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1. Preliminaries on Differential Privacy
Here we review two useful properties of differential privacy,
which are repeatedly utilized throughout this manuscript.
The omitted proofs can be found in the book (Dwork &
Roth, 2014).

The first lemma states that the output of a differentially
private algorithm remains private under any subsequent post-
processing.

Lemma 7 (Post-processing of differential privacy). Let F2 :
X → Y be an arbitrary randomized function, and let F1 :
Dn → X be an (α, β)-differentially private mapping. Then,
F2 ◦ F1 is also (α, β)-differentially private.

Differential privacy also has favorable composition proper-
ties. Linear composition is easy to show by definition of
differential privacy, while for the quadratic improvement
stated in Lemma 9 one requires more sophisticated proof
techniques, originally outlined in the paper (Dwork et al.,
2010).

Lemma 8 (Linear composition of differential privacy). Let
F1 : Dn → Y be an (α1, β1)-differentially private mapping
of a data set S, and let F2 : Y × Dn → Y be (α2, β2)-
differentially private for every fixed y1 ∈ Y . Then, the
composition of F1 and F2, obtained asF2(F1(S)), is (α1 +
α2, β1 + β2)-differentially private.

Lemma 9 (Strong composition of differential privacy).
Let F1 : Dn → Y be an (α, β)-differentially private
mapping of a data set S, and for every i ≥ 2, let
Fi : Yi−1 × Dn → Y be (α, β)-differentially private
for every fixed y1, . . . , yi−1 ∈ Yi−1. Then, the com-
position of F1, . . . ,Fi obtained as Fi(Fi−1(. . . ,S)S) is
(
√

2i log(1/β′)α+ iα(eα − 1), iβ + β′)-differentially pri-
vate, for any β′ ∈ (0, 1].

Since eα − 1 ≤ 2α for α ∈ [0, 1], this paper uses a more
convenient composition bound, which states that an i-fold
composition of (α, β)-differentially private algorithms is
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(
√

2i log(1/β′)α+ 2iα2, iβ + β′)-differentially private.

This work mainly focuses on the Gaussian mechanism for
achieving differential privacy, hence we review the privacy
properties of this method.
Lemma 10 (Properties of the Gaussian mechanism). Take
any u, v ∈ Rdq , and let ξ1, ξ2 ∼ N(0, σ2Idq ) be two inde-
pendent dq-dimensional Gaussian noise vectors. Denote
uξ = u+ ξ1 and vξ = v + ξ2. Then, it holds that:

P(uξ ∈ O) ≤ exp

(√
2 log(1.25/β)‖u− v‖2

σ

)
P(vξ ∈ O)

+β,

for any β > 0.

If u and v represent dq-dimensional empirical answers to the
same query on data sets S and S′, respectively, where S and

S′ differ in at most one element, we have ‖u− v‖2 ≤
√
dq
n .

As a result, the Gaussian mechanism with parameter σ is
(
√

2 log(1.25/β)
√
dq/nσ, β)-differentially private, for any

β > 0.

2. Beyond the Discrete Setting
In this section, we drop the assumption that H is discrete
with ∆-resolution. First we prove that, under no additional
regularity, progressive and type A conservative analysts can
be arbitrarily adaptive, regardless of their parameters of
contraction. We do, however, eliminate the trivial cases:
λ = 0 or L = 0 in Definition 1, and ηt = 0 in Definition 2.
Proposition 3. Without any assumption onH, progressive
and type A conservative analysts can overfit as much as an
adaptive analyst with a full view of the transcript, as long
as the parameters of contraction are non-trivial.

Proof. First we design a contraction that will be the main
technical idea in the proof for both progressive and conser-
vative analysts. Throughout we assume that answers are
one-dimensional, however it is not hard to see that the idea
easily extends to higher dimensions. In particular, if d = dq ,
the following argument should be applied coordinate-wise.

