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Abstract
We consider the problem of "privacy-
amplification by subsampling” under the
Renyi Differential Privacy (RDP) framework
(Mironov, 2017). This is the main workhorse
underlying the moments accountant approach
for differentially private deep learning (Abadi
et al., 2016). Complementing a recent result
on this problem that deals with “Sampling
without Replacement” (Wang et al., 2019), we
address the “Poisson subsampling” scheme
which selects each data point independently with
probability γ. The seemingly minor change
allows us to more precisely characterize the RDP
of M ◦ PoissonSample. In particular, we prove
an exact analytical formula for the case when
M is the Gaussian mechanism or the Laplace
mechanism. For general M, we prove an upper
bound that is optimal up to an additive constant
of log(3)/(α − 1) and a multiplicative factor of
1 + O(γ). Our result is the first of its kind that
makes the moments accountant technique (Abadi
et al., 2016) efficient and generally applicable for
all Poisson-subsampled mechanisms. An open
source implementation is available at https:
//github.com/yuxiangw/autodp.

1. Introduction
“Privacy-amplification by Subsampling” and the Renyi Dif-
ferential Privacy are the two fundamental techniques that
have been driving many exciting recent advances in dif-
ferentially private learning (Abadi et al., 2016; Park et al.,
2016; Papernot et al., 2018; McMahan et al., 2018).

One prominent use case of both techniques is the
NoisySGD algorithm (Song et al., 2013; Bassily et al.,
2014; Wang et al., 2015; Foulds et al., 2016; Abadi et al.,
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2016) for differentially private deep learning. NoisySGD
iteratively updates the model parameters as follows:

θt+1 ← θt − ηt

(
∑

i∈I
∇fi(θt) + Zt

)
(1)

where θt is the model parameter at tth step, ηt is the learn-
ing rate, fi is the loss function of data point i,∇ is the stan-
dard gradient operator, I ⊂ [n] is a randomly subsampled
index set and Zt ∼ N (0,σ2I). When ∇fi(θt) is bounded
(or clipped) in ℓ2-norm, the Gaussian noise-adding proce-
dure is known to ensure (ϵ, δ)-DP for this iteration. ϵ, δ
are nonnegative numbers that quantifies the privacy loss in-
curred from running the algorithm (the smaller the better).
But this is clearly not good enough as it takes many itera-
tions to learn the model, and the privacy guarantee deterio-
rates as the algorithm continues. This is where the “privacy-
amplification” and RDP become useful.

The principle of “privacy-amplification by subsampling”
works seamlessly with NoisySGD as it allows us to exploit
the randomness in choosing the minibatch I for the interest
of a stronger privacy guarantee. Roughly speaking, if the
minibatch I is obtained by selecting each data point with
probability γ, then we can “amplify” the privacy guarantee
to a stronger (O(γϵ), γδ)-DP.

The RDP framework provides a complementary set of ben-
efits that reduce the overall privacy loss over the multi-
ple iterations we run NoisySGD. Notice that the vanilla
“strong-composition” is stated for any (ϵ, δ)-DP algorithm.
By using the moments accountant techniques (Abadi et al.,
2016) that keep track of the RDP of a specific algorithm
— subsampled-Gaussian mechanism, one can hope to more
efficiently use the privacy budget than what an optimal algo-
rithm would be able to using only (ϵ, δ)-DP (Kairouz et al.,
2015).

In general, however, calculating the RDP for the procedure
that first subsamples the data set then apply a randomized
mechanism M is highly non-trivial. An exact analytical
formula is not known even for the widely-used subsampled-
Gaussian mechanism. Existing asymptotic bounds are typi-
cally off by a constant, and only apply to a restricted subset
of the parameter regimes. To get the most mileage out of
the moments accountant, practitioners often resort to nu-
merical integration which calculates and keep track of a
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fixed list of RDP values (Abadi et al., 2016; Park et al.,
2016).

Wang et al. (2019) took a first stab at this problem and
provided a general “RDP-amplification” bound that applies
to any M. Their result, however, is still a constant fac-
tor away from being optimal. A more subtle difference
is that Wang et al. (2019) considered “Subsampling with-
out Replacements” — finding a random subset of size m
at random — rather than the “Poisson subsampling” that
was used by Abadi et al. (2016), which includes each data
points independently at random with probability γ. The dif-
ference is substantial enough that it introduces several new
technical hurdles.

