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Abstract

Adaptive data analysis is frequently criticized for
its pessimistic generalization guarantees. The
source of these pessimistic bounds is a model
that permits arbitrary, possibly adversarial ana-
lysts that optimally use information to bias re-
sults. While being a central issue in the field,
still lacking are notions of natural analysts that
allow for more optimistic bounds faithful to the
reality that typical analysts aren’t adversarial. In
this work, we propose notions of natural analysts
that smoothly interpolate between the optimal
non-adaptive bounds and the best-known adap-
tive generalization bounds. To accomplish this,
we model the analyst’s knowledge as evolving
according to the rules of an unknown dynami-
cal system that takes in revealed information and
outputs new statistical queries to the data. This
allows us to restrict the analyst through differ-
ent natural control-theoretic notions. One such
notion corresponds to a recency bias, formaliz-
ing an inability to arbitrarily use distant informa-
tion. Another complementary notion formalizes
an anchoring bias, a tendency to weight initial
information more strongly. Both notions come
with quantitative parameters that smoothly inter-
polate between the non-adaptive case and the fully
adaptive case, allowing for a rich spectrum of in-
termediate analysts that are neither non-adaptive
nor adversarial. Natural not only from a cognitive
perspective, we show that our notions also cap-
ture standard optimization methods, like gradient
descent in various settings. This gives a new in-
terpretation to the fact that gradient descent tends
to overfit much less than its adaptive nature might
suggest.
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1. Introduction

Modern data analysis is usually adaptive in the sense that
past analyses shape future analyses. This practice offers
power and flexibility to data science at the cost of a greater
potential for spurious results. The issue is now well recog-
nized in multiple communities. The problem of inference
after selection is an active research area in statistics, while
computer science has developed an area known as adaptive
data analysis.

The statistical community has focused on analyzing concrete
two-step procedures, such as, variable selection followed
by a significance test on the chosen variables (Fithian et al.,
2014; Belloni et al., 2014). This approach leads to precise
insight into some concrete procedures, but it does not cap-
ture the workflow of typical analysts that proceed in more
than two steps.

Computer scientists took an alternative route by focusing on
a powerful statistical query model that in principle captures
all sorts of different analyses involving many adaptive steps.
In this model, an analyst interacts with a data set through
a primitive called statistical queries. In each round, the
analyst can evaluate one statistical query on the data. Future
statistical queries may depend arbitrarily on the revealed
transcript of past queries and query results. This level of
generality comes at the cost of diminished generalization
ability.

To review what’s known, the generalization error on ¢ non-
adaptively chosen statistical queries on a data set of size n
is on the order of O(4/log(t)/n), as follows from Hoeffd-
ing’s bound. In the fully adaptive model, Hoeffding’s bound
would only give a rate of O(+/t/n). This disappointing
bound coincides with the naive strategy of splitting the data
set into ¢ chunks, each of size n/t and using one chunk for
each query. Noise addition techniques combined with the
mature technical repertoire of differential privacy yield a bet-
ter bound of O(t'/*/\/n) (Bassily et al., 2016). However,
this bound still features a polynomial dependence on the
number of queries ¢ that has resisted improvement for years.
Negative results suggest that it might in fact be computa-
tionally hard to improve on this bound (Hardt & Ullman,
2014; Ullman et al., 2018).

For years, the knee jerk reaction to such pessimistic bounds
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has been to point out that natural analysts aren’t adversarial.
However, it has proved challenging to formalize what makes
natural analysts more benign than the worst-case bounds
suggest. Indeed, to date there is still no comprehensive
proposal for a class of analysts that allows for interesting
intermediate points between the fully adaptive and non-
adaptive case.

1.1. Our Contributions

In this work, we tackle the central conceptual challenge
of formalizing classes of natural analysts using ideas from
dynamical systems theory. Specifically, we model the an-
alyst’s knowledge as evolving according to the rules of an
unknown dynamical system in discrete time. The system
takes in query results a; at each step and maintains a hidden
state h; at time ¢. Based on its hidden state, the system
chooses a new query ¢; = f;(h¢) as a function of the hidden
state (that may vary with time) and updates its hidden state
hit1 = Yi(he, ar) according to a state-transition map
that is allowed to vary with time. It is clear that we can
recover the non-adaptive case by forcing the hidden state to
be constant at all steps, whereas the fully adaptive case cor-
responds to an unrestricted hidden state and state transition
rule.

