
CAVIA: Fast Context Adaptation via Meta-Learning

Fast Context Adaptation via Meta-Learning

Supplementary Material

A. Pseudocode

Algorithm 1 CAVIA for Supervised Learning

Require: Distribution over tasks p(T)
Require: Step sizes ↵ and �

Require: Initial model f�0,✓ with ✓ initialised randomly
and �0 = 0

1: while not done do

2: Sample batch of tasks T = {Ti}Ni=1 where Ti ⇠ p

3: for all Ti 2 T do

4: Dtrain
i

,Dtest
i
⇠ qTi

5: �0 = 0
6: �i = �0 � ↵r�

1
M

train
i

P

(x,y)2Dtrain
i

LTi(f�0,✓(x), y)

7: end for

8: ✓ ✓��r✓
1
N

P
Ti2T

1
M

test
i

P
(x,y)2Dtest

i

LTi(f�i,✓(x, y))

9: end while

Algorithm 2 CAVIA for RL

Require: Distribution over tasks p(T)
Require: Step sizes ↵ and �

Require: Initial policy ⇡�0,✓ with ✓ initialised randomly
and �0 = 0

1: while not done do

2: Sample batch of tasks T = {Ti}Ni=1 where Ti ⇠ p

3: for all Ti 2 T do

4: Collect rollout ⌧ train
i

using ⇡�0,✓

5: �i = �0 + ↵r�J̃Ti(⌧
train
i

,⇡�0,✓)
6: Collect rollout ⌧ test

i
using ⇡�i,✓

7: end for

8: ✓ ✓ + �r✓
1
N

P
Ti2T

J̃Ti(⌧
test
i

,⇡�i,✓)

9: end while

B. Practical Tips

B.1. Implementation

The context parameters � can be added to any network,
and do not require direct access to the rest of the network
weights like MAML. In PyTorch this can be done as follows.
To add CAVIA parameters to a network, it is necessary to
first initialise them to zero when the model is initialised:

self.context_params =
torch.zeros(size=[self.num_context_params],
requires_grad=True)

Add a way to reset the context parameters to zero (e.g., a
method that just does the above). During the forward pass,

add the context parameters to the input by concatenating it
(when using a fully connected network):

x = torch.cat((x,
self.context_params.expand(x.shape[0],
-1)), dim=1)

(This is for fully connected networks. We refer the reader
to our implementation for how to use FiLM to condition
CNNs.) To correctly set the computation graph for the
outer loop, it is necessary to assign the context parameters
manually with their gradient. In the inner loop, compute the
gradient:

grad = torch.autograd.grad(task_loss,
model.context_params,
create_graph=True)[0]

The option create graph will make sure that you can take the
gradient of grad again. Then, update the context parameters
using one gradient descent step

model.context_params = model.context_params
- lr_inner * grad

If you now do another forward pass and compute the gra-
dient of the model parameters ✓ (for the outer loop), these
will include higher order gradients because grad above in-
cludes gradients of ✓, and because we kept the computation
graph via the option grad. To see how to train CAVIA
and aggregate the meta-gradient over several tasks, see our
implementation at [blinded; see supplementary material].

B.2. Hyperparameter Selection

The choice of network architecture/size and context param-
eters can be guided by domain knowledge. E.g., for the few-
shot image classification problem, an appropriate model is
a deep convolutional model. For the context parameters, it
is important to make sure they are not underparameterised.
CAVIA can deal with larger than necessary context parame-
ters (see Table 1), although it might start overfitting in the
inner loop at some point (we have not experiences this in
practise). Regarding learning rates, we always started with
an inner loop learning rate of 1 and the Adam optimiser
with the standard learning rate of 0.001 for the outer loop.

For CNNs, we found that adding the context parameters
not at the input layer, but after several (in our case after the
third out of four) convolutions works best. We believe this
is because the lower-level features that the first convolutions
extract are useful for any image classification task, and we
only want our task embedding to influence the activations
at the deeper layers. In our experiments we used a FiLM
network with no hidden layers. We tried deeper versions,
but this resulted in inferior performance.

We also tested to add context parameters at several layers
instead of only one. However, in our experience this resulted
in similar (regression and RL) or worse (in the case of
CNNs) performance.