Suppose h, a ∈ [0, 1]. If the real-valued answers happen
to lie anywhere in R, first contract them to [0, 1] using, for
example, appropriately normalized arctangent.
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Compute h′ by interlacing the decimals of a and h. To be
more precise, denote the decimals of a as a = 0.a1a2a3 . . . .
Similarly let h = 0.h1h2h3 . . . . Then, h′ is given by h′ =
0.a1h1a2h2 . . . ; notice that this encoding allows perfect
recovery of a and h. Denote this construction by h′ =
c(a, h).

Now we turn to progressive analysts. Fix any λ ∈
(0, 1) and L > 0. Let ht = ψt(ht−1, at−1) :=
min{λ, L}c(ht−1, at−1) for all t ∈ N This mapping sat-
isfies the conditions of Definition 1 and hence constitutes a
λ-progressive analyst. However, ht and at are compressed
with no loss, allowing the whole transcript to be unrolled.
Consequently, this analyst can be as adaptive as any data
analyst with a full view of the transcript.

A similar argument proves the claim for conservative
analysts. Suppose that the step sequence {ηt} is an
arbitrary non-increasing positive sequence. Let ht =
ψt(ht−1, at−1) := ηtc(ht−1, at−1) for all t ∈ N. This
update satisfies Definition 2 and, as such, represents a ηt-
conservative analyst. As in the previous case, however, the
hidden state is a lossless encoding of the transcript, and
allows full adaptivity.

This completes the proof of the proposition.

The previous proposition shows that general contractive
maps ψt do not ensure better generalization in continuous
settings. Under mild regularity, however, linear maps imply
that adding noise to the truthful answer is essentially the
same as adding noise to the history of the analyst. We
exploit this observation in the following theorem, proving a
result quantitatively almost identical to that of Theorem 3,
although for more general setsH.

Theorem 4. Let dq = d, and suppose {Bt} is a se-
quence of positive-definite or negative-definite matrices,
where λmin := mint mini |λi(Bt)|. Then, without any dis-
cretization assumption on H, there is a computationally
efficient mechanism to accurately answers t queries cho-
sen adaptively by a type B λ-conservative analyst, given
n = Õ(

√
K(λ)d log(t)/ε2) samples, where K(λ) =

O
(

log(D/
√
λmin)

log(1/λ)

)
.

Proof. Fix a number of rounds t ∈ N. Let the statistical
mechanism be the Gaussian mechanism with parameter
σ = ε√

2 log(2td/εδ)
; that is, the answers are constructed as

at = qt(S) + ξt, where ξt is a d-dimensional vector with
entries distributed as N(0, σ2). As stated in Theorem 3, this
mechanism is (ε, εδ)-sample accurate.

We can write ξt = ξ
(1)
t + ξ

(2)
t , where ξ

(1)
t , ξ

(2)
t ∼

N(0, σ2/2) are independent Gaussians. Further, we can

rewrite the history update as:

ht = ψt(ht−1, qt−1(S) + ξ
(1)
t−1) +Btξ

(2)
t := h′t +Btξ

(2)
t−1,

where we exploit the linearity of the system. Now consider
the variable:

h′t = ψt(ht−1, qt−1(S) + ξ
(1)
t−1).

Let the truncated analyst hkt corresponding to h′t be:

hkt = ψt(h
k
t−1, a

k
t−1), hkt−j = 0,∀j ≥ k,

where akj = qkj (S) + ξj ,∀j < t, akt = qkt (S) + ξ
(1)
t ,

qkt = ft(h
k
t ).

In all rounds the truncated analyst gets noise with variance
at least σ2/2, so by Lemma 6, as well as the properties of
the Gaussian mechanism, hkt is(
O(
√
kd log(1/β′) log(2td/εδ) log(1.25/β)/εn), kβ + β′

)
-differentially private, for any β, β′ > 0. Recall that ht =

h′t +Btξ
(2)
t−1, and take hk,ξt = hkt +Btξ

k
t−1, where ξkt−1 is

an independent noise sample identically distributed as ξ(2)
t−1.

