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Abstract
There is an accumulating evidence in the literature that stability of learning algorithms is a key
characteristic that permits a learning algorithm to generalize. Despite various insightful results in
this direction, there seems to be an overlooked dichotomy in the type of stability-based generaliza-
tion bounds we have in the literature. On one hand, the literature seems to suggest that exponential
generalization bounds for the estimated risk, which are optimal, can be only obtained through strin-
gent, distribution independent and computationally intractable notions of stability such as uniform
stability. On the other hand, it seems that weaker notions of stability such as hypothesis stability,
although it is distribution dependent and more amenable to computation, can only yield polynomial
generalization bounds for the estimated risk, which are suboptimal.

In this paper, we address the gap between these two regimes of results. In particular, the main
question we address here is whether it is possible to derive exponential generalization bounds for
the estimated risk using a notion of stability that is computationally tractable and distribution
dependent, but weaker than uniform stability. Using recent advances in concentration inequalities,
and using a notion of stability that is weaker than uniform stability but distribution dependent and
amenable to computation, we derive an exponential tail bound for the concentration of the estimated
risk of a hypothesis returned by a general learning rule, where the estimated risk is expressed
in terms of either the resubstitution estimate (empirical error), or the deleted (or, leave-one-out)
estimate. As an illustration we derive exponential tail bounds for ridge regression with unbounded
responses, where we show how stability changes with the tail behavior of the response variables.
Keywords: Generalization bounds, algorithmic stability, the leave one out estimate, resubstitution
estimate, empirical error, concentration inequalities, moments bounds, tail bounds, Efron-Stein
inequality.

1. Introduction

There is an accumulating evidence in the literature that stability of learning algorithms is a key
characteristic that permits a learning algorithm to generalize. The earliest results in this regard are
due to Devroye and Wagner (1979a,b) where they derive distribution-free exponential generaliza-
tion bounds for the concentration of the leave-one-out estimate, or the deleted estimate, for k local
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learning rules. Although the notion of stability was not explicitly mentioned in their work, the expo-
nential bounds of Devroye and Wagner (1979a,b) can be seen as relying on the so called hypothesis
stability; a concept due to Kearns and Ron (1999).

Various results for different estimates followed the works of Devroye and Wagner (1979b,a).
Lugosi and Pawlak (1994) extended the work of Devroye and Wagner (1979b,a) to smooth estimates
of the error developed in terms of a posteriori distribution for the deleted estimate. Holden (1996)
derived sanity-check bounds for the deleted estimate and the k folds cross–validation (KFCV) esti-
mate using hypothesis stability for few algorithms in the realizable setting.1 Sanity-check bounds
are assurances that the worst deleted estimate and the worst KFCV estimate will not be consider-
ably worse than the training error or the resubstitution estimate (also known as the empirical error,
or empirical risk) (Devroye and Wagner, 1979b). Kearns and Ron (1999), using the notion of error
stability, give sanity-check bounds for the deleted estimate but for more general classes of learning
rules (in the unrealizable or agnostic setting). In particular, they show that if a learning algorithm
has a finite VC dimension search space, then the algorithm is error-stable and its error stability
is controlled by the said VC dimension. Hence, using stability as a complexity measure will not
yield worse bounds than using the VC dimension. Note that error stability is much weaker than
hypothesis stability in the sense that hypothesis stability implies error stability, and this weakness
was necessary to obtain more general sanity-check bounds than those obtained by Holden (1996).
More recently, Kale et al. (2011) show that, using a weak notion of stability known as mean-square
stability, the averaging taking place in the KFCV estimation procedure can reduce the variance of
the generalization error; i.e. the averaging in the KFCV estimation procedure can improve the con-
centration of the estimated error around the expected error of the hypothesis returned by the learning
rule.