In this paper, we provide the first general result of “privacy-
amplification” of RDP via Poisson subsampling. Our main
contributions are the following.

1. First, we prove a nearly optimal upper bound on the
RDP of M ◦ PoissonSample as a function of the sam-
pling probability γ, RDP order α, and the RDP of M
up to α. The bound matches a lower bound up to an
additive factor of log(3)/(α−1), where α is the order
of RDP. When α is small relative to 1/γ with γ being
the sampling probability, our upper bound is optimal
up to a multiplicative factor of 1 + O(γαeϵ(α)). The
result tightens and generalizes Lemma 3 of (Abadi
et al., 2016), which addresses only the case when M
is Gaussian mechanism and applies only to the cases
when γ is very small.

2. Second, we identify a novel condition on the odd order
Pearson-Vajda χα-Divergences under which we can
exactly attain the lower bound. We show that Gaus-
sian mechanism and Laplace mechanism fall under
this category, but there exists M that samples from
an exponential family distribution where the condition
is false and the lower bound is not attainable. Practi-
cally, our analytical characterization simplifies the mo-
ments accountant approach for differentially private
deep learning by avoiding numerical integration and
pre-specifying a list of moments. On the theory front,
our result corroborates the observation of Wang et al.
(2019) that the Pearson-Vajda Divergences are natural
quantities for understanding the subsampling in differ-
ential privacy.

3. Lastly, knowing that exactly evaluating the analytical
subsampled RDP bound of αth order takes α calls of
the RDP subroutine ϵM(·), we propose an efficiently
τ -term approximation scheme that uses only τ call of
ϵM(·). We conduct numerical experiments to com-
pare our general bounds, tight bound, and τ -term ap-
proximations for a variety of problem setup and show-

casing the use of these bounds in moments accountant-
based strong composition.

2. Background and Problem Setup
In this section, we provide some background on differential
privacy, privacy-amplification by subsampling, RDP and
the moments accountant technique so as to formally set up
the problem. We will also introduce symbols and notations
as we proceed.

Differential Privacy. Let X be the space of all data
sets. One representation of such a data set is to take
X = {0, 1}N where N is the size of the population and
each X ∈ X is an indicator vector that describes each indi-
vidual’s participation in the data set. We say X,X ′ ∈ X are
neighbors if X ′ can be constructed by adding or removing
one individual from X , or equivalently, ∥X −X ′∥1 = 1.
Definition 1 (Differential Privacy (Dwork et al., 2006)). A
randomized algorithm M : X → Θ is (ϵ, δ)-DP (differ-
entially private) if for every pair of neighboring datasets
X,X ′ ∈ X , and every possible (measurable) output set
E ⊆ Θ the following inequality holds: Pr[M(X) ∈ E] ≤
eϵ Pr[M(X ′) ∈ E] + δ.

The definition places an information-theoretic limit on an
adversary’s ability to infer whether the input dataset is X
or X ′, and as a result, guarantees a degree of plausible de-
niability to any individual in the population. ϵ, δ are pri-
vacy loss parameters that quantify the strength of privacy
protection. In practice, we consider the privacy guarantee
marginally meaningful if ϵ ≈ 1 and δ = o(1/n)1, where n
denotes the size of data set and o(·) is the standard little-o
notation. When δ = 0, we say that M obeys ϵ-(pure) DP.

One important property of DP relevant to this paper is
that it composes gracefully over multiple access. Roughly
speaking, if we run k sequentially chosen (ϵ, δ)-DP algo-
rithm on a dataset, the overall composed privacy loss is
(Õ(
√
kϵ), kδ + δ′)-DP where the Õ notation hides loga-

rithmic terms in k, 1/δ and 1/δ′. Part of the reason for
writing this paper is to enable sharper algorithm-dependent
composition for a popular class of algorithms that subsam-
ples the data first. Before we get there, let us describe the
RDP framework and the moments accountant that the make
these algorithm-dependent composition possible.