What is interesting is that this dynamical perspective al-
lows us to restrict the analyst in natural ways, which we
show lead to interesting trade-offs. These restrictions simul-
taneously correspond to natural control-theoretic notions,
subsume common optimization procedures, and can be seen
as formalizing well-known cognitive biases. We focus on
two complementary notions of natural analysts that we call
progressive and conservative.

Progressive analysts. Progressive analysts, intuitively
speaking, have a recency bias and weight recent informa-
tion more strongly than information received far into the
past. We can think of a discount factor A € (0, 1) by which
the analyst downweights past observations. Formally, we
call an analyst \-progressive if the state transition map is
contractive': ||1;(h,a) — (', a)|| < M|k — R/|.

To gain intuition, in the case of a linear state-transition map
hiy1 = Ahy + Bay, this requirement corresponds to the
condition ||A|lo, < A, where || - ||op denotes the operator
norm. In control-theoretic terms, this requirement expresses
that the system is stable. Trajectories cannot blow up under
repeated application of the state transition map. We show
that this control-theoretic stability has a strong regularizing
effect.

Theorem 1 (Informal result for progressive analysts).
There is a computationally efficient algorithm to an-

"From here forward, we will assume ||-|| denotes some £,,-norm,
p= 1L

swer t statistical queries chosen adaptively by a -
progressive analyst so that the error on each query

is at most O(\/K()\)dq log(t)/n), where K(\) =

1) (log(l/(lfk))
log(1/X)
is the size of the data set.

), dg is the dimension of the queries, and n

Since Theorem 1 allows queries of arbitrary dimension,
d, can also be thought of as the number of parallel sta-
tistical queries in one round, making the total number of
one-dimensional queries after ¢ rounds equal to td,. With
this in mind, we can see that for A = 1 — 1/¢, the bound
reduces to the adaptive Hoeffding bound O(/td,/n) (by
a first-order Taylor approximation). For any constant A
bounded away from 1, we recover the non-adaptive bound.
The proof of this result combines a simple compression ar-
gument with recent ideas in the context of recurrent neural
networks (Miller & Hardt, 2019).

We could hope that as A approaches 1 we not only recover
the Hoeffding bound but rather the best known adaptive
bounds that follow from differential privacy techniques.
While this turns out to be difficult for progressive analysts
for reasons we elaborate on later, we can indeed achieve this
better trade-off for our second notion.

Conservative analysts. Conservative analysts favor ini-
tial information over new information in their decision mak-
ing. Intuitively, this can be seen as a kind of anchoring bias.
One of the ways we can express this is by requiring that the
state-transition map gets increasingly Lipschitz in its second
argument over time:

Hd}t(hv CL) - 1/%(}17 CL/)H < n”wt—l(ha a) - 77[}1‘/—1(}% a’/)”?

for some 7 € (0, 1). We call analysts satisfying this require-
ment nt-conservative, leading to the following result.

Theorem 2 (Informal result for conservative analysts, spe-
cial case). There is a computationally efficient algorithm
to answer t statistical queries chosen adaptively by a
nt-conservative analyst so that the error on each query

is at most O ((K (n')dglog(t))*/*/\/n), where K (n') =
0] (m) d, is the dimension of the queries, and n is
the size of the data set.

Contrary to progressive analysts, if n = 1 — 1/¢, the bound
reduces to a multi-dimensional generalization of the hard-
to-improve generalization bound O((td,)'/*/v/n).

1.2. Proof Technique Overview

The main technical tool used in our generalization proofs is
an algorithmic abstraction called the truncated analyst. For
both progressive and conservative analysts, we design their
respective truncated counterpart, which acts according to the
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same dynamics ¢;. By construction, the truncated analyst
has a time-independent number of rounds of adaptivity. We
will also refer to the true analyst as the full analyst, to
contrast it with the corresponding truncated abstraction.

We first derive a natural conclusion stating that truncated
analysts have time-independent generalization properties.
Then, we show that, for a large enough level of trunca-
tion (which is still time-independent), the truncated analyst
closely approximates the full one. This observation will en-
able us to claim that the full analyst, which is either progres-
sive or conservative, inherits the generalization properties of
its corresponding truncated version. One of the conclusions
we will derive from here is the following: setting the param-
eters of progressiveness or conservatism to be constant with
respect to the number of interactions yields a generalization
error that scales only logarithmically with the number of
queries.