Now we need to compute the parameters of differential pri-
vacy of ht. Since stronger differential privacy only implies
better generalization, we consider “simplified” versions of
ht and hk,ξt , which have less additive noise. One simplifica-
tion would be to add a noise vector with independent entries,
which are distributed asN(0, λ2

minσ
2). The reason why this

argument works is the following. First, zero-out all non-
diagonal entries of Bt; by post-processing, this can only
induce weaker differential privacy. Now notice that the diag-
onal entries of positive-definite or negative-definite matrices
are in absolute value lower bounded by λmin. Therefore, set-
ting the diagonal entries of Bt to λmin would again worsen
the privacy parameters. In conclusion, the privacy param-
eters of ht and hk,ξt have to be at least as small as those of
the simplified histories that would be obtained by adding a
noise vector with independent entries that are distributed as
N(0, λ2

minσ
2), instead of Btξ

(2)
t−1 and Btξkt−1, respectively.

By an analogous argument as in Lemma 5, ‖h′t − hkt ‖ ≤
λkD. To utilize the Gaussian mechanism, we need to bound
‖h′t − hkt ‖2. Since `p-norms are decreasing in p, for p ≥
1, we can conclude that ‖h′t − hkt ‖2 ≤ λkD

√
d, which

follows by assuming contraction happens in `1-norm, and,
subsequently, by applying the Cauchy-Schwarz inequality.

Denote by ν1, ν2 two independent d-dimensional vec-
tors whose entries are independent and distributed as
N(0, λ2

minσ
2). Define ht,s := h′t + ν1 and hk,ξt,s :=

hkt + ν2. Take the depth of truncation to be K(λ) =

O
(

log(D
√
d/
√
λminε)

log(1/λ)

)
. Then, the properties of the Gaussian
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mechanism imply that ht,s and hk,ξt,s are indistinguishable;
that is, for some constants ε′ and δ′:

P(ht,s ∈ O|S = S) ≤ eε
′
P(hk,ξt,s ∈ O|S = S) + δ′, (1)

and similarly:

P(hk,ξt,s ∈ O|S = S) ≤ eε
′
P(ht,s ∈ O|S = S) + δ′. (2)

By post-processing of differential privacy, we also know
that hk,ξt,s has privacy parameters as least as good as hkt,s; to
restate for convenience, hk,ξt,s is αξ, βξ)-differentially private,
where:

αξ := O(
√
K(λ)d log(1/β′) log(2td/εδ) log(1.25/β)/εn),

βξ := K(λ)β + β′.

Recall that there exist constant parameters ε′ and δ′ such
that equations (1) and (2) hold. Therefore, we have:

P(ht,s ∈ O|S = S)

≤ exp(ε′)P(hk,ξt,s ∈ O|S = S) + δ′

≤ exp(ε′ + αξ)P(hk,ξt,s ∈ O|S = S′) + exp (ε′)βξ + δ′

≤ exp(2ε′ + αξ)P(ht,s ∈ O|S = S′) + exp(ε′ + αξ)δ′

+ exp(ε′)βξ + δ′.

To guarantee (O(ε), O(εδ))-differential privacy of ht,s, the
main requirement is to keep αξ proportional to ε, as all
other parameters can be chosen as arbitrarily small con-

stants. This is achieved by having n = Õ

(√
K(λ)d log(t)

ε2

)
samples. Recall the main transfer theorem of Bassily
et al. (2016): having (O(ε), O(εδ))-differential privacy
together with (O(ε), O(εδ))-sample accuracy implies ε-
generalization error with probability at least 1−δ. Applying
this result completes the proof.

3. Progressive Analysts: Proofs
3.1. Proof of Lemma 1

The claim follows by applying a union bound together with
the Hoeffding concentration bound. In particular, for every
fixed dq-dimensional statistical query q and target accuracy
ε, the following is true by the Hoeffding bound:

P(‖q(S)− EX∼P [q(X)]‖∞ > ε) ≤ 2dq exp(−2nε2),

where we take a union bound over the coordinates of q.
Now notice that, by definition of the truncated analyst, we
can write hkt , and consequently also qkt , as a function of
ak := (at−k, . . . , at−1). There are Akdq possibilities for
the value of ak. With this, we can take the union bound over
all possibilities for qkt to conclude:

P(‖qkt (S)− EX∼P [qkt (X)]‖∞ > ε) ≤ 2dqA
kdq exp(−2nε2)

= 2dq exp(kdq logA− 2nε2).