For general learning rules and for regularized empirical risk minimization learning rules, Bous-
quet and Elisseeff (2002) using the notion of uniform stability, extended the work of Lugosi and
Pawlak (1994) and derived exponential generalization bounds for the resubstitution estimate and
the deleted estimate. Further generalization results based on uniform stability (or one of its vari-
ants) were later obtained in the works of Kutin and Niyogi (2002); Rakhlin et al. (2005); Mukherjee
et al. (2006); Shalev-Shwartz et al. (2010), to name but a few. In particular, Shalev-Shwartz et al.
(2010) showed that a version of uniform stability is key to learnability in the general learning setting
with uniformly bounded losses. These results were reinforced and extended in various directions
such as deriving new results for randomized learning algorithms (Elisseeff et al., 2005), transfer
and meta learning (Maurer, 2005), adaptive data analysis (Bassily et al., 2016), stochastic gradient
descent (Hardt et al., 2016), structured prediction (London et al., 2016), multi-task learning (Zhang,
2015), ranking algorithms (Agarwal and Niyogi, 2009), as well as in understanding the trade-off
between sparsity and stability (Xu et al., 2012).

Despite these recent advances, and excluding sanity-check bounds, there seems to be an over-
looked dichotomy in the type of stability-based generalization results. In particular, the results on
stability and generalization can be grouped into two regimes:

1. Polynomial generalization bounds, which are sub-optimal and based on hypothesis stability
for instance.

1. In particular, Holden (1996) considered the closure algorithm, and the deterministic 1–inclusion graph prediction
strategy.
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2. Exponential generalization bounds, which are optimal and based on uniform stability (and its
variants).

Comparing uniform stability to other notions of stability in the literature, uniform stability is
the strongest (most demanding) notion of stability in the sense that it implies all other notions
of stability such as hypothesis stability, error stability, and mean-square stability (Bousquet and
Elisseeff, 2002). A learning rule is uniformly stable if the change in the prediction loss is small, no
matter how the input to the learning rule is selected, no matter what value is used as a test example,
and no matter which example is removed (or replaced) in the input.

Despite the strength of uniform stability, it is unpleasantly restrictive. First, unlike other notions
of stability (e.g. L2 and L1 stability), uniform stability is a stringent notion of stability that is
insensitive to the data-generating distribution. This is problematic since it removes the possibility
of studying large classes of learning rules, or even classes of problems. One particularly striking
example is binary classification with the zero-one loss. For this problem, as it was already noted
by Bousquet and Elisseeff (2002), no non-trivial algorithm can be uniformly β-stable with β < 1.
Another example when uniform stability fails is regression with unbounded losses and response
variables.2 Second, as noted earlier, uniform stability is distribution-free and is thus unsuitable
for studying finer details of learning algorithms. Computation is another aspect that distinguishes
uniform stability from other notions of stability. While hypothesis, error, and mean-square stability
can be estimated using a finite sample, uniform stability is computationally intractable. In other
words, although uniform stability yields exponential generalization bounds, these bounds cannot be
empirically estimated using a finite sample in the spirit of empirical Bernstein bounds for instance
(Audibert et al., 2007; Mnih et al., 2008).

In this research, we are particularly motivated by these previous observations. That is, on the
one hand, the literature seems to suggest that exponential generalization bounds for the estimated
risk, which are optimal, can be only obtained through stringent, distribution independent, and com-
putationally intractable notions of stability such as uniform stability (and its variants). On the other
hand, it seems that weaker notions of stability such as hypothesis and mean-square stability, al-
though they are distribution dependent and potentially more amenable to computation, can only
yield polynomial generalization bounds for the estimated risk, which are sub-optimal.

The chief purpose of this paper is to address the gap between these two regimes of results. In
particular, the main question we address here is whether it is possible to derive exponential gener-
alization bounds for the estimated risk using a notion of stability that is computationally tractable,
distribution dependent, but weaker than uniform stability. Our work here gives a positive answer
to this question; we show that using recent advances in exponential concentration inequalities, and
using a notion of stability that is distribution dependent, amenable to computation, but weaker than
uniform stability, we derive in Theorem 6 an exponential tail bound for the concentration of the esti-
mated risk of a hypothesis returned by a general learning rule, where the estimated risk is developed
in terms of either the deleted estimate, or the resubstitution estimate (also known as the empirical
error).