CAVIA: Fast Context Adaptation via Meta-Learning

(a) Multiple gradient updates. (b) Learning rate comparison. (c) Goal position embedding.

Figure 6. Results for the 2D navigation reinforcement learning problem.

C. Experiments

C.1. Classification: Details

For Mini-Imagenet, our model takes as input images of size
84⇥84⇥3 and has 5 outputs, one for each class. The model
has four modules that each consist of: a 2D convolution
with a 3 ⇥ 3 kernel, padding 1 and 128 filters, a batch
normalisation layer, a max-pooling operation with kernel
size 2, if applicable a FiLM transformation (only at the third
convolution, details below), and a ReLU activation function.
The output size of these four blocks is 5⇥ 5⇥ 128, which
we flatten to a vector and feed into one fully connected layer.
The FiLM layer itself is a fully connected layer with inputs
� and a 256-dimensional output and the identity function
at the output. The output is divided into � and �, each of
dimension 128, which are used to transform the filters that
the convolutional operation outputs. The context vector is of
size 100 (other sizes tested: 50, 200) and is added after the
third convolution (other versions tested: at the first, second
or fourth convolution).

The network weights are initialised using He et al. (2015),
the bias parameters are initialised to zero (except at the
FiLM layer). We use the Adam optimiser for the meta-
update step with an initial learning rate of 0.001. This
learning rate is annealed every 5, 000 steps by multiplying
it by 0.9. The inner learning rate is set to 0.1 (others tested:
1.0, 0.01). We use a meta batchsize of 4 and 2 tasks for
1-shot and 5-shot classification respectively. For the batch
norm statistics, we always use the current batch – also during
testing. I.e., for 5-way 1-shot classification the batch size at
test time is 5, and we use this batch for normalisation.

C.2. Reinforcement Learning: Additional Experiments

We also perform reinforcement learning experiments on
the simple 2D Navigation task of Finn et al. (2017a). The
agent moves in a 2D world using continuous actions and at
each timestep is given a negative reward proportional to its
distance from a pre-defined goal position. Each task has a
new unknown goal position.

We follow the same procedure as Finn et al. (2017a). Goals
are sampled from an interval of (x, y) = [�0.5, 0.5]. At
each step we sample 20 tasks for both the inner and outer
loops and testing is performed on 40 new unseen tasks.
We learn for 500 iterations and optimise for one gradient
update in the inner loop. The best performing policy during
training is then presented with new test tasks and allowed
two gradient updates. For each update, the total reward
over 20 rollouts per task is measured. We use a two-layer
network with 100 units per layer and ReLU nonlinearities to
represent the policy and a linear value function approximator.
For CAVIA we use five context parameters at the input layer.

Figure 6a shows that the two methods are highly competi-
tive. We think that the similar performance is mostly due
to a ceiling effect, since the domain is relatively simple.
Notably, CAVIA adapts only five parameters at test time,
whereas MAML adapts around 10, 000. Figure 6b, which
plots performance for several learning rates (at test time,
after two gradient updates), shows that CAVIA is again less
sensitive to the inner loop learning rate. Only when using a
learning rate of 0.1 is MAML competitive in performance.3

As with regression, the optimal task embedding is low di-
mensional enough to plot. We therefore apply CAVIA with
two context parameters and plot how these correlate with
the actual position of the goal for 200 test tasks. Figure 6c
shows that the context parameters obtained after two policy
gradient updates represent a disentangled embedding of the
actual task. Specifically, context parameter 1 encodes the y

position of the goal, while context parameter 2 encodes the
x position. Hence, CAVIA can learn compact interpretable
task embeddings via backpropagation through the inner loss.

C.3. Additional CelebA Image Completion Results

The following images show additional results for the CelebA
image completion task.

3For MAML we halve the learning rate after the first gradient
update, following Finn et al. (2017a).

CAVIA: Fast Context Adaptation via Meta-Learning

Figure 7. Additional image completion results for the CelebA image completion problem, when k = 10 pixels are given.

CAVIA: Fast Context Adaptation via Meta-Learning

Figure 8. Additional image completion results for the CelebA image completion problem, when k = 10 pixels are given.

CAVIA: Fast Context Adaptation via Meta-Learning

Figure 9. Additional image completion results for the CelebA image completion problem, when k = 10 pixels are given.

