Supplementary Materials for Latent Normalizing Flows for Discrete Sequences

Zachary M. Ziegler ' Alexander M. Rush !

A. Invertible discrete mappings

It is interesting to consider how one might directly apply
flows to discrete sequences. We begin with the discrete
change of variables formula: for X € Q2,Y € QF (with
Q, Q, finite), base density px (x), and deterministic func-

tiony = f(x),

py(y) =

Y. rx(@)

zef~1(y)

If f is invertible, as is required for the flow framework, this
reduces to

py(y) =px(f'(y))

First, examine the simplest case where D = 1 and X € €,
Y € Q, ie. z,y are just single elements of a set. In this
case, invertible functions can only be found if [Q2,| = |€2,],
so without loss of generality we can rename elements such
that 0, = Q, = . Thus we are interested in invertible
functions f : 2 — (). By definition, a permutation of (2
is any invertible mapping from 2 to itself (Nering, 1970).
We conclude that when D = 1, the only possible invertible
functions are permutations. As permutations do not permit
a parameterized changing of densities, a normalizing flow
cannot be used in the 1D case to define a useful distribution.

This is not just a theoretical result, consider the following
example: we are interested in learning the distribution of
the first word in a set of documents. In this case €2 would
be the vocabulary of possible words, y represents a word,
and we would like to use a discrete flow to model p(y).
We pick an uninformative base density such as the uniform
distribution. According to the result above, a flow cannot
learn the distribution p(y), whereas simply counting would
model the distribution well.

Even if we were to choose a different distribution, say a
geometric distribution in some order, the flow could at best
find a permutation of the geometric probabilities that best
matches the true distribution. Clearly this is an undesirable
optimum.

In the more general case where D > 1, non-permutation
invertible mappings certainly exist. A common example
is the XOR function. Therefore, it is in principle possible
to use flows to model data when D > 1, and future work
should investigate the limits of this approach. Given that the
1D case fails, however, it will be important to understand
how this failure relates to the higher dimensional cases. Is
this simply an unfortunate edge case? Or is it indicative of
a larger limitation?

B. Proposed flow validity

A transformation function f : R” — RP represents a valid
normalizing flow if f is invertible. A transformation func-
tion f represents a useful normalizing flow is the Jacobian
of f can be computed with linear complexity in dimension
of the data. We show that the three proposed flows in this
work have both of these properties.

First consider the AF / AF flow, defined by transformation
function fy:

zi = far(€s; 2<,0)

To prove the mapping is invertible it suffices to find the
inverse:

€ = ngl(Zt; Z<t,0)

far is anormalizing flow and therefore an invertible func-

tion. Each €; can thus be calculated from z;.7 giving
_ -1

€1.T = f9 (zlzT)-

For the latent flows considered in the main text z €
RT*H_ Here we equivalently view z as a large D =
T - H vector. We write z = z1.7 = {z1,...,27} =
{2’1’1, vy 1, H 5 R2, 125 B2 Hy ooy BT, 15 -y ZT,H}- In this case
the Jacobian matrix % can be written as a block matrix

321 azl
Oey ‘o Qer
6zT BZT
Oeq e Oer

where each block % is a HxH Jacobian matrix.

For the AF / AF flow % = 0;s > t because z; depends
only on €; and 2z .;, which itself only depends on €. There-



Supplementary Materials for Latent Normalizing Flows for Discrete Sequences

fore the Jacobian matrix is block triangular with determinant

T 9z, T
1152 |-11
t=1

t=1
Thus, the Jacobian determinant is simply the product of the
Jacobian determinants of the AF-in-hidden transformations
at each time step. (Papamakarios et al., 2017) show that the
Jacobian determinant is linear in H for AF, thus the overall
complexity for the determinant calculation of AF / AF is
O(TH) = O(D).

Ofar
6€t

8j
Oe

The proof holds when f 4 is replaced with fscp, as (Dinh
et al., 2017) show that the Jacobian of fscr can be com-
puted with linear complexity. This concludes the proof
that AF / AF and AF / SCF are valid normalizing flows
with Jacobian determinant calculations linear in the data
dimension.

For IAF / SCF the transformation function pair is:

zt = focr(€r; €<1,0), € = fgclp(zt;€<t,9)

This is invertible because an inverse function is found.
% = 0; s > t because z; depends only on €; and €. The
Jacobian matrix is thus block triangular with determinant
HT 9fscr
t=1|" e,

Jacobian determinant complexity of O(TH) = O(D).

. The same argument as for AF / AF gives a

C. NLSq invertibility
The NLSq function is

C

f(6)=Z=a+b€+m

(1
In the following discussion we assume b > 0,d > 0 A
real scalar function is invertible if its derivative is positive
everywhere.

_ 2cd(de+g)
(14 (de + 9)°)?
Taking another derivative and setting it equal to 0 gives the
critical points €* = (g=++/1/3)/d. The distinction between

maximum and minimum depends on the sign of c. In either
case, the minimum slope is

fe=b-

J(e) =b— —=leld

9
%|
Thus invertibility is guaranteed if b > 8%|c|d. In our
implementationa = a, g = g, b = ¢, d = ¢, and ¢ =
Sg—fba - tanh(c’), where a, V', ¢/, d’, g are unrestricted and

output from the model, and 0 < « < 1 is a constant included
for stability. We found oo = 0.95 allows significant freedom

of the perturbation while disallowing “barely invertible”
functions.