Two main ingredients that allowed us to bridge the gap between these two regimes of results; (i)
recent advances in exponential concentration inequalities, in particular the exponential Efron-Stein
inequality due to Boucheron et al. (2003) and Boucheron et al. (2013); and (ii) the elegant notion of

2. One possibility to fix this is to use a case-based analysis that splits the event space based on whether all examples in
the training set are “small” may still be used in this case, but this splitting is not without artifacts.
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Lq stability due to Celisse and Guedj (2016) which is distribution dependent, weaker than uniform
stability, and generalizes hypothesis stability and mean-square stability to higher order moments.

Exponential Efron-Stein inequalities aim to bound the deviation of a general function f of n in-
dependent input random variables (RVs) from its expected value.3 The seminal works of Boucheron
et al. (2003) and Boucheron et al. (2013) bound this deviation by means of variance-like terms that
measure the sensitivity of f with respect to the replacement of one RV from the n independent input
RVs to f , with another independent copy of this RV. This notion of sensitivity with respect to the
replacement of RVs is not suitable for our purposes, nor does it fit naturally the empirical estimation
of these bounds based on finite datasets. As a byproduct of the results presented here, we derive
an extension of the exponential Efron-Stein inequality when the sensitivity of f is measured with
respect to the removal of one RV from the n independent input RVs to f (see Lemma 14). This
notion of sensitivity with respect to the removal of RVs is naturally aligned with the notion of Lq
stability, and with error estimates such as the deleted estimate and the KFCV estimate.

Efron-Stein inequalities have long been proposed to study the concentration of error estimates.
First, the classic inequality was considered for bounding the variance (e.g., (Bousquet and Elisseeff,
2002)). Soon after Boucheron et al. (2003) introduced the variant for higher moments, Rakhlin
et al. (2005) used this for deriving exponential tail bounds for the so-called almost uniformly stable
learning algorithms, replicating the results of Kutin and Niyogi (2002), who used an extension of
McDiarmid’s inequality. More recent use of the higher order moment version is due to Celisse and
Guedj (2016), who introduced the distribution-dependent Lq-stability coefficients and used them to
derive bounds on the higher moments of the difference between the deleted estimate and the true
risk. Celisse and Guedj (2016) used these moment bounds to get exponential tail bounds for the
special case of ridge regression.

Our work is closest in spirit to Celisse and Guedj (2016). However, we provide an alternate
route for obtaining exponential tail bounds by providing an exponential Efron-Stein inequality of
the “removal type” in Lemma 14. This inequality is used to bound the moment-generating function
(MGF) of various random variables, such as the deleted estimate, the resubstitution estimate, or
the true risk of the random hypothesis returned by the learning rule. In each case, the bound is
obtained in terms of the MGF of a random variable that corresponds to an average stability quantity
of removing a sample. This latter MGF is bounded by controlling the growth-rate of various Lq
stability coefficients, which leads the final exponential tail bounds. We obtain such a tail bound for
the deleted estimate (Theorem 6), and also for the resubstitution estimate (Theorem 9). To control
the tail of the resubstitution estimate, we observe that it is not sufficient to control the Lq stability
coefficients introduced by Celisse and Guedj (2016), but one must also control a related, but distinct
quantity, which measures the sensitivity of the algorithm to removing an example from the training
set when the algorithm is tested on the example that is removed. We also apply our results to the case
of ridge regression with unbounded response variables. In this case, we obtain the first exponential
tail bounds for the deleted estimate (the case of resubstitution estimate is similar, but is not given
explicitly). Since for unbounded response variables, the ridge regression estimator is not uniformly
stable, these tail bounds were out of reach of a straightforward application of previous techniques
built on uniform stability.

3. The n independent RVs are not necessarily identically distributed.
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2. Setup and Notations

We consider learning in Vapnik’s framework for risk minimization with bounded losses (Vapnik,
1995): A learning problem is specified by the triplet (H,X , `), whereH,X are sets and ` : H×X →
[0,∞). The set H is called the hypothesis space, X is called the instance space, and ` is called the
loss function. The loss `(h, x) indicates how well a hypothesis h explains (or fits) an instance x ∈ X .
The learning problem is defined as follows. A learner A sees a sample in the form of a sequence
Sn = (X1, . . . , Xn) ∈ X n where (Xi)i is sampled in an independent and identically distributed
(i.i.d) fashion from some unknown distribution P and returns a hypothesis ĥn = A(Sn) ∈ H based
solely on X1, . . . , Xn.4 The goal of the learner is to pick hypotheses with a small risk (defined
shortly).