Renyi Differential Privacy and Moments Accountant.
Renyi differential privacy (RDP) is a refinement of DP that
uses Renyi-divergence as a distance metric in the place of
the sup-divergence.
Definition 2 (Rényi Differential Privacy (Mironov, 2017)).

1It is traditionally required that δ to be cryptographically small,
e.g., o(poly(1/n)), but in practice, with a big data set, δ = 1/n2

is typically considered acceptable.
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Figure 1. Illustration of the subsampled-mechanism and the key underlying idea that enables “privacy-amplification”. The diagram on
the left illustrate the two parts of randomization. Part (1): PoissonSample: Each person toss a random coin to select whether they are
included in the data set; Part (2): The subsampled data set is analyzed by a randomized algorithm M. The figure on the right illustrates
the fact that the distribution of output is a mixture distribution indexed by the different potential subset selected by the subsampling,
and that when we change the original data set by adding or removing one person, only a small fraction of the mixture components that
happen to be affected by that change will be different, hus opening up the possibility of “privacy amplifying”.

We say that a mechanism M is (α, ϵ)-RDP with order α ∈
(1,∞) if for all neighboring datasets X,X ′

Dα(M(X)∥M(X ′))

:=
1

α− 1
logEθ∼M(X′)

[(
pM(X)(θ)

pM(X′)(θ)

)α]
≤ ϵ.

In this paper, we do not treat each α in isolation but instead
take a functional view of RDP where we use ϵM(α) to de-
note that randomized algorithm M obeys (α, ϵM(α))-RDP.
The function ϵM(·) can be viewed as a more elaborate de-
scription of the privacy loss incurred by running M. It
subsumes pure-DP as an RDP algorithm is ϵ(+∞)-DP.

The moments accountant technique (Abadi et al., 2016) can
be thought of as a data structure that keeps track of the RDP
(function) for the sequence of data accesses. Composition
is trivial in RDP as

ϵM1×M2(·) = [ϵM1 + ϵM2 ](·).

At any given time, let the composition of all algorithms
being M, the moments accountant can be used to produce
an (ϵ, δ)-DP certificate using

δ ⇒ ϵ : ϵ(δ) = min
α>1

log(1/δ)

α− 1
+ ϵM(α− 1), (2)

ϵ⇒ δ : δ(ϵ) = min
α>1

e(α−1)(ϵM(α−1)−ϵ). (3)

This approach is simpler and often produces more favor-
able composed privacy parameters than the advanced com-
position approach for (ϵ, δ)-DP. As the moments accoun-
tant gain popularity, many classes of randomized algo-
rithms with exact analytical RDP are becoming available,
e.g., the exponential family mechanisms (Geumlek et al.,
2017).

As a side note, the initial moments accountant (Abadi et al.,
2016) keeps track of a vector of log-moment (equivalent to
RDP up to a rescaling) associated with a pre-defined list of
order αs. Wang et al. (2019) observes that these optimiza-
tion problems are unimodal and proposes an analytical mo-
ments accountant that solves (2) and (3) using bisections
can be solved using bisection with a doubling trick. This
avoids the need to pre-define the list of moments to track.
Wang et al. (2019) also observes that (α− 1)ϵ(α) is a con-
vex function in α and any such discretization scheme (e.g.,
all integer α) can be extended into a continuous function in
α by simply doing linear interpolation.

Privacy amplification by subsampling. As we discussed
in the introduction, “privacy amplification by subsampling”
is the other workhorse (besides RDP / moments accoun-
tant) that drove much of the recent advances in differen-
tially private deep learning. We would like to add that, it
was also used as a key technical hammer for analyzing DP
algorithms for empirical risk minimization (Bassily et al.,
2014) and Bayesian learning (Wang et al., 2015), as well as
for studying learning-theoretic questions with differential
privacy constraints (Kasiviswanathan et al., 2011; Beimel
et al., 2013; Bun et al., 2015; Wang et al., 2016).

