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A. Derivations and Proofs for Main Paper
A.1. Derivation of Eq. (11) in main paper

Proof. The "mild smoothness assumptions" refers that
L(6;) € C?. Then the Ito’s lemma holds (Bksendal, 2003).
Thus,

dL(6:) (1)
1 1 1 1
= <_VLTVL +5Tr (25 H@;)) dt + VLTS? dw;
(2)
1 1
- <VLTVL + 2Tr(HtEt)> dt + VLTRZ aw,. (3)

Taking expectation with respect to the distribution of 6;, we
have

dEy,L(6;) =E (—VLTVL + ;Tr(HtZt)) dt, (4)

since the expectation of Brownian motion is zero.

Thus the solution of Eq, L(6;) is,

EL(,) = L(eo)—/ot E (VLTVL) +/Ot %ETr(HtZt) at.

)
O

A.2. Derivation of Eq. (13) in main paper

Proof. Without loss of generality, we assume that L(0y) =
0.

For multivariate Ornstein-Uhlenbeck process, when 6y = 0
is an constant, 8; follows a multivariate Gaussian distribu-
tion (Bksendal, 2003).
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For symmetric matrix A4, let
et .= UTdiag(e™, ..., M), (6)

where Ay, ..
matrix of A.

., Ap and U are the eigenvalues and eigenvector

Consider change of variables § — ¢(6,t) = ef*f;. Note
that,

= He't, (7)

Thus by applying Ito’s lemma, we have
dg(6,,t) = e"'S= AW, ®

which we can integrate form 0 to ¢ to obtain

t
0, =0 +/ eHs=y3 qIy,. )
0

The expectation of 6, is zero. And by Ito’s isometry (k-
sendal, 2003), the covariance of 6; is,

E6,6T (10)
i t t T
K / HE=%3 g, / eHr—tx3 qm,
0 0
) (11)
[ ot
=K /eH(S—”z%z%eH(s—“ds] (12)
0
[ ot
) / =y ls=t) 4 g (13)
0
+
:/ M= neH =1 4. (14)
0

The last equation is because H and ¥ are both constant.



Supplementary Materials

Therefore
EL(0,) = %]ETr (9{}1@) (15)
1

= 5T (HEHtQtT ) (16)
t

:% / Tr (HeH(S’t)EeH(S’t))ds (17)
0
t

:%/ Tr (eH(s_t)HEeH(S_t))ds (18)
0
t

- % / Tr (e2H<S*t>H2) ds (19)
0

_ 1 1 —1 —2Ht

_2Tr<2H (1— )HZ) (20)

1 __—2Ht

- 4Tr<([ e )2) Q1)

Eq. (18) holds since H is symmetric. Further, by Taylor’s
expansion we have

EL(6;) = iTr ((I _ e—”“) 2) - %Tr(HZ). (22)

O
A.3. Proof of Proposition 1
Proof. Tr(HX) can be decomposed as
D
D) =Y i) Su;. (23)

Thus by the conditions of Proposition 1, we can bound
Tr(HY) as

Tr(HY) > vl Su; > aAl% (24)
On the other hand,
Tr(HY) = %TrH. (25)
Thus,
Tr(H%J) S ax D S a1 D
Te(HE) ~ (TeH)” ™ (kM + (D = k)D=M)° (o)
=0 (aDQd_l) .
O
A.4. Proof of Proposition 2 in main paper
Proof. For simplicity, we define
F(a;0) := ¢ o f(x;0) € [5,1 4], 27

and )
U(x,y;0) = 5 (f(2:0) —y)*. (28)

Since both f and ¢ are piecewise linear, f(z;6) is also
piece-wise linear with respect to 6. Thus the Hessian of f is
zero almost everywhere.

Then the loss function becomes L(6)

We calculate the gradient and the Hessian of the loss:

VoL(0) = E(f(z;0) —y)Vof(z;:0);  (29)
H(0) = VZL(0) (30)
=EVof(z:0) - Vof(z:0)" +E(f(z:0) —y)V;
(€29)
=EVof(z;0) - Vof(x;0)T. almost everywhere.
(32)

The last equation holds almost everywhere, since f(x;6) is
piece-wise linear and its Hessian is zero almost everywhere.

On the other hand, the Fisher is
F(0) = EVyl(z,y;0) -V

= B(f(x;0) —

ol(x,y;0)" (33)
¥)*Vof(x;0) - Vof(z;0)°. (34)
(1) Note that f € [0,1 — §] and y € {0, 1}, thus

(fx;0) —y)* > 6 (35)

Therefore
F(0) = E§*Vof(;0) - Vof(z;0)? = 82H(0), (36)

holds almost everywhere.