We assume that a learner is able to process samples (or sequences) of different cardinality.
Hence, a learner will be identified with a map A : ∪nX n → H. We only consider deterministic
learning rules in this work; the extension to randomizing learning rules is left for future work.

Given a distribution P on X , the risk of a fixed hypothesis h ∈ H is defined to be R(h,P) =
E [` (h,X)], where X ∼ P . Since Sn is a random quantity, so are A(Sn) and R(A(Sn),P), the
latter of which can be also written as E[` (A(Sn), X) |Sn], where X ∼ P is independent of Sn.
Ideal learners keep the risk R(A(Sn),P) of the hypothesis returned by A “small” for a wide range
of distributions P .

q-Norm of Random Variables: In the sequel, we will heavily rely on the q-norm for random
variables (RVs). For a real RV X , and for 1 ≤ q ≤ +∞, the q-norm of X is defined as: ‖X‖q

.
=

(E [|X|q])1/q, and ‖X‖∞ is the essential supremum of |X|. Note that for 1 ≤ q ≤ p ≤ +∞, these
norms satisfy ‖·‖q ≤ ‖·‖p.

2.1. Risk Estimators

The generalization bounds on the risk usually center on some point-estimate of the random risk
R(A(Sn),P). Many estimators are based on calculating the sample mean of losses in one form or
another. For any fixed hypothesis h ∈ H and dataset Sn, the sample mean of losses of h against Sn,
also known as the empirical risk of h on Sn, is given by

R̂(h,Sn) =
1

n

n∑
i=1

` (h,Xi) . (1)

Plugging A(Sn) into R̂(·,Sn) we get the resubstitution (RES) estimate, or the training error (De-
vroye and Wagner, 1979b): R̂RES (A,Sn) = R̂ (A (Sn) ,Sn). The resubstitution estimate is often
overly “optimistic”, i.e., it underestimates the actual risk R(A(Sn),P). The deleted (DEL) esti-
mate defined as

R̂DEL (A,Sn) =
1

n

n∑
i=1

`
(
A(S−in ), Xi

)
, (2)

is a common alternative to the resubstitution estimate that aims to correct for this optimism. Here,
S−in = (X1, . . . , Xi−1, Xi+1, . . . , Xn), i.e., it is the sequence Sn with example Xi removed. Since

4. The set X is thus measurable. All functions and sets are assumed and/or can be shown to be measurable as needed,
saving us from the trouble of mentioning measurability in the rest of the paper.
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E[`
(
A(S−in ), Xi

)
] = Rn−1(A,P), then E[R̂DEL(A,Sn)] = Rn−1(A,P). When the latter is close to

Rn(A,P), i.e., A is “stable”, the deleted estimate may be a good alternative to the resubstitution es-
timate (Devroye et al., 1996). However, due to the potentially strong correlations between elements
of (`(A(S−in ), Xi))i, the variance of the deleted estimate may be significantly higher than that of the
resubstitution estimate due to the overly redundant information content between `(A(S−in ), Xi) and
`(A(S−jn ), Xj) for i 6= j. The main goal of this work is to develop a high probability upper bound
on the absolute deviation |R̂DEL (A,Sn) − R (A(Sn),P) | in terms of the “stability” of A, which is
defined next.

3. Notions of Stability for Learning Rules

In the following, we go briefly over some well-known notions of algorithmic stability, introduce the
notion of Lq stability coefficients and finally discuss its properties.