2. Analysts as Dynamical Systems
2.1. Problem Setting

Let S := {X1,...,X,} € D" be a data set of n ii.d.
samples from a distribution P supported on D. On one
side, there is a data analyst, who initially has no information
about the drawn samples in S. On the other side there is
a statistical mechanism with access to S, however with no
knowledge of its true underlying distribution. At each time
step t € N, the analyst and statistical mechanism have an
interaction: the analyst asks a statistical query ¢; € Q, and
the statistical mechanism responds with an answer a; € A.
In the adaptive data analysis literature, statistical queries
are typically defined as one-dimensional bounded functions,
however in this work we generalize this definition to allow
bounded functions in higher dimensions. The motivation
for this is that many common procedures query a vector of
values; for example, gradient descent queries a gradient of
the loss at the current point. Formally, we define statistical
queries as functions of the form ¢; : D — [0, 1]%. In this
generalized setting, a single query g; is equivalent to a set of
d, one-dimensional queries. It is only natural to assume that
the dimension of answers matches that of the posed queries,
and hence we take A C R%,

Before deciding on ¢;, the analyst takes into account the pre-
vious interactions with the statistical mechanism, typically
called the transcript. In classical work on adaptive data
analysis, the transcript at time ¢ consists of all query-answer
pairs thus far, (¢1,a1,...,q:—1,a:—1). Recall that, in this
work, the analyst only has access to the transcript through
its hidden state, or history, hy € H C R4, acting according
to the recursion:

hy = wt(htfhatfl); (D

where we initialize hg = 0. The variable h; serves as a
possibly lossy encoding of the knowledge the analyst has
gathered about data S up to time ¢. Based on this encoding,
the analyst picks the next query ¢; € Q:

a = fi(he), (2)
where f; : H — Q is an arbitrary measurable function.

The goal of designing a statistical mechanism is to have
the analyst learn about the distribution P, and not just the
samples in S. Mathematically, we want the generalization
error

g?%{t llai — Ex~p[qi(X)]]lc

to be small with high probability, for any given number
of rounds ¢. The difficulty is this task lies in the fact that
the statistical mechanism does not have access to P. It
might seem intuitive to set a; = ¢;(S) := L Y1 | ¢:(X;).
However, in general, this standard choice quickly leads
to overfitting (see the paper (Blum & Hardt, 2015) for an

example attack).

A better solution stems from a connection with privacy-
preserving data analysis. In particular, it has been shown that
good sample accuracy combined with differential privacy
ensures small generalization error (Dwork et al., 2015b;
Bassily et al., 2016; Dwork et al., 2015a).

We say that a possibly randomized function F : D™ — Y C
R is (o, B)-differentially private for some o, 3 > 0, if for
all data sets S, S’ € D", such that S and S’ differ in at most
one entry, it holds that:

P(F(S) € O) < e*P(F(S") € O) + 8,

for any event 0. We will extensively rely on some of the
well-known properties of differential privacy that we collect
in the supplementary materials.

A possibly randomized function M : D™ x Q — ), where
Y C R4 is (e, 6)-sample accurate if for every data set
S ={Xy,...,X,} € D" and every query ¢ € Q, where
q : D — ), it holds that:

n

P2 > a(X0) = M(S0)lc 2 ) <6

i=1

Applying these definitions to the problem of adaptive data
analysis, we simultaneously want max; <;<¢ ||a; — ¢ (S) |00
to be small, and a; to be constructed in a differentially pri-
vate manner, thus obscuring the exact value of ¢;(S). We
will show that, with an appropriate choice of a differen-
tially private mechanism, these two conditions will result in
favorable generalization properties in our setting.

Our analysis will primarily make use of Gaussian noise addi-
tion, as it achieves the hard-to-improve rate of O(t'/4/\/n),
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in the one-dimensional statistical query model. We will use
&, to denote a generic Gaussian noise vector; with this, the
classical Gaussian mechanism is given by a; = ¢:(S) + &,
where ¢, is zero-mean noise of d, independent Gaussians
with appropriately chosen variance.

The main idea for preventing adversarial behavior of ana-
lysts will be some form of contraction characterizing the
state-transition map sequence {t;}. This approach re-
quires a way to translate closeness in norm into a form
of information-theoretic closeness. In general, however,
if two different analysts have histories h} and h?, such
that ||h} — h?|| < e for some very small € > 0, it is im-
possible to say whether their knowledge of S is indeed
“e-close”. For this reason, we introduce the assumption that
H is a discrete grid in R? with coordinate-wise resolution
A > 0, where A is sufficiently small. Mathematically, if
h = (h1,...,hq) € H, then h; = k;A, for some k; € Z.
This way, if two histories are close enough in norm, they
have to be semantically identical. This condition is satisfied
by a great majority of real-world data analysts. First, all
“transcripts” generated by numerical algorithms are memo-
rized in computers using finite-bit precision. Second, human
analysts typically use only the first few digits after the deci-
mal of any performed numerical evaluation. It is also worth
pointing out that all generalization results obtained for the
set ‘H also hold for all uniformly discrete sets which have a
packing radius at least A.