Since A is polynomial in n, we have that the generalization
error scales as Õ(

√
kdq/n).

3.2. Proof of Lemma 2

The claimed bound is a consequence of the definition of
progressiveness. First, because the truncated and full analyst
receive the same answers, we have:

‖ht − hkt ‖ = ‖ψt(ht−1, at−1)− ψt(hkt−1, at−1)‖
≤ λ‖ht−1 − hkt−1‖
≤ λk‖ht−k‖,

where the last step follows because hkt−k = 0. Now we
exploit the Lipschitz properties of the maps {ψt}:

‖ht − hkt ‖ ≤ λk‖ψt(ht−k−1, at−k−1)− ψt(0, 0)‖
= λk‖ψt(ht−k−1, at−k−1)− ψt(0, 0)

+ ψt(0, at−k−1)− ψt(0, at−k−1)‖
≤ λk(‖ψt(ht−k−1, at−k−1)− ψt(0, at−k−1)‖
+ ‖ψt(0, at−k−1)− ψt(0, 0)‖)
≤ λk(λ‖ht−k−1‖+ L‖at−k−1‖)

≤ λkLC1

1− λ
,

where the last step follows by recursively applying the
same steps to the term ‖ht−k−1‖, and due to the fact that
‖at−k−1‖ ≤ ‖(1, . . . , 1)‖.

3.3. Proof of Theorem 1

Take any h, h′ ∈ H, such that h 6= h′. Then, h and h′ have
to differ by at least ∆ in norm, assuming that they are equal
in all coordinates but one. However, by Lemma 2, we have:

‖ht − hkt ‖ ≤
λkLC1

1− λ
.

This means that, if λkLC1

1−λ < ∆, ht and hkt are identical.
In other words, a truncated analyst with truncation level⌈

log( LC1
(1−λ)∆ )

log(1/λ)

⌉
≤

log( LC1
(1−λ)∆ )

log(1/λ) +1 =
log( LC1

(1−λ)λ∆ )
log(1/λ) := K(λ)

is identical to the corresponding progressive analyst. Since
queries are determined solely by the value of the current
history, the queries asked by the full analyst and its truncated
version at time t have to be identical. Let each answer be
constructed as the projection of the empirical answer to the
set A = {0, ε

2n ,
ε
n , . . . , 1}

dq . Then, by a union bound:

P( max
1≤i≤t

‖qi(S)− EX∼P [qi(X)]‖∞ > ε)

≤
t∑
i=1

P(‖qi(S)− EX∼P [qi(X)]‖∞ > ε)

≤ 2tdq exp(K(λ)dq log(2n/ε+ 1)− 2nε2),
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where the last step applies Lemma 1. Since ‖qi(S) −
ai‖∞ ≤ O

(
1
n

)
, we can conclude that the generalization

error scales as Õ(
√
K(λ)dq log(t)/n).

3.4. Proof of Claim 1

Suppose that the data samples are supported on R, with
no atoms. Let dq and da be the dimensions of the queries
and query results, respectively. Typically dq = da, but this
assumption is not necessary for the current counterexample.
We will prove the claim for K = 1, which will immediately
imply the claim for all K ∈ N. Let g1 be any bijection
between Rda and R, and g2 be any bijection between R2

and R; the existence of such functions is a standard set-
theoretic result. Pick a “reserved value” r ∈ [0, 1]dq . All
queries the analyst wishes to ask while interacting with the
response mechanism must have the inverse image of r to
be a singleton; this does not effectively limit the scope of
queries, since r can have infinite precision. After the first
round, set q2(g1(a1)) = r. In all higher rounds t ≥ 3,
set qt(g2(g1(at−1), q−1

t−1(r))) = r. Since g1 and g2 are
bijections, at any round t one can recover at−1, as well
as the previous encoding of the transcript q−1

t−1(r), which
allows recursive recovery of all answers a1, a2, . . . , at−1.
Since the queries are constructed deterministically based
on the current transcript, knowing all answers encodes all
query-answer pairs in a lossless fashion. Therefore, despite
only having access to qt−1 and at−1 at time t, the analyst is
familiar with the full transcript. Consequently, the analyst
can be arbitrarily adaptive, which completes the proof.