The first known notion of algorithmic stability is the so-called hypothesis stability, or L1-
stability, which is due to Devroye and Wagner (1979b).5

Definition 1 (Hypothesis Stability) Algorithm A has hypothesis (or L1) stability6 βh w.r.t to the
loss function ` if the following holds

∀i ∈ {1, . . . , n} , E
[
|` (A(Sn), X)− `

(
A(S−in ), X

)
|
]
≤ βh ,

where randomness is over Sn and X ∼P , and X is independent of Sn.

Kearns and Ron (1999) proposed a weaker notion of stability known as error stability which
measures the absolute change in the expected loss of a learning algorithm instead of the average
absolute pointwise change in the loss:

Definition 2 (Error Stability) Algorithm A has error stability βe w.r.t the loss function ` if the
following holds

∀i ∈ {1, . . . , n} , |E [` (A(Sn), X)]− E
[
`
(
A(S−in ), X

)]
| ≤ βe ,

where randomness is over Sn and X ∼P , and X is independent of Sn.

As noted by Kutin and Niyogi (2002), error stability is weaker than hypothesis stability (in the sense
that if A has β hypothesis stability then it also has β error stability). Furthermore, this notion is not
sufficiently strong to “guarantee generalization” in the sense that there are algorithms A such that
their generalization gap, E[R̂RES(A,Sn) − R(A(Sn),P)] stays positive, while the algorithm’s error
stability coefficient converges to zero as n→∞.

Kale et al. (2011) proposed another weak notion of stability known as mean-square (MS) sta-
bility, or L2-stability.

5. The definitions are sometimes stated with their “high probability” variants. We prefer the expectation-versions as
they fit our purposes better.

6. We believe that in all these definitions the word “sensitivity” should be used rather “stability”. To be in line with the
literature, we kept the terminology, though with much doubt about whether this is the correct decision.
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Definition 3 (Mean-Square Stability) Algorithm A has mean-square (or L2) stability βms w.r.t
the loss function ` if the following holds

∀i ∈ {1, . . . , n} , E
[
(` (A(Sn), X)− `

(
A(S−in ), X

)
)2
]
≤ βms ,

where randomness is over Sn and X ∼P , and X is independent of Sn.

We comment on the relationship between mean-square stability and the other notions of stability
shortly.7 Bousquet and Elisseeff (2002) proposed the strongest and most strict notion of stability,
known as uniform stability, which implies all previous notions of stability. This notion of stability,
together with McDiarmid inequality, permitted the derivation of the first exponential generalization
error bound for the deleted estimate and the resubstitution estimate.

Definition 4 (Uniform Stability) Algorithm A has uniform stability βu w.r.t the loss function ` if
the following holds

∀ Sn ∈ X n, ∀i ∈ {1, . . . , n} , ∀x ∈ X , |` (A(Sn), x)− `
(
A(S−in ), x

)
| ≤ βu .

Finally, we arrive at our notion of Lq stability coefficients:

Definition 5 (Lq Stability Coefficient) Let Sn be a sequence of n i.i.d random variables (RVs)
drawn from X according to P . Let A be a deterministic learning rule, and ` be a loss function as
defined in Section 2. For q ≥ 1, the Lq stability coefficient of A w.r.t `, P , and n is denoted by
βq(A, `,P, n) and is defined as

β2q (A, `,P, n) =
1

n

n∑
i=1

∥∥` (A(Sn), X)− `
(
A(S−in ), X

)∥∥2
q
,

where X ∼P is independent of Sn.

Recall that a learning algorithm is symmetric, if A(Sn) = A(S ′n) for any two Sn, S ′n which are
reorderings of each other. For symmetric learning algorithms, the above definition simplifies to

βq(A, `,P, n) =
∥∥` (A(Sn), X)− `

(
A(S−1n ), X

)∥∥
q

= max
i

∥∥` (A(Sn), X)− `
(
A(S−in ), X

)∥∥
q
,

the latter expression coinciding with the definition given by Celisse and Guedj (2016). Thus, for
a symmetric algorithm, the stability coefficient βq(n)

.
= βq(A, `,P, n) is in fact a q–norm for the

RV ∆n(A) := ` (A(Sn), X) − `
(
A(S−1n ), X

)
. The reason we chose the particular averaging in our

definition is because this definition gives the best fit to the derivations we use.
We note in passing that the other stability notions could also consider averaging over index i,

instead of taking the worst-case sensitivity as shown above. For symmetric rules, the difference,
again, does not matter. However, for nonsymmetric algorithms this difference is nontrivial: While
uniform stability is trivial for binary classification with the current definition, it is a useful notion
with averaging as shown by the results of Shalev-Shwartz et al. (2010).