3. Progressive Analysts: Motivation and
Generalization

The first class of analysts is oblivious in that its knowledge
of past events diminishes over time. We will aptly refer to
such data analysts as progressive.

Definition 1 (Progressive analyst). An adaptive analyst is
A-progressive if the maps {1} are A-contractive in their
first argument; for every h, h’ € H and a € A, 1), satisfies:

1464 (h, @) = e (R, @) || < Allh = B[],

for some A € [0, 1]. Additionally, we require ;(h, -) to be
L-Lipschitz for any fixed h € H; thatis, for all a,a’ € A,
ad some L > 0:

144 (h, @) = i (h, d')|| < Llla — a'|].

Without loss of generality, we also assume that the maps
{4+ } are normalized to satisfy 1;(0,0) = 0. This does not
limit their expressiveness.

We now motivate the definition of progressive analysts via
three examples, before proving our main generalization
bound for this class of analysts.

It is well-known that humans exhibit numerous cognitive
biases while performing analytical tasks. One well-known

bias is the recency bias (Cheadle et al., 2014). This bias is
defined as a tendency to focus more on recent evidence than
the history. We can think of recency bias as a motivating
analogy for our definition of progressive. In our definition,
the parameter A determines how fast prior information are
forgotten. The case A = 0 corresponds to full recency
bias and virtually no adaptivity in query formulation, while
A = 1 implies no recency bias and arbitrarily adaptive
queries.

As another, contrasting example, iterative algorithms which
interact with a fixed data set can also be thought of as adap-
tive analysts. Suppose that S contains simulation samples
of an agent interacting with a stochastic environment, which
returns noisy rewards from an unknown distribution and
has known random transitions between a possibly large
number of states. This problem can be modeled as a clas-
sical Markov decision process (Bertsekas, 2005). Suppose
that the analyst wishes to define a set of d states, possibly
by grouping the existing elementary states, such that the
value function, which is the expected reward-to-go under
the optimal policy, satisfies some criterion: for example,
one objective could be maximizing the value function in
one of the states of the model. First, the analyst initializes
the set of states to some arbitrary set of fixed size d. Then,
they recurse their hidden state, whose coordinates ¢ < d are
updated as:

d
hii =sup(ri(i,a) + 9y P(i,a,)hi15),  (3)

Jj=1

where the supremum is taken over the possible actions,
~v € (0,1) is a discount factor, P(, a, j) is the probabil-
ity of landing in state j after taking action a in state 7, and
r¢(i,a) is the estimated average reward of taking action
a in state 7. Equation (3) is called the Bellman equation,
and the algorithm given by repeated iterations of this equa-
tion is called value iteration (Bellman, 1957), as it is used
to find the value function. For example, if every sample
X, € S is vector containing the initial state, action, reward,
and subsequent state, (s1 k, G, Tk, S2 &), then the estimated
reward is given by 7(i,a) = ZZ=1 rl{six = i,ar =
a}/ > r_, 1{s1x = i,ar = a}. The analyst’s queries are
therefore asking for the reward estimates across all states
and all actions. After running the Bellman update for a
certain number of rounds, the analyst can now adaptively
change the set of states, using the previously learned value
of h, for initialization. Since the Bellman equation con-
tracts h; by factor y in £,,-norm, such an analyst would be
v-progressive. The Bellman equation is at the core of nu-
merous dynamic programs, thus making many algorithmic
solvers of such problems progressive analysts.

Stable recurrent neural networks are another algorithmic
example of progressive analysts. Recurrent neural networks
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are given by the update:
ht = p(Wht_l + Uat_l),

where U € R%*d T ¢ R*4 and p is a point-wise
non-linearity. The variable a; is the empirical answer to
an arbitrary query based on h;. In this case, the analyst is
A-progressive if || W||op < 1/L,, where L,, is the Lipschitz
constant of the map p. For a detailed treatment of this case,
see the paper (Miller & Hardt, 2019). The work also shows
how other stateful models, such as LSTMs, can be made
stable and how stable models perform well in practice.