4. Conservative Analysts, Type A: Proofs
4.1. Proof of Lemma 3

Fix ht−1, and take two different answers at−1, a
′
t−1 ∈ A.

Denote the histories resulting from evolving ht−1 using
at−1 and a′t−1 by ht and h′t, respectively. Then, by defini-
tion of type A conservative analysts:

‖ht − h′t‖ = ‖ψt(ht−1, at−1)− ψt(ht−1, a
′
t−1)‖

≤ ηt‖at−1 − a′t−1‖
≤ ηtC1,

where C1 := ‖(1, . . . , 1)‖, which follows from the assump-
tion that the answers are bounded to [0, 1]dq . Since the
set H has ∆-resolution, if ht 6= h′t, it has to hold that
‖ht − h′t‖ ≥ ∆. Therefore, if ηtC1 < ∆, the history is
determined solely depending on ht−1 and ψt, with no de-
pendence on at−1 and a′t−1. Denote K(ηt) := min{t :
ηtC1 < ∆}. Since ηt is a non-increasing sequence, using
recursive reasoning one can conclude that the history at
all times after K(ηt) does not depend on the value of the
current answer. As a result, we can set all answers after
time K(ηt) to be equal to 0, with no change on the analyst’s

history sequence. This exactly means that hK(ηt)
t = ht,

for K(ηt) := {min t : ηt < ∆/C1}, which completes the
proof.

4.2. Proof of Lemma 4

By the strong composition of differential privacy, hkk is
(
√

2k log(1/β′)α + 2kα2, kβ + β′)-differentially private.
For all rounds after the k-th one, the answers are constant
and independent of the data set S, meaning they are (0, 0)-
differentially private. Hence, by the linear composition
of differential privacy, for all t ≥ k the history remains
(
√

2k log(1/β′)α + 2kα2, kβ + β′)-differentially private.
Both composition results are stated in the supplementary
material.

4.3. Proof of Proposition 1

The proof follows directly from Lemma 3 and Lemma 4.

4.4. Proof of Theorem 2

Let the statistical mechanism be the truncated Gaussian
mechanism with parameter σ = ε√

2 log(2tdq/εδ)
; that is, the

answers are constructed as at = [qt(S) + ξt][0,1]dq , where
ξt is a dq-dimensional vector with entries distributed as
N(0, σ2). Then, by the sub-gaussian tail bound (Boucheron
et al., 2013), as well as a union bound:

P( max
1≤i≤t

‖ai − qi(S)‖∞ ≥ ε) ≤ P( max
1≤i≤t

‖ξi‖∞ ≥ ε)

≤ 2tdq exp

(
− ε2

2σ2

)
= εδ,

where in the last step we plug in the choice of σ. Therefore,
such a mechanism is (ε, εδ)-sample accurate. By properties
of the Gaussian mechanism, this mechanism is also(√

4dq log(2tdq/εδ) log(1.25K(ηt)/εδ)

nε
, εδ/K(ηt)

)

-differentially private. By Proposition 1, for an arbitrarily
large t, the history ht is

(√
2K(ηt) log(1/β′)

√
4dq log(2tdq/εδ) log(1.25K(ηt)/εδ)

nε

+2K(ηt)
4dq log(2tdq/εδ) log(1.25K(ηt)/εδ)

n2ε2
, εδ + β′

)
-differentially private, for any β′ > 0. Given n ≥

Õ

(√
K(ηt)dq log(t)

ε2

)
, this composition is (O(ε), O(εδ))-

differentially private. By the main transfer theorem of
Bassily et al. (2016), having (O(ε), O(εδ))-differential
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privacy, as well as (O(ε), O(εδ))-sample accuracy, im-
plies ε-generalization error with probability at least
1 − δ. Therefore, the generalization error scales as
Õ((K(ηt)dq log(t))1/4/

√
n).