Since often A, `, P , n are fixed, we will drop them (or any of them) from the notation and will
just use, for example, βq, βq(n), etc.8 Note that for 1 ≤ q ≤ q′, it holds that βq ≤ βq′ , which

7. Note that in the above definition, βms is not squared to keep our definitions in sync with the literature.
8. This should not be mistaken to taking a supremum over any subset of the dropped quantities: The stability coefficients

are meant to be algorithm, loss and distribution dependent.
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follows from the definition of q-norms. Now, the relationship between the various stability concepts
becomes clear. Taking βe, βh, βms, βu as the smallest values that are possible (i.e., changing the
inequalities in their definitions to equalities), assuming symmetric learning rules, we have βe ≤
β1 = βh ≤ β2 = β

1/2
ms ≤ βu, where the last inequality follows because the L∞-norm is the largest

of all of the q-norms.
The Lq stability coefficient quantifies the variation of the loss of A induced by removing one

example from the training set. This is known as a removal type notion of stability and is in accor-
dance with the previous notions of stability introduced earlier. The difference between Lq stability
and earlier notions of stability is that Lq stability is in terms of the higher order moments of the
RVs |` (A(Sn), X)− `

(
A(S−in ), X

)
|. The reason we care about higher moments is because we are

interested in controlling the tail behavior of the deleted estimate. As will be shown, the tail behavior
of the deleted estimate is also dependent on the tail behavior of RVs characterizing stability. As
is well-known, knowledge of the higher moments of a RV is equivalent to knowledge of the tail
behavior of the RV. As such, controlling the higher order moments provides more information on
the distribution of this RV than simply considering first order (L1) and second order (L2) moments.
As it will turn out, the Lq stability coefficients alone are insufficient to control either the bias, or the
the tail behavior of the resubstitution estimate. To control these, we will introduce further stability
coefficients, but we prefer to do this just before we need them.

4. Main Results

We give here the main results of our work, namely an exponential tail bound for the concentration
of the estimated risk, expressed in terms of the deleted, or the resubstitution estimate. We start with
the deleted estimate.

Before stating the result for the deleted estimate, we first state our two assumptions, both of
which concern the behavior of the stability coefficients. While the first assumption is concerned
with their dependence on n, the second assumption is concerned with their behavior as a function
of q.

Assumption 1 For a fixed q > 0, βq(n) is a nonincreasing function of n.

Now note that our results remain valid if βq(n) is replaced with an upper bound on it (such as
β̄q(n)), provided that the upper bound satisfies our assumptions. Defining β̄q(n) = maxm≥n βq(n),
we find that the map n 7→ β̄q(n) is nonincreasing. This provides us with a general approach to meet
Assumption 1, although we would often expect this assumption to be met anyways.

Assumption 2 ∃ u1, w1 ≥ 0 s.t. for any integer q ≥ 1, it holds that

2nβ24q(n− 1) + 2
n2

n∑
i=1

∥∥` (A(S−in ), Xi

)∥∥2
4q
≤ √qu1 ∨ qw1 , (3)

where a ∨ b = max(a, b).

This assumption will be clarified once we introduce our main tool (the exponential Efron-Stein
inequality) and the notion of sub-gamma random variables in the following sections. The reader
wondering about whether this assumption can be met will be pleased to find a positive answer
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presented in Section 7 for the case of unbounded response ridge regression, where the assumption
translates into conditions for the tail behavior of the response variable. Note that here u1, v1 will be
distribution and sample size dependent constants, generally decreasing with the sample size.