Now we argue that the parametrization of progressive an-
alysts allows interpolation between that of non-adaptive
analysts and fully adaptive analysts. Then, we move on to
proving the generalization error in regimes between these
two extremes.

First, consider L = 0. In this case, h; has no sensitivity
to the answers of the statistical mechanism, so queries are
trivially non-adaptive.

On the other end, A = 1 allows full adaptivity, for any L >
0. To see this, imagine that h; is an infinite-dimensional
vector?, where each coordinate is initially 0, and coordinate-
wise, h; can take values in L.A. At time ¢, simply set the
coordinates (t —1)d, + 1 through td, of h; to La,_,. Since
all queries are computed via a deterministic function of the
current history, which is composed by stacking the answers,
the vector of all answers encodes the whole transcript in a
lossless fashion. Consequently, this analyst is fully adaptive.
One can easily verify that the described transition maps
satisfy the conditions of Definition 1 with A = 1.

Since these two extreme cases reduce to generalization rates
which are known from prior work, in the rest of this section
we focus on the parameter set A € [0,1), L > 0.

3.1. Truncated Analyst

Now we introduce a useful counterpart of a A-progressive
analyst, who only has access to the last k£ answers of the full
analyst, for some constant k. This truncated analyst will be
the main abstraction used in the proofs of this section.

Define the truncated analyst corresponding to a full progres-
sive analyst as:

hy = (b1, ai1), hi; =0, Vj >k,
qf = ft(h?)v
for fixed £ € N. The truncated analyst updates their history

according to the same map sequence as the full analyst, and
receives exactly k answers of the full analyst.

2This can be formalized in the framework of separable Hilbert
spaces, however this example is only intended to be illustrative.

First we show that, as aligned with intuition, each query of
the truncated analyst has a time-independent generalization
error.

Lemma 1. Let h¥ be the history of a truncated analyst,
and let the range of answers be of size A%, where A is

polynomial in n. Then, at time t, the query qF asked by the
truncated analysts satisfies the following:

P(llgz (8)~Ex~plai (X)]lloe > €) < 2dg exp(kd, log A—2ne”).

Now we show that contractiveness implied by the progres-
sivenes condition forces the full analyst to be close in norm
to its corresponding truncated version.

Lemma 2. Let a; € [0,1]% forallt € N. Forany k € N,
the progressive analyst and the corresponding truncated an-

alyst satisfy |hF —h|| < )‘ifcl, where Cy = ||(1,...,1)]|

is the norm of the dq-dimensional all-ones vector.

3.2. Generalization via Compression

For a large enough level of truncation %k, which depends
on the radius A of the set of all possible histories H, the
truncated analyst and the full analyst are identical. This level
of truncation is time-independent, and hence, by Lemma 1,
progressive analysts also have a time-independent scaling
of the generalization error.

Theorem 1. Answering t queries chosen adaptively by
a A-progressive analyst by rounding the empirical an-
swer to O(1/n) precision achieves overall generaliza-
tion error at most O(/K (N)d, log(t)/n), where K ()\) =
log(+-575%)

log(1/X)

In other words, having n = O(K (\)d, log(t)/€?) samples
suffices to guarantee e-generalization error with high proba-
bility.

Let A\ =1-— % Then, by the first-order Taylor approxi-
mation, log(1/\) & 1, and hence the generalization error
of Theorem 1 grows as O(4/td,/n). The same scaling of
generalization error is achieved by fully adaptive analysts in
the case of d,-dimensional queries, when there is no use of
privacy mechanisms. As argued earlier, A = 1 corresponds
to full adaptivity, so it comes as no surprise that the same
rate is achieved.

Note also that the generalization error is completely inde-
pendent of the dimension of the history d. This justifies our
“infinite-dimensional” example earlier in this section.

3.3. Limitations

Differential privacy. It is natural to wonder why we never
used differential privacy to prevent progressive analysts
from overfitting. In the proof of Theorem 1, we allow the
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statistical mechanism to return unobscured empirical an-
swers (up to a small rounding error), although we initially
argued that differentially private perturbations provide a
quadratic improvement.

The main reason is that the truncated analyst does not in
general have a time-independent composition of differential
privacy, in spite of the fact that the number of observed
answers is time-independent. This follows from the obser-
vation that it receives answers of the full analyst, whose
uncertainty grows with time. On a high level, changing one
element in the data set S allows minor changes in the his-
tory in each step, even if differential privacy is used. After
t — k steps, for some k € N, these changes might pile up
to lead to a completely different query than the one that
resulted from the original data set S. The initial input from
S of the truncated analyst is the answer to this query, which
is highly unstable for large enough ¢. Therefore, claiming
time-independent generalization, if possible, would require
a novel framework for designing mechanisms for adaptive
data analysis, one that does not rely on differential privacy.