5. Conservative Analysts, Type B: Proofs
5.1. Proof of Lemma 5

To prove the claim, we exploit the fact that the truncated
analyst and the full analyst receive the same noise variables
at any given round. This implies:

‖ht − hkt ‖ = ‖Atht−1 +Btqt−1(S) +Btξt−1 −Athkt−1

−Btqkt−1(S)−Btξt−1‖
= ‖ψt(ht−1, qt−1(S))− ψt(hkt−1, q

k
t−1(S))‖

≤ λ‖ht−1 − hkt−1‖
≤ λk‖ht−k‖
≤ λkD,

where the first equality follows by canceling the noise
term, the first inequality uses the fact that the analyst is
λ-conservative, the second inequality applies the previous
argument recursively, and uses the fact that hkt−k = 0, and
the last inequality follows by the assumption of H being
bounded.

5.2. Proof of Lemma 6

Since hkt−k = 0, it is independent of the data set S and,
as such, it must be (0, 0)-differentially private. By linear
composition of differential privacy, ht−k+1 is then (α, β)-
differentially private. Moreover, in the last k rounds, all
indivudual answers are (α, β)-differentially private, so by
the strong composition of differential privacy, the history is
(
√

2k log(1/β′)α + 2kα2, kβ + β′)-differentially private.
The composition results for differential privacy are stated in
the supplementary material.

5.3. Proof of Proposition 2

For any h, h′ ∈ H, such that h 6= h′, it has to hold
that ‖h − h′‖ ≥ ∆. However, as shown in Lemma 5,
for every k, ‖hkt − ht‖ ≤ λkD. Therefore, for trunca-
tion level

⌈
log(D/∆)
log(1/λ)

⌉
≤ log(D/∆λ)

log(1/λ) := K(λ), hK(λ)
t =

ht. Consequently, since hK(λ)
t is (

√
2K(λ) log(1/β′)α +

2K(λ)α2,K(λ)β + β′)-differentially private by Lemma 6,
then so is ht.

5.4. Proof of Theorem 3

Let the statistical mechanism be the Gaussian mechanism
with parameter σ = ε√

2 log(2tdq/εδ)
; that is, the answers are

constructed as at = qt(S)+ξt, where ξt is a dq-dimensional
vector with entries distributed as N(0, σ2). Then, by the
sub-gaussian tail bound (Boucheron et al., 2013), as well as
a union bound:

P( max
1≤i≤t

‖ai − qi(S)‖∞ ≥ ε) = P( max
1≤i≤t

‖ξi‖∞ ≥ ε)

≤ 2tdq exp

(
− ε2

2σ2

)
= εδ,

where in the last step we plug in the choice of σ. Therefore,
such a mechanism is (ε, εδ)-sample accurate. By properties
of the Gaussian mechanism, this mechanism is also(√

4dq log(2tdq/εδ) log(1.25K(λ)/εδ)

nε
, εδ/K(λ)

)

-differentially private. By Proposition 1, for an arbitrarily
large t, the history ht is(√

2K(λ) log(1/β′)

√
4dq log(2tdq/εδ) log(1.25K(λ)/εδ)

nε

+2K(λ)
4dq log(2tdq/εδ) log(1.25K(λ)/εδ)

n2ε2
, εδ + β′

)
-differentially private, for any β′ > 0. Given n ≥

Õ

(√
K(λ)dq log(t)

ε2

)
, this composition is (O(ε), O(εδ))-

differentially private. By the main transfer theorem of
Bassily et al. (2016), having (O(ε), O(εδ))-differential
privacy, as well as (O(ε), O(εδ))-sample accuracy, im-
plies ε-generalization error with probability at least
1 − δ. Therefore, the generalization error scales as
Õ((K(λ)dq log(t))1/4/

√
n).
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