We now furnish a bit more details on this central property
and highlight some subtleties in the types. The privacy am-
plification lemma was derived in (Kasiviswanathan et al.,
2011; Beimel et al., 2013; Li et al., 2012), where all three
authors adopted what Balle et al. (2018) calls Poisson sub-
sampling:

Definition 3 (PoissonSample). Given a dataset X , the
procedure PoissonSample outputs a subset of the data
{xi|σi = 1, i ∈ [n]} by sampling σi ∼ Ber(γ) indepen-
dently for i = 1, ..., n.
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The procedure is equivalent to the “sampling without re-
placement” scheme with m ∼ Binomial(γ, n). At the limit
of n → ∞, γ → 0 while γn → λ, the Binomial distribu-
tion converges to a Poisson distribution with parameter λ.
This is probably the reason why it is called Poisson sam-
pling to begin with2.

Here we cite the tight privacy amplification bound for
PoissonSample as it first appears.

Lemma 4 ((Li et al., 2012, Theorem 1) ). If M is (ϵ, δ)-DP,
then M′ that applies M◦PoissonSample obeys (ϵ′, δ′)-DP
with ϵ′ = log

(
1 + γ(eϵ − 1)

)
and δ′ = γδ.

The lemma implies that if the base privacy loss ϵ ≤ 1, then
the amplified privacy loss obeys that ϵ′ ≤ 2γϵ.

Poisson subsampling is different from the “sampling with-
out replacement” scheme that outputs a subset with size
γn uniformly at random. Interestingly, it was shown that
the latter also enjoys the same bound with respect to the
“replace-one” version of the DP definition. In general, we
find that the “add/remove” version of the DP definition
works more naturally with Poisson sampling, while the
“replace-one” version works well with “sampling without
replacement”. We defer a more comprehensive account of
the subsampling lemma for (ϵ, δ)-DP to (Balle & Wang,
2018) and the references therein.

Subsampled RDP and friends. A small body of recent
work focuses on deriving algorithm-specific subsampling
Lemma so that this classical wisdom can be combined with
more modern techniques such as RDP and Concentrated
DIfferential privacy (CDP) (Bun & Steinke, 2016) (also
(Dwork & Rothblum, 2016)). Abadi et al. (2016) obtains
the first such results for subsampled-Gaussian mechanism
under Poisson subsampling. Wang et al. (2019) provides a
general subsampled RDP bound that supports any M but
under the “sampling without replacement” scheme. The ob-
jective of this paper is to come up with results of a similar
flavor for the Poisson sampling scheme. The main differ-
ences in our setting include:

(a) Poisson sampling goes naturally with add/remove ver-
sion of the DP definition, which is independent to the
size of the data.

(b) The size of the random subset m itself is a Binomial
random variable.

(c) It is asymmetric, the Renyi divergence of P against Q
is different from the Renyi divergence of Q against P .

2We noticed that the original definition of Poisson sampling in
the survey sampling theory is slightly more general. It allows
a different probability of sampling each person (Särndal et al.,
2003). Our results apply trivially to that setting as well with a
personalized RDP bound for individual i that depends on γi.

As we will see in the our results, the third difference brings
about some major technical challenges.

Finally, Bun et al. (2018) studies subsampling in CDP with
a conclusion that subsampling does not amplify the CDP
parameters in general. A truncated version of CDP was
then proposed, called tCDP, which does get amplified up
to a threshold. CDP and tCDP are closely related to RDP
in that they are linear upper bounds of ϵ(α) on (1,∞] and
on (1, τ ] for some threshold τ respectively. RDP captures
finer information about the underlying mechanism. The ex-
perimental results in (Wang et al., 2019) suggest that unlike
the case for the Gaussian mechanism (in which case CDP
is tight), there isn’t a good linear approximation of ϵ(α) for
the subsampled-Gaussian mechanism due to the phase tran-
sition. Our results on the Poisson-sampling model echoes
the same phenomenon.

More symbols and notations. We end the section with a
quick summary of the notations that we introduced. X,X ′

denotes two neighboring datasets. M is a randomized algo-
rithm and ϵM(·) is the RDP function of M (the subscript
may be dropped when it’s clear from the context). n,m are
reserved for the size of the original and subsampled data.
We note that neither is public and m is random. Greek
letters α, γ, ϵ, δ are reserved for the order of RDP, the sam-
pling probability as well as the two privacy loss parameters.
M ◦ PoissonSample(X) is used to mean the composition
function M(PoissonSample(X)).

