cut
(Von Luxburg, 2007).

,3 = argmin
B:BTB=IpB.11

Trace(8T LaB). (1)

By using a spectral sparsifier H of G instead of G, we solve
the following problem.

B = argmin Trace(8T Ly B).)

B:BTB=I,6.11

By a simple analysis, we have that for every time point ¢,
Trace(8TLy,B) < (14 ¢)Trace(8TLg,B). (3)

This implies that the clusterings by running the k-means
algorithm on 3 and (3 are similar.

F. More Experimental Results

We implemented the sparsification in Java based on the
JGraphT library !, and the computation involved by matri-
ces in Matlab. For the sparsification algorithm, we followed
the insight that in practice O(logn/€?) spanners each with
O(n) edges is often enough to obtain a (1 + €)-spectral spar-
sifier, although the theory requires O(log? n/€?) spanners
each with O(nlogn) edges (Sadhanala et al., 2016).

Figure 1 summarizes the errors of Laplacian-regularized esti-
mation and graph SSL for different values of f € {1, 3,5, 7}.
The average update time of 3-FTSPA, 5-FTSPA and 7-
FTSPA are 0.26, 0.25 and 0.27 miliseconds, and thus the
speedups remain to be over 10°.

References

Abraham, I., Chechik, S., Gavoille, C., and Peleg, D.
Forbidden-set distance labels for graphs of bounded dou-
bling dimension. ACM Transactions on Algorithms, 12
(2):22, 2016.

Baswana, S. and Sen, S. A simple and linear time random-
ized algorithm for computing sparse spanners in weighted
graphs. Random Structures & Algorithms, 30(4):532-563,
2007.

ljgrapht.org

Baswana, S., Choudhary, K., and Roditty, L. Fault toler-
ant subgraph for single source reachability: generic and
optimal. In Proceedings of SIAM SODA Conference, pp.
509-518, 2016.

Chechik, S. Fault-tolerant compact routing schemes for
general graphs. In Proceedings of ICALP Conference, pp.
101-112, 2011.

Chechik, S., Langberg, M., Peleg, D., and Roditty, L. Fault-
tolerant spanners for general graphs. SIAM Journal on
Computing, 39(7):3403-3423, 2010.

Chechik, S., Cohen, S., Fiat, A., and Kaplan, H. 1 + -
approximate f-sensitive distance oracles. In Proceedings
of SIAM SODA Conference, pp. 1479-1496, 2017.

Demetrescu, C., Thorup, M., Chowdhury, R., and Ra-
machandran, V. Oracles for distances avoiding a failed
node or link. SIAM Journal on Computing, 37(5):1299—
1318, 2008.

Duan, R. and Pettie, S. Connectivity oracles for graphs
subject to vertex failures. In Proceedings of SIAM SODA
Conference, pp. 490-509, 2017.

Fung, W., Hariharan, R., Harvey, N. J., and Panigrahi, D. A
general framework for graph sparsification. In Proceed-
ings of STOC Conference, pp. 71-80, 2011.

Parter, M. Dual failure resilient BFS structure. In Proceed-
ings of ACM PODC Conference, pp. 481-490, 2015.

Parter, M. and Peleg, D. Sparse fault-tolerant BFS trees. In
Proceedings of ESA Conference, pp. 779-790, 2013.

Parter, M. and Peleg, D. Fault tolerant approximate BFS
structures. In Proceedings of SIAM SODA Conference,
pp. 1073-1092, 2014.

Roditty, I., Thorup, M., and Zwick, U. Roundtrip spanners
and roundtrip routing in directed graphs. ACM Transac-
tions on Algorithms, 4(3), 2008.

Sadhanala, V., Wang, Y.-X., and Tibshirani, R. J. Graph spar-
sification approaches for Laplacian smoothing. In Pro-
ceedings of AISTATS Conference, pp. 1250-1259, 2016.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing, 17(4):395-416, 2007.

Improved Dynamic Graph Learning through Fault-Tolerant Sparsification

I exacT [sPA [1-FTsPA [3-FTSPA [5-FTSPA B cxAcT I SPA L 1-FTspA I 3-FTSPA I 5-FTSPA

[7-FTSPA [7-FTSPA
3 -4
I 10325 X10
9.77 4 1.032 b
9.76 1.0315 - |
1.031 —
9.75
= = 1.0305 - 1
So74t 2
w w103t 1
9.73
1.0295 -
9.72 1.029
9.71 1.0285
9.7 1.028
1 2 3 4 5 6 7 8 9 10 ro2 s 4 5 6 7 8 9 10
Time point Time point
(a) Estimation, o = 0.1 (b) Estimation, o = 0.01
I exAcT [sPA [1-FTsPA I 3-FTSPA [5-FTSPA I exAcT [sPA [C]1-FTSPA [3-FTSPA [5-FTSPA
[0 7-FTSPA [0 7-FTSPA
' ' ' ' ' ' ' ' ' ' 0.65 — : : : : | | | | |
0.6 4
0.58 [1
0.56 -]
S S
5 = 061 —
w [}
0.54 -
0.52
05
0.55
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Time point Time point
(c)SSL, 0 =0.1 (d) SSL, 0 = 0.01

Figure 1: Errors of Laplacian-regularized estimation and graph SSL for signals with Gaussian noise of & = 0.1 and 0.01