Naive definition. Stepping away from the dynamical sys-
tems perspective for a moment, one might argue that a
simple way to smoothly interpolate between no adaptiv-
ity and full adaptivity through recency bias is to trun-
cate the analyst’s view of the transcript. More formally,
define ¢ = gf(¢X 1,0k, ..., ¥ ;. a ), for some
fixed K € N and functions {g}. The input to g con-
sists of the last K query-response pairs. This seems to
be in contrast with the usual adaptive query construction
gt = 9¢(q-1,a¢-1,...,q1,01), for some {g:}; here, the
argument of g; is all query-response pairs so far. However,
we claim that this intuitive construction does not necessarily
rule out full adaptivity.

Claim 1. Suppose that an adaptive data analyst has a trun-
cated view of the transcript with truncation depth K. In
full generality, this analyst generalizes no better than an
analyst with a full view of the transcript, regardless of the
mechanism for constructing responses and value of K.

4. Conservative Analysts, Type A: Motivation
and Generalization

The second main class of natural analysts operates in a man-
ner opposite to progressive analysts; namely, these discount
new evidence increasingly with time, making their knowl-
edge saturate. We will call such analysts conservative.

We consider two possible causes for saturation. Either
the maps {1} become less sensitive to new evidence, or
the queries {q;} are chosen in such a way that the values
{q:(S)} saturate. This distinction leads to two notions of
conservative analysts. Type A conservatives and type B
conservatives. We will see that each correspond to natural

algorithms.

Below we define type A conservative analysts, while we
leave the definition of type B for the following section.

Definition 2 (Conservative analyst, type A). An adaptive
analyst is type A 7;-conservative if the maps {1 (h, )} are
n-Lipschitz, where lim;_, o, 77, = 0. Mathematically, this
corresponds to:

[9¢(h, a) — Pe(h,a)]| < mella —d],
forevery h € H and a,a’ € A.

The construction of conservative analysts is primarily mo-
tivated by gradient descent in various settings in which it
experiences saturation. As in the case of progressive ana-
lysts, however, there is also a connection between human
data analysts and our definition of conservative analysts.

A common cognitive bias that humans experience in analyt-
ical tasks is called the anchoring bias (Campbell & Sharpe,
2009; Cen et al., 2013). It is characterized by relying heavily
on initial evidence, and becoming decreasingly sensitive to
new evidence, as mathematically formulated in Definition
2. The sequence {7, } in the definition of conservative an-
alysts can be thought of as the strength of one’s anchoring
phenomenon. In particular, 7, = 0 for all £ € N implies
complete anchoring and no adaptivity in formulating queries,
while a slow decrease in 7, represents analysts with a mild
anchoring effect.

From the algorithmic perspective, examples of conservative
analysts include optimization algorithms with decaying step
size. Consider the problem of empirical risk minimization
using gradient descent. In particular, let the loss be:

n

1
L(h) =— (h; X5),
() = & 3o ki)
where h € R? is a vector of weights for the given opti-
mization model, and ¢(h; X;) is the loss incurred by this
model on sample X; € S. The well-known gradient descent
update is the following:

hiyr = Yey1(he, ViL(he)) = hy =0V L(hy),

where Vj,L(h:) is the gradient of the loss on data S at
point h;, and 7, is a time-dependent, decreasing step.
Notice that this gradient decomposes as V,L(h:) =
LS L Val(hy; X;). Therefore, gradient descent for em-
pirical risk minimization is an 7;-conservative analyst,
whose queries are equal to the gradient of the loss incurred
at each point of S at the current weight iterate.

The rate of step size decay determines the rate of saturation
of the analyst, allowing the class of conservative analysts
to cover a wide spectrum of gradient-based optimization
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algorithms. Notable examples of step size decays include
ne = O(1/t*), where a € (0.5,1] (Robbins & Monro,
1951), or the more recent schemes which cut the learning
rate by a constant factor in every so-called epoch, which
implies an essentially exponential decay (Hazan & Kale,
2014; Ge et al., 2018).