Let us also define a few shorthands. We will denote p to
be the density function of M ◦ PoissonSample(X), and q
to be the density from data set M ◦ PoissonSample(X ′).
Similarly, we will define µ0 and µ1 as two generic density
functions of M(X) and M(X ′).

3. Main results
Before we present our main result, we would like to warn
the readers that the presented bounds might not be as in-
terpretable. We argue that this is a feature rather than an
artifact of our proof because we need the messiness to state
the bound exactly. These bounds are meant to be imple-
mented to achieve the tightest possible privacy composition
numerically in the Moments Accountant, rather than being
made easily interpretable. After all, “constant matters in
differential privacy!” For the interest of interpretability, we
provide figures that demonstrate the behaviors of the bound
for prototypical mechanisms in practice.

Theorem 5 (General upper bound). Let M be any random-
ized algorithm that obeys (α, ϵ(α))-RDP. Let γ be the sub-
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sampling probability and then we have for integer α ≥ 2,

ϵM◦PoissonSample(α) ≤
1

α− 1
log

{
(1− γ)α−1(αγ − γ + 1)

+

(
α
2

)
γ2(1− γ)α−2eϵ(2) + 3

α∑

ℓ=3

(
α
ℓ

)
(1− γ)α−ℓγℓe(ℓ−1)ϵ(ℓ)

}
.

The proof is revealing but technically involved. One main
difference from Wang et al. (2019) is that in Poisson sam-
pling we need to bound both Dα(p∥q) and Dα(q∥p). Ex-
isting arguments via the quasi-convexity of Renyi diver-
gence allows us to easily bound Dα(p∥q) tightly using
RDP for the case when p has one more data points than
q, but Dα(q∥p) turns out to be very tricky. A big part of
our novelty in the proof is about analyzing Dα(q∥p). We
defer more details of the proof to Appendix A.

Theorem 6 (Lower bound). M and pairs of adjacent data
sets such that

ϵM◦PoissonSample(α) ≥
1

α− 1
log

{
(1− γ)α−1(αγ − γ + 1)

+
α∑

ℓ=2

(
α

ℓ

)
(1− γ)α−ℓγℓe(ℓ−1)ϵ(ℓ)

}
.

Proof. The construction effectively follows Proposition 11
of (Wang et al., 2019), while adjusting for the details. Let
M be Laplace noise adding of a counting query f(X ′) =∑

x∈X′ 1[x > 0]. Let everyone in the data set X ′ obeys
that x < 0. In the adjacent dataset X ′ = X ∪ {xn+1} with
xn+1 > 0. Let µ0 be the Laplace distribution centered at
0, µ1 be the one that is centered at 1. Then we know that
M(X ′) ∼ µ0 = q and M(X) (1 − γ)µ0 + γµ1 = p. It
follows that

Eq[(p/q)
α] = Eµ0 [((1− γ) + γµ1/µ0)

α]

=
α∑

ℓ=0

(
α

ℓ

)
(1− γ)α−ℓγℓEµ0 [(µ1/µ0)

ℓ].

By definition Eµ0 [(µ1/µ0)ℓ] = e(ℓ−1)Dℓ(µ0∥µ1). which the
RDP bonud ϵ(ℓ) is attained by µ0, µ1, then we have con-
structed one pair of p, q, which implies a lower bound for
RDP of M ◦ PoissonSample.

Note that the only difference between the upper and lower
bounds are a factor of 3 on the third summand in side the
logarithm. In the regime when γαeϵ(α) ≪ 1 (in which
case the third summand is much smaller than the second),
the upper and lower bound match up to a multiplicative fac-
tor of 1 + O(γαeϵ(α)). In all other regimes, the upper and
lower bounds match up to an additive factor of log(3)

α−1 . The
results suggest that we can construct a nearly optimal mo-
ment accountant.

Remark 7 (Nearly optimal Moment Accountant). This im-
plies that if any algorithm with the help of an oracle that
calculates the exact RDP for M is able to prove an (ϵ, δ)-
DP for the Poisson subsampled RDP mechanism, then the
RDP upper bound we construct using Theorem 5 will lead
to an (ϵ, 3δ)-DP bound for the same mechanism.