The inverse of the NLSq function is analytically computable,
which is important for efficient generation. Solving for € in
Eq. 1 gives the cubic equation

—bd?*e® + ((z — a)d* — 2dgb)é?
+(2dg(z — a) — b(g* +1))e
+(z=-a)(g®+1)—c)=0

Under the invertibility condition above this is guaranteed to
have one real root which can be found analytically (G. C.
Holmes, 2002).

In practice, because the forward direction as written (apply-
ing f(e)) requires fewer operations it is used for the reverse
function f~1(2), and the solution to the cubic equation is
used for the forward function f(e).

D. Variable length input

When working with non-autoregressive models we need to
additionally deal with the variable length nature of the ob-
served sequences. Unlike autoregressive models, which can
emit an end-of-sentence token, non-autoregressive models
require the length to be sampled initially. Given a sequence
of length T" we can write

mm:/ﬁmrm@wT=Mﬂﬂmn

where the second equality comes from the fact that
p(x|T") = 0 for 7" # T. For unconditional sequence
modeling we can use the empirical likelihood for p(T"), and
then condition all parts of the model itself on 7. In this
work we implement the conditioning as a two one-hot vec-
tors at every timestep ¢, indicating the distance from the
beginning and end of the sequence. Compared to other pop-
ular position encodings in the literature, such as the one
commonly used in the Transformer (Vaswani et al., 2017),
this primarily encodes the absolute length 7" instead of the
relative position between tokens needed in a self-attention
based architecture.

The generative process becomes:

T~ p(T)
€~ pc(€)
z = fo(&T)
@ ~ p(x|z,T)



Supplementary Materials for Latent Normalizing Flows for Discrete Sequences

E. Implementation and optimization details

During optimization, the expectation in the ELBO is ap-
proximated with 10 samples. 5 layers of AF-in-hidden or
SCF-in-hidden flow are used for the AF / AF and AF / SCF
models and 3 layers are used for the IAF / SCF models,
for character-level language modeling. 5 layers of SCF-in-
hidden are used for all models on the polyphonic datasets.
The base density is a standard Gaussian. Adam is used as
the optimizer with a learning rate of le-3 and a gradient
clipping cutoff of 0.25. Dropout is used to regularize the
baseline model and the LSTM in the prior of the AF / AF
and AF / SCF models. All LSTMs are two layers deep, and
all embedding and hidden layers are made up of 500 units.
Weight tying between the input embedding of the encoder
and output embedding of the decoder is employed.

A latent size of D = 50 for each random vector z; and €;
is used. During preliminary experiments we found that for
character-level language modeling the results were nearly
identical for D = 5 — 80.

Many recent works have found that it is necessary to bias
the variational optimization to prevent posterior collapse,
most commonly by using KL annealing or modifying the
objective (Bowman et al., 2016; Kingma et al., 2016; Chen
et al., 2017), without which it is easy for the model to obtain
strong performance by simply ignoring the latent code. In
our case we similarly find that KL annealing is essential
to learn a strong mapping. We hypothesize that while the
decoder is extremely weak, the prior itself is powerful and
thus the generative model overall is still powerful enough to
require such a bias.

Specifically, for the language modeling task we use KL an-
nealing with an initial period of 0 weight on the KL term
for 4 epochs followed by a linear increase to the full ELBO
across 10 epochs. This schedule allows the models to first
encode the vocabulary in the continuous space with O re-
construction loss and then learn the statistical dependencies
between tokens. For the polyphonic datasets we extend this
to 0 weight for 20 epochs followed by a linear increase over
15 epochs, due to the reduced dataset size.

References

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating Sentences from a
Continuous Space. Proceedings of CoNLL, 2016. URL
http://arxiv.org/abs/1511.063409.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal,
P., Schulman, J., Sutskever, 1., and Abbeel, P. Variational
Lossy Autoencoder. Proceedings of ICLR, 2017.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using Real NVP. Proceedings of ICLR, 2017.

G. C. Holmes. The Use of Hyperbolic Cosines in Solving
Cubic Polynomials. The Mathematical Gazette, 86(507):
473-477, 2002. URL http://www. jstor.org/
stable/3621149.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, 1., and Welling, M. Improving Variational
Inference with Inverse Autoregressive Flow. 29th Confer-
ence on Neural Information Processing Systems, 2016.

Nering, E. D. Linear Algebra and Matrix Theory. Wiley,
New York, 2nd edition, 1970.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
Autoregressive Flow for Density Estimation. Advances
in Neural Information Processing Systems, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
Is All You Need. 31st Conference on Neural Information
Processing Systems, pp. 5998-6008, 2017.


http://arxiv.org/abs/1511.06349
http://www.jstor.org/stable/3621149
http://www.jstor.org/stable/3621149