4.1. Truncated Analyst

As its name suggests, the adaptiveness of a conservative
analyst essentially saturates after some number of rounds
of interaction with the data set. Again, we prove this via
truncation of the full analyst. Let the truncated analyst cor-
responding to the full conservative analyst be the following:

hf = wt(hf—haf—l),
where af = a4, vVt < k and a,’f =0,Vt >k,

Qf = ft(hf)'

In words, the truncated analyst only sees the first k true
answers and deterministically sets the second input to O for
the remaining ¢ — k rounds.

Lemma 3. Assume that the answers of the statistical mech-
anism are bounded to [0,1]%, and let Cy = ||(1,...,1)]|
denote the norm of the d,-dimensional all-ones vector. Then,
Sfor K(n:) := min{t : n < CAl} the history of the full
analyst matches the history of the truncated analyst with
truncation depth K (n), hy = hf((m).

Since the approximating truncated analyst in this setting
sees the first £ answers, instead of the last k, the privacy
parameters of its history degrade gracefully with k, given
that the statistical mechanism is differentially private. The
Gaussian mechanism is, however, not bounded, as required
by Lemma 3. For this reason, we introduce a slight modifi-
cation of this mechanism, where the answers are computed
as at = [q:(S) + &l jo,1)4a» Where [-]g 4y4, is truncation to
the box [0, 1]9:

07 ifmi < 0,
T4, lfxz < Oa
1, ifz; > 1,

([z] [0,1]%a )i =

7

where subscript ¢ denotes the i-th coordinate. As before, &;
is d,-dimensional Gaussian noise. By post-processing of
differential privacy, this truncated mechanism preserves the
parameters of differential privacy of the Gaussian mecha-
nism, determined by the variance of &;.

The next lemma formalizes the gradual degradation of dif-
ferential privacy of the truncated analyst’s history.

Lemma 4. Let h be the history of the truncated analyst at
time t € N, and let the statistical mechanism be (o, 3)-

differentially private. Then, h¥ is (\/2klog(1/5)a +
2ka?, kB + B')-differentially private.

4.2. Generalization via Differential Privacy

Since we proved that type A conservative analysts have the
same history as their corresponding truncated analyst, for a
large enough level of truncation, and that truncated analysts
have a time-independent composition of differential privacy,
we can conclude a time-independent composition of privacy
for the full analyst as well.

Proposition 1. Let hy be the hidden state of an oblivious
analyst at time t. Let the statistical mechanism answering
queries be (a, B)-differentially private. Then, for arbitrarily
large ¢, hy is (/2K (n:) log(1/8")a+2K ()%, K (n:) B+
,BA')—dlﬁerentially private, where K(n;) := min{t : n; <

o b

To prove the generalization error of conservative analysts,
we turn to the main transfer theorem of Bassily et al. (2016),
which is the main technical tool used to establish the cele-
brated rate of O((td,)'/*/+/n). This transfer theorem will
allow us to compute the generalization error by balancing
out the sample accuracy and differential privacy parameters
of the Gaussian mechanism.

Theorem 2. There is a computationally efficient mech-
anism to answer t queries chosen adaptively by a type
A ng-conservative analyst so that the overall generaliza-
tion error is at most O((K (1;)d, log(t))'/*/\/n), where
K(n) == min{t : ny < CAI} and C1 = ||(1,...,1)|| is the
norm of the d,-dimensional all-ones vector.

Said in terms of sample complexity, it suffices to have n =

O(\/K (1:)d, log(t) /€*) samples for e-generalization error.

Notice that, just like for progressive analysts, there is no
direct dependence on the dimension of the history.

As an example, taking 7; = n', where n = 1 — 1/, re-
sults in error rate O((td,)'/*//n) by the first-order Taylor
approximation. As expected, this is the tight rate for fully
adaptive queries under differential privacy.

5. Conservative Analysts, Type B: Motivation
and Generalization

In this section we define and analyze linear analysts whose
histories saturate despite non-decreasing sensitivity to re-
vealed information about S.

Definition 3 (Conservative analyst, type B). An adaptive
analyst is type B A-conservative if, first, it contracts when
given empirical answers:

[ (he—1, qe-1(S)) =te(hi 1, g (S)I < A1 =Ry ],

for some A € [0, 1], where ¢; = f;(h) and q; = fi(h}).
Second, we require the analyst to be linear:

he = e (he—1,a4—1) = Athy—1 + Bras_1,
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for some sequences {A;}, {B;}, where A; € R¥?, with
| Aillop < 1, and B; € R4 forall i € N.