Moreover, we show that for many randomized algorithms
(including the popular Gaussian mechanism and Laplace
mechanism) that satisfy an additional assumption, we can
strengthen the upper bound further and exactly match the
lower bound for all α.
Theorem 8 (Tight upper bound). Let M be a randomized
algorithm with up to αth order RDP ϵ(α) < ∞. If for all
adjacent data sets X ∼ X ′, and all odd 3 ≤ ℓ ≤ α,

Dχℓ(M(X)∥M(X ′)) := EM(X′)

(
M(X)

M(X ′)
− 1

)ℓ

≥ 0,

(4)
then the lower bound in Theorem 6 is also an upper bound.

The proof of this theorem is presented in Appendix A

In the theorem, M(X)
M(X′) − 1 is a linearized ver-

sion of the privacy random variable log M(X)
M(X′) and

Dχℓ(M(X)∥M(X ′)) is the Pearson-Vajda χℓ pseudo-
divergence (Vajda, 1973), which has more recently been
used to approximate any f -divergence in (Nielsen & Nock,
2014). The related |χℓ| version of this divergence is iden-
tified as the key quantity natural for studying subsampling
without replacement (Wang et al., 2019).

The non-negativity condition requires, roughly speaking,
the distribution of the linearized privacy loss random vari-
able M(X)

M(X′) − 1 to be skewed to the right.

The following Lemma provides one way to think about it.
Lemma 9. Let π, µ be two measures that are absolute con-
tinuous w.r.t. each other and let α ≥ 1.

Eµ[(π/µ− 1)α] = Eπ[(π/µ− 1)α−1]− Eµ[(π/µ− 1)α−1].

Proof. Eµ[(π/µ− 1)α] = Eµ[(π/µ− 1)(π/µ− 1)α−1] =
Eπ[(π/µ− 1)α−1]− Eµ[(π/µ− 1)α−1]

The lemma implies that (4) holds if an only if for all even
2 ≤ ℓ ≤ α

EM(X)

(
M(X)

M(X ′)
− 1

)ℓ

≥ EM(X′)

(
M(X)

M(X ′)
− 1

)ℓ

for all pairs of X,X ′.

This should intuitively be true for most mechanisms be-
cause we know from nonnegativity that M(X)

M(X′) − 1 ≥ −1,
which poses a hard limit to which you can be skewed to the
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Figure 2. Negative χα divergence in Poisson distribution.

left. Indeed, we can show that the condition is true for the
two most widely used DP procedure.

Proposition 10. Condition (4) is true when M is the Gaus-
sian mechanism and Laplace mechanism.

The proof, given in Appendix B, is interesting and can be
used as recipes to qualify other mechanisms for the tight
bound. The main difficulty of checking this condition is
in searching all pairs of neighboring data sets and identify
one pair that minimizes the odd order moment. The con-
venient property of noise-adding procedure is that typically
the search reduces to a univariate optimization problem of
the sensitivity parameter.

One may ask, whether the condition is true in general
for any randomized algorithm M? The answer is unfor-
tunately no. For example, Nielsen & Nock (2014) con-
structed an example of two Poisson distributions with neg-
ative χ3-divergence (see Figure 2 for an illustration.) This
also implies that for some M, we can derive a lower bound
that is greater than that in Theorem 6 by simply toggling
the order of X and X ′. As a result, if one needs to work
out the tight bound, the condition needs to be checked for
each M separately.

Finally, we address the computational issue of implement-
ing our bounds in moments accountant. Naive implementa-
tion of Theorem 5 will easily suffer from overflow or under-
flow and it takes α calls to the RDP oracle ϵM(·) before we
can evaluate one RDP of the subsampled mechanism at α.
This is highly undesirable. The following theorem provides
a fast approximation bound that can be evaluated with just
2τ calls to the RDP oracle of M. The idea is that since
either it is the first few terms that dominates the sum or the
last few terms that dominates the sum, we can just compute
them exactly and calculate the remainder terms with a more
easily computable upper bound.