(2) Around the minima where 6 € {6 : || f(z;60) — y|| <
J +¢€,Y(z,y)}, we have

(f(@:0) —9)* < (0 + €)% (37)
Therefore
F(0) 2 E(0+€)°Vof(x;0)-Vof(x;0)* = (5+€)*H(0),
holds almost everywhere around the minima. (32

A.5. Proof of Proposition 3 in main paper

Proof. We only consider ¢ around the minima 6* such that
{6 :||¢ o f(x;0) —y|| < 6+€ V(z,y)}. On the other hand
by construction ||¢ o f(x;6) — y|| > &. Thus according to
Proposition 2,

S2H(0) = F(0) < (6 +€)*H(0) (39)

fla;0)
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holds almost everywhere.
Thus let A(6) and u(0) being the maximal eigenvalue and
its corresponding eigenvector of H (),

w(®)TF(0)u(9) > 6*u(0)T H(0)u() = 62X(0).  (40)

Since at the minimal 8* the Hessian is not zero, thus there

is a positive value \* > 0 such that A(6*) > A* > 0.

Therefore by the continuity of H (6), there are €1, d1, such
that,

AO) >N —e >0, V[|0—0" <. (41)

By Taylor’s expansion,

VL) =VLO")+ H(0)(0—6%)+0(6 —0") 0
= H(0*)(8 —0") + o(0 — 7). (42)
Hence,
IVL@)l; <|#E")][310 = 615 + o (16— 6°]13) .
(43)
Therefore, for all 6 such that
52(52()\* — 61)
10— 0%y, < " 44)
LT =],
5252>\(0)
<7 (45)
|[H (0
\/52“ Ju(f)
< ) (46)
IIH (6*) ||2
we have
IVLO)|)? < 6u(6)” F(8)u(8)+o <52u(9)TF(9)u(9)D .
47

On the other hand, by definition, the gradient covariance
and Fisher F" has the following relationship,

3(6) = E(Ve(x,y;0) — VL(B)) - (VL(z,y;0) — VL))"
=EVL(z,y;0) - Vi(x,y;0)" — VLO)VLO)T
= F(#) — VL(O)VL(H)T.

(48)

Thus,

uw(0)TS(0)u(0)
Tr¥(6) @)

_u()TF(0)u(0) — u(®)"VL(O)VL(0)" u(0) (50)
TeF(0) — Tr(VL(e)VL(e)T)

w(®)TF(0)u(9) - || VLO)] 51)
TYF(G) HVL H2

u(0)" F(O)u(0) = || VL©);

2 TeF(0) } o

w(6)TF(0)u(6) VLo,

T TrF(6) (1_u(9)TF(9)U(9) 9

w(®T U

u(0)F(0)u(0)

> TF (@) (1—265). (55)

Note that Eq. (39) indicates that
Vu, uT(F(0)—6*H(6))u>0 (56)
and  Tr((6 +€)2H(0) — F(0)) > 0. (57)

Thus
w@)TFO)u(0) _ 2u(0)T H(0)u(0) (58)
TrF(6) (6 4 €)?TrH(6)
B 52\ (9)
(04 €)2TrH(9) (59)
Therefore for all € in the set of
{Hfbo flz:0) —y|| <6+ e,v(x,y)}
n{lo-o<a'} ©0)
. 0205(A* — €1)
0—0 -
we have
w()"S(0)u(9) _ u(@)"F(O)u(6)
@) 2 TR 22 ©D
(1—2582)8% A()
— (6+¢€?2 TrH(9) ©62)
O

B. About the non-convexity of the model in
Proposition 2 in main paper

Suppose we only have one training data {z = (1,1);y =
1}, and the threshold activation is

(f) = min{max{f,0.1},0.9}. (63)
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Figure 1. L norm of gradient mean vs. the expected norm of
noise during the training using SGD. The dataset and model are
same as the experiments of FashionMNIST in main paper, or as in
Section D.3

Thus the loss is

L(wy,ws) = (¢(relu(wr) — relu(wy)) —1)%. (64)

Hence
L(1,0) =0.01
L(0,1) =0.81 (65)
L(0.5,0.5) = 0.81.
Therefore
%L(l, 0) + %L(O, 1) < L(0.5,05),  (66)

which means that L is not convex.

It is also easy to see that L has multiple minima.

C. Additional experiments
C.1. Dominance of noise over gradient

Figure 1 shows the comparison of gradient mean and the ex-
pected norm of noise during training using SGD. The dataset
and model are same as the experiments of FashionMNIST
in main paper, or as in Section D.3. From Figure 1, we see
that in the later stage of SGD optimization, the magnitude
of noise indeed dominates that of gradient.

These experiments are implemented by TensorFlow 1.5.0.

C.2. The first 50 iterations of FashionMNIST
experiments in main paper

Figure 2 shows the first 50 iterations of FashionMNIST
experiments in main paper. We observe that SGD, GLD
Ist eigvec(H ), GLD Hessian and GLD leading successfully
escape from the sharp minima found by GD, while GLD
diag, GLD dynamic, GLD const and GD do not.

These experiments are implemented by TensorFlow 1.5.0.

— 6D
—— GLD const
—— GLD dynamic
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—— GLD leading
GLD Hessian
GLD 1st eigven(H)
— 156D
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—

train accuracy (%)
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iteration iteration

Figure 2. The fisrt 50 iterations of FashionMNIST experiments
in main paper. Compared dynamics are initialized at ¢, p found
by GD. The learning rate is same for all the compared methods,
n: = 0.07, and batch size m = 20. Left: Training accuracy
versus iteration. Right: Test accuracy versus iteration.