The motivation for type B conservative analysts comes from
the observation that gradient-based methods sometimes sat-
urate even if there is no step decay.

Consider again the problem of empirical risk minimization
using gradient descent. In this setting, let the gradient de-
scent update have a constant step size 7 > 0:

hiv1 = Yir1(he, ViL(h)) = hy = Vi L(hy),
where V, L(h;) = £ 37" | #(hy; X;) is again the gradient

of the loss on data ST.L If the loss is 5-smooth and p-strongly
convex, and the step size is n < ﬁ, then the gradient
descent update is type B A-conservative, where A = 1— gBT’;
(Hardt et al., 2016). If the objective is not strongly convex,
however is still smooth, gradient descent is non-expansive,
meaning it has contraction parameter A = 1. In that case,
one can induce contractiveness in many ways; one is to add
an /s-regularizer to the objective, that is transform the loss

into L™¢(h) = L(h) + §||h||?, for some p > B.

5.1. Truncated Analyst

As in the previous section, due to saturation of conservative
analysts, we will define a truncated analyst that has access
to k responses of the statistical mechanism. In this case,
however, the interaction happens in the last k rounds.

Suppose that the statistical mechanism is the usual Gaussian
mechanism. Worth mentioning is that this time we deploy
no truncation. Denote by &; the noise variable added to the
empirical answer at time ¢. For fixed &, define the truncated
analyst corresponding to a type B conservative analyst as:

hf = ¢t(hf—1aaf—l)a hilf—j =0,Vj > k,
where a¥ = ¢F(S) + &,
Qf = ft(hf)a

In this setting, we assume that H is a norm-ball with
radius D, where D is large enough with respect to
Zle | BillopC1, so that there is no need for projecting
the norm of the current history iterates to D. Since this
“escaping” event happens with negligible probability, in all
subsequent arguments for simplicity we treat it as being of
measure zero. First we establish closeness between the full
analyst and the truncated version.

Lemma 5. Suppose that the statistical mechanism is the
Gaussian mechanism. For any k € N, the truncated analyst
with truncation depth k and the full analyst satisfy ||hy —
hE| < AFD.

Additionally, we show that the truncated analyst has a com-
position of differential privacy which only depends on the

truncation depth.

Lemma 6. Let hf be the history of a truncated analyst
corresponding to a type B conservative analyst, and let
the statistical mechanism be («, 3)-differentially private.

Then, forallt € Nand 8/ > 0, hf is (\/2klog(1/8" ) +
2ka’, kB + B')-differentially private.

5.2. Generalization via Differential Privacy

Lemma 5 allows us to find the effective memory of a conser-
vative analyst, resulting in the following time-independent
composition of differential privacy parameters.

Proposition 2. Let h; be the history of a type B conservative
analyst at time t. Let the statistical mechanism answering
queries be the Gaussian mechanism, such that the answers
are («, B)-differentially private. Then, for arbitrarily large
t, he is (/2K (\) log(1/8)a + 2K (N)a?, K(\)B + 3')-

differentially private, where K (\) := %.

The main transfer theorem of Bassily et al. (2016) will now
show that the generalization error of type B conservative
analysts is essentially the same as for type A conservative
analysts, justifying their unification into one broader class.

Theorem 3. There is a computationally efficient mech-
anism to answer t queries chosen adaptively by a type
B \-conservative analyst so that the overall generaliza-
tion error is at most O((K(\)d, log(t))"/*//n), where

log(D/AM
KO = S5

In other words, n = O(+/K (\)d, log(t)/€?) samples suf-
fice for e-generalization error. Moreover, under a few ad-
ditional commonly satisfied assumptions, this sample com-
plexity holds for much more general sets 7{, which need not
be discrete. This essentially follows by linearity of maps ;.
We prove this claim, as well as negative results for progres-
sive and type A conservative analysts under continuous sets
‘H, in the supplementary material.

6. Summary

We introduce progressive and conservative analysts by
modeling the evolution of their knowledge using different
control-theoretic constraints. In addition to serving as math-
ematical analogies of human cognitive biases, these cate-
gories also capture various iterative algorithms, like value
iteration or gradient descent. The natural analysts we define
achieve generalization error essentially independent of the
number of queries, in stark contrast with arbitrary adversar-
ial analysts whose error scales polynomially. In doing so,
we combine control-theoretic notions of stability with the
algorithmic stability notions underpinning adaptive general-
ization bounds. The connection between control-theoretic
and algorithmic stability for the sake of proving stronger
generalization bounds is worth studying further.
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