Theorem 11 (τ -term approximation). The expression in

Theorem 6 (therefore Theorem 8) can be bounded by

ϵM◦PoissonSample(α) ≤
1

α− 1
log
{
(1− γ)α(1− e−ϵ(α−τ))

+ e−ϵ(α−τ)(1− γ + γeϵ(α−τ))α

−
τ∑

ℓ=2

(
α

ℓ

)
(1− γ)α−ℓγℓ(e(ℓ−1)ϵ(α−τ) − e(ℓ−1)ϵ(ℓ))

+
α∑

ℓ=α−τ+1

(
α

ℓ

)
(1− γ)α−ℓγℓ(e(ℓ−1)ϵ(ℓ) − e(ℓ−1)ϵ(α−τ))

}
.

A similar bound can be stated for the general upper bound
in Theorem 5, which we defer to Appendix C.
Remark 12 (Numerical stability). The bounds in Theo-
rem 5 and 8 can be written as the log − sum− exp form,
i.e., softmax. The numerically stable way of evaluating
log − sum− exp is well-known. The bound in Theorem 11,
though, have both positive terms and negative terms. We
choose to represent the summands in the log term by a sign,
and the logarithm of its magnitude. This makes it possible
for us to use log − diff − exp and compute the bound in a
numerically stable way.

4. Experiments and Discussion
In this section, we conduct various numerical experiments
to illustrate the behaviors of the RDP for subsampled mech-
anisms and showcasing its usage in moments accountant
for composition. We will have three set of experiments. (1)
We will just plot our RDP bounds (Theorem 5, Theorem 6)
as a function of α. (2) We will compare how close the τ -
term approximations approximate the actual bound.(5) (3)
We will build our moments accountant and illustrate the
stronger composition that we get out of our tight bound.

Specifically, for each of the experiments above, we repli-
cate the experimental setup of which takes the base mecha-
nism M to be Gaussian mechanism, Laplace mechanism
and Randomized Response mechanism. Their RDP for-
mula are worked out analytically (Mironov, 2017) below:

ϵGaussian(α) =
α

2σ2
,

ϵLaplace(α) =
1

α − 1
log((

α

2α − 1
)e

α−1
b + (

α − 1

2α − 1
)e

−α
b for α > 1,

ϵRandResp(α) =
1

α − 1
log(pα(1 − p)1−α + (1 − p)αp1−α) for α > 1,

where parameter σ, b, p are the standard parameters for
Gaussian, Laplace and Bernoulli distributions.

Following Wang et al. (2019), we will have two sets of
experiments with “high noise, high privacy” setting σ =
5, b = 2, and p = 0.6 and “low noise, low privacy” setting
using σ = 1, b = 0.5, p = 0.9. These parameters are cho-
sen such that the ϵ-DP or (ϵ, δ)-DP of the base mechanisms
are roughly ϵ ≈ 0.5 in the high privacy setting or ϵ ≈ 2 in
the low privacy setting.
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(a) Subsampled Gaussian with σ = 5 (b) Subsampled Laplace with b = 2 (c) Subsampled Random Response with
p = 0.6

(d) Subsampled Gaussian with σ = 1 (e) Subsampled Laplace with b = 0.5 (f) Subsampled Random Response with
p = 0.9

Figure 3. The RDP parameter (ϵ(α)) of three subsampled mechanisms as a function of order α.We compare the general upper bound
with other methods under high and low privcy regime, general upper bound is obtained through Theorem 5. the corresponding tight
upper bound in possion subsample case is represented as the black curve.

We will include benchmarks when appropriate. For exam-
ple, we will compare to Lemma 3 of Abadi et al. (2016)
whenever we work with Gaussian mechanisms. Also, we
will compare to the upper bound of Wang et al. (2019) for
subsample without replacements. Finally, we will include
the more traditional approaches of tracking and compos-
ing privacy losses using simply (ϵ, δ)-DP. We will see that
while the moments accountant approach does not dominate
the traditional approach, it does substantially reduces the
aggregate privacy loss for almost all experiments when we
compose over a large number of rounds.