D. Detailed setups for experiments in main
paper
D.1. Two-dimensional toy example

Loss Surface The loss surface L(ws,ws) is constructed
by,

Sli’wlflth
52:w2—1—x2,

L(wy, we; 21, x2) = min{10(s; cosf — sy sin 9)2

4 100(s1 cos 0 + sy sin 0)?, (wy — 21 + 1) + (wg — 22 + 1)},

N
1
L(w17w2) = N Zg(wlan;xllc>$§)a

k=1
where
1
0 =-—m,
N =100,
k _ ( cos@ sinf
r N(0,%), E= ( sin @ cos@) :

Note that X is the inverse of the Hessian of the quadric form
generalizeing the sharp minima. And the 3-dimensional plot
of the loss surface is shown in Figure 3.

Hyperparameters All learning rates are equal to 0.005.
All dynamics concerned are tuned to share the same ex-
pected square norm, 0.01. The number of iteration during
one run is 500.

These experiments are implemented by PyTorch 0.3.0.

D.2. One hidden layer network

Hyperparameters The 0 is set to be 0.001. The learning
rate is 0.001. The optimizer is Adam for fast convergence,
which does not affect our point on studying Tr(HY).

The code is implemented in TensorFlow 1.9.0.
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Figure 3. Constructed 2-dimensional surface in main paper.

D.3. FashionMNIST with corrupted labels

Dataset Our training set consists of 1,200 examples ran-
domly sampled from original FashionMNIST training set,
and we further specify 200 of them with randomly wrong
labels. The test set is same as the original FashionMNIST
test set.

Model Network architecture:

input = convl = max_pool = ReLU = conv2
= max_pool = ReLU = fcl = ReLU
= fc2 = output.

Both two convolutional layers use 5 x 5 kernels with 10
channels and no padding. The number of hidden units be-
tween fully connected layers are 50. The total number of
parameters of this network are 11, 330.

Training details

e GD: Learning rate = 0.1. We tuned the learn-
ing rate (in diffusion stage) in a wide range of
{0.5,0.2,0.15,0.1,0.09,0.08,...,0.01} and no im-
provement on generalization.

e GLD constant: Learning rate n = 0.07, noise std
o = 1073. We tuned the noise std in range of
{1071,1072,1073,107*,1075} and no improvement
on generalization.

GLD dynamic: Learning rate n = 0.07.

GLD diagnoal: Learning rate n = 0.07.

e GLD leading: Learning rate = 0.07, number of
leading eigenvalues k = 20, batchsize m = 20. We
first randomly divide the training set into 60 mini
batches containing 20 examples, and then use those
minibatches to estimate covariance matrix.

e GLD Hessian: Learning rate = 0.07, number of
leading eigenvalues = 20, update frequence f = 10.
Do to the limit of computational resources, we only
update Hessian matrix every 10 iterations. But add
Hessian generated noise every iteration. And to the
same reason, we simplily set the coefficent of Hessian
noise to y/TrH /mTrY, to avoid extensively tuning of
hyperparameter.

e GLD 1st eigvec(H): Learning rate = 0.07, as for
GLD Hessian, and we set the coefficient of noise to
/A1/mTrY, where \q is the first eigenvalue of H.

e SGD: Learning rate = 0.07, batchsize m = 20.

Estimation of Sharpness The sharpness are estimated by

M
%ZL(@‘FZ@) —L(Q), vj NN(0,52[), (67)
j=1

with M = 1,000 and § = 0.01.

These experiments are implemented by TensorFlow 1.5.0.

D.4. SVHN and CIFAR-10

Dataset For SVHN experiments, we use 2,5000 exam-
ples for training and 7, 5000 examples for test, to compro-
mise with the computational burden of gradient descent.
And for CIFAR-10 experiments, we use standard CIFAR-10
datasets. We do not use data augmentation since it could
cause uncontrollable affects on analyzing SGD noise.

Model Standard VGG11 network without any regulariza-
tions including dropout, batch normalization, weight decay,
etc. The total number of parameters of this network is
9,750,922.

We choose VGG11 instead of ResNet because VGG11
achieves good generalization performance without using
Batch Normalization, which has a subtle impact on SGD
noise.

Training details Learning rates n; = 0.05 are fixed for
all optimizers, which is tuned for the best generalization
performance of GD. The batch size of SGD is m = 100.
The noise std of GLD constant is ¢ = 10~3, which is tuned
to best. Due to computational limitation, we only conduct
experiments on GD, GLD const, GLD dynamic, GLD diag
and SGD.

Estimation of Sharpness The sharpness are estimated by

M
%ZL(WFVJ‘)—LW), vj ~N(0,6°T),  (68)
j=1
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with M = 100 and 6 = 0.01.

These experiments are implemented by PyTorch 1.0.0.
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