With this, our main result for the deleted estimate is as follows:

Theorem 6 (Deleted estimate tail bound) Let X , H and ` be as previously defined, ` bounded
in [0, 1]. Let Sn be the dataset defined in Section 2.1, where n ≥ 2. Let R̂DEL (A,Sn) be the
deleted estimate defined in Eq. (2), and R(A(Sn),P) be the risk for hypothesis A(Sn). Then, under
Assumptions 1 and 2, for δ ∈ (0, 1) and a > 0, with probability 1− 2δ the following holds

|R̂DEL (A,Sn)−R(A(Sn),P)| ≤ β1(n) + 4
√

(nβ22(n− 1) + C1) log
(
2
δ

)
+ C2 log

(
2
δ

)
, (4)

where C1 = 2.2a2u1 + 1.07a2w2
1, and C2 = 4

3(1.46aw1 + 1
a). Further, when the range of `

is unrestricted (` is unbounded), the same inequality holds under the assumption that a modified
version of Assumption 2 holds where the LHS of Eq. (3) multiplied by the constant 4.

While the above result bounds both sides of the tail, a one side version with log
(
2
δ

)
replaced by

log
(
1
δ

)
, also holds for both the upper and lower tails. We will soon explain the various terms in this

bound, but first let us explain how the result is proven.
Once we establish our exponential Efron-Stein inequality (Lemma 14), the proof of Theorem 6

is relatively straightforward. The essence of the proof can be summarized as follows: In order to
control the concentration of the random quantity R̂DEL (A,Sn) around the true risk, we study the
concentration of R̂DEL (A,Sn) around its mean, the concentration of the true risk of A(Sn) around its
own mean, and the difference between the mentioned means. The latter is bounded by the β1(n)
stability coefficient, using elementary arguments. To control the tails (or the higher order moments)
of R̂DEL (A,Sn), we use our exponential Efron-Stein inequality, which tells us that we need to control
the tails of another intermediary random variable, VDEL (see Corollary 11 and its use in Section 6.1),
a variance-type measure of the sensitivity of R̂DEL to the removal of one of the training examples at
a time. The moments of VDEL are shown be controlled by the expression on the LHS of Eq. (3) of
Assumption 2. The assumption then helps to turn these bounds into a bound on the MGF of VDEL,
leading to tail bounds. The concentration of the true risk of A(Sn) around its mean is controlled
similarly. The full proof is presented in Section 6.

To interpret the bound, it is worthwhile to simplify it at the price of losing a bit on its tightness.
Consider the case when the range of ` is the [0, 1] interval. Then, further upper bounding the RHS
using

√
x+ y ≤

√
x+
√
y and then choosing a optimally, yields the following simplified bound

|R̂DEL (A,Sn)−R(A(Sn),P)| ≤ β1(n) + 4
√
nβ22(n− 1) log

(
2
δ

)
+

+ 8

√
1
3

(√
(2.2u1 + 1.07w2

1) + 1
31.46w1

)
log
(
2
δ

)
, (5)

where for the final form, we assumed that δ ≤ 1/e. What can be noticed is that the tail bound has the
form that we expect to see for sub-gamma RVs; note the presence of the

√
log (2/δ) and log (2/δ)

terms. Note also that, by assumption, u1/21 and w1 are both at least of size Ω(1/n), regardless the
stability of A. As a result, the coefficient of the log (2/δ) term is at least of order Ω(

√
1/n) even

for algorithms where βq = 0. This is expected because the deleted estimate is a “noisy” estimate

9
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of the true risk no matter the algorithm – one expects an Ω(
√

1/n) lower bound to hold in general.
Finally, we note in passing that with a bit more care, in the case of w1 = 0 it is possible to slightly
reduce the exponent of log (2/δ) to log3/4(2/δ).

We can gain further insight by qualitatively comparing our bound in Theorem 6 with the expo-
nential bound for the deleted estimate obtained by Bousquet and Elisseeff (2002, Theorem 12). To
make the comparison easier, we first state their result using our notation. We also give the two sided
version.