Comparing RDP bounds. The results on the RDP bounds
are shown in the Figure 3. First of all, the RDP of subsam-
pled Gaussian mechanism behaves very differently from
that of the Laplace mechanism, There is a phase transition
about the subsampled-Gaussian mechanism that happens
around αγeϵ(α) ≈ γ−1. Before the phase transition the
RDP is roughly O(γ2α2(eϵ(2) − 1)), the RDP quickly con-
verges to ϵ(α), which implies that subsampling has no ef-
fects. This kind of behaviors cannot be captured through
CDP. On the other hand, for ϵ-DP mechanisms, the RDP in-
creases linearly with α before being capped what the stan-
dard privacy amplification by Lemma 4. Relative to exist-
ing bounds, our tight bound closes the constant gap, while
our general bound is also nearly optimal as we predict. It

is worth noting that the bound in Abadi et al. (2016) only
applies to up to a threshold of α.

τ -term approximation. Figure 5 illustrates the quality of
approximation as we increase τ . With τ = 50, the results
nearly matches the RDP bound everywhere, except that in
the Gaussian case, the phase-transition happened a little bit
earlier.

Usage in moments accountant. The experiments on mo-
ments accountant are shown in Figure 4. Our result are
compared to the optimal strong composition (Kairouz et al.,
2015) with parameters optimally tuned according to Wang
et al. (2019). As we can see, all bounds based on the
moments accountants eventually scales proportional to

√
k.

Moments accountant techniques with the tight bound end
up winning by a constant factor. It is worth noting that in
the Gaussian case, moments accountant only starts to per-
form better than traditional approaches after composing for
1000 times. Also, the version of moments accountant using
the theoretical bounds from Abadi et al. (2016) gave sub-
stantially worse results3. Finally the general RDP bound

3We implemented the bound from the proof of Abadi et al.
(2016)’s Lemma 3 for fair comparison. According to Section 3.2
of Abadi et al. (2016), their experiments use numerical integra-
tion to approximate the moments. See more discussion on this in
Appendix D.
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(a) Gaussian mechanism (σ = 5) (b) Laplace mechanism (b = 2) (c) Randomized response (p = 0.6)

(d) Gaussian mechanism (σ = 1) (e) Laplace mechanism (b = 0.5) (f) Randomized response (p = 0.9)

Figure 4. Illustration of the use of our bounds in moments accountant. We plot the the privacy loss ϵ for δ = 1e − 8 (using (2)) after k
rounds of composition. The x-axis is the number of composition k,and the y-axis is the privacy loss after k’s composition. The green
curve is based on general upper bound for all parametrized random mechanism obtained through Theorem 5. Short hand MA refer to
“moment accountant”. The upper three figures are in high privacy regime with parameter σ = 5, b = 2, p = 0.6, the lower three are in
low privacy regime with σ = 1, b = 0.5, p = 0.9.

perform as well as the tight bound when k is large (thanks
to the tightness for small α).

5. Conclusion
In this paper, we study the problem of privacy-
amplification by poisson subsampling, which involves
"add/remove" scheme instead of replacement strategy.
Specifically, we derive a tight upper bound for M ◦
PoissonSample for any mechanism satisfying that their odd
order Pearson-Vajda χα-Divergences are nonnegative. We
showed that Gaussian mechanism and Laplace mechanism
have this property, as a result, finding the exact analytical
expression for the Poisson subsampled Gaussian mecha-
nism that has seen significant application in differentially
private deep learning. Our results imply that we can com-
pletely avoid numerical integration in moments accounts
and track the entire range of α without paying unbounded
memory. In addition, we propose an efficiently τ -term ap-
proximation scheme which only calculates the first and last
τ terms in the Binomial expansion when evaluating the
RDP of subsampled mechanisms. This greatly simplifies
the computation for computing ϵ given δ as is used in the
moments accountant. The experiment result of τ -term ap-
proximate part reveals that approximate bound matches up
the lower bound quickly even for a relative small τ .

Future work includes making use of the exact subsampled
RDP bounds to tighten the existing results that made use
of subsampled-mechanisms, coming up with more general
recipe to automatically check the nonnegativity condition
on the odd-order Pearson-Vajda χα-Divergences and de-
sign differentially private learning algorithms with more
complex and hetereogenous building blocks.
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