Theorem 7 (Deleted estimate tail bound through uniform stability) Let A be a learning rule
with uniform stability βu (see Section 3) with respect to the loss function ` and assume that this
loss function is in addition bounded: 0 ≤ ` (A(Sn), X) ≤ M holds almost surely. Then, for any
n ≥ 1, and any δ ∈ (0, 1), with probability 1− δ, the following holds∣∣∣R(A(Sn),P)− R̂DEL (A,Sn)

∣∣∣ ≤ βu(n) + 4nβu(n)

√
log(2/δ)

2n +M

√
log(2/δ)

2n . (6)

The bound in Theorem 7 has three terms; the first two terms are dependent on the uniform
stability of the learning rule, and a third term that only depends on the loss function ` and the
sample size n. When βu scales as 1/n the bound becomes tight in a worst-case sense. As with our
bound, even when βu = 0, the third term stays positive (as it should).

Let us now compare the RHS of Eq. (6) to our simplified bound presented in Eq. (5). Both
bounds have three terms, corresponding to different power of log

(
1
δ

)
. The first two terms in Eq. (6)

have the same form as the first two terms in Eq. (5) except that in (6) βu is used, while in (5)
β1(≤ β2) is used. As discussed earlier, β1 ≤ β2 ≤ βu, and in particular the gap between these
quantities can be large; even βu may be unbounded while the others bounded (as the example in
Section 7 will show). At the same time, the constant coefficient of the second term (5) is larger than
the corresponding coefficient in the second term of (6). Other than these differences, the terms are
analogous.

As discussed earlier, our last term scales with log
(
1
δ

)
rather than with with its square root. This

is the price we pay partly because the proof is set up to also work with unbounded losses (it remains
an interesting question of whether the result can be strengthened to remove this term when the losses
are bounded). Note that the coefficients of this term, as discussed earlier, depend on the stability of
the algorithm but the magnitude of the multiplier of log

(
1
δ

)
will be at least of order Ω(

√
1/n).

Note that Bousquet and Elisseeff (2002) state an identical result (to that shown above in (6))
for the generalization gap, R̂RES − R(A(Sn),P); i.e. the gap for the resubstitution estimate (or the
training error). As we shall see soon, our bound also extends to this case with some modifications.

While preparing the final version of this manuscript, we noted the recent work of Feldman and
Vondrak (2018) who improve this result of Bousquet and Elisseeff (2002) by replacing the second

term in (6) by
√
βu(n) log

(
2
δ

)
. This is an improvement whenever βu(n) ≥ 1/n (i.e., for “not too

stable” algorithms). One may hope that a similar improvement may be possible with non-uniform
(distribution-dependent) notions of stability, but this is left for future work for now.

Notice that the above results are for the gap between the true risk and the deleted estimate,
whereas oftentimes one wishes to control the gap between the true risk and the resubstitution (or
empirical) estimate (or the training error); i.e., the well-known generalization gap. Indeed, one can
follow the same path for our proof technique and derive an exponential tail bound for the concen-
tration of the empirical estimate.

10
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As it turns out, this result requires the introduction of a new type of stability coefficients: The
reason is that there are stable algorithms that can overfit the training data in the sense that their
training error is small. An example of such an algorithm for the binary classification setting is the
“short-range nearest neighbor” rule which recalls the label of the closest training example to the
input when their distance is o(1/n) and outputs a fixed label (say, 1) otherwise. As n increases, this
algorithm will converge to output the a priori chosen label always. As such, the algorithm will also
be very stable. Yet its training error is always zero, which can be far from its true risk. The situation
is summarized in the following result (for details, see Appendix I)9:

Proposition 8 There exist a distribution P and a learning algorithm A such that, everywhere,

lim
n→∞

R(A(Sn),P)− R̂RES (A,Sn) > 0 , (7)

while supq≥1 βq(A, `,P, n)/q → 0 as n→∞.

Note that by Theorem 6, R̂DEL (A,Sn) − R (A(Sn),P)
P→ 0 as long as supq≥1

βq(n)
q → 0 as

n → ∞. It follows that the deleted estimate is consistently estimating the risk of the short-range
nearest neighbor rule, while the resubstitution estimate fails to be consistent. While it is common
wisdom that the resubstitution estimate is often overly “optimistic”, the example is a very clear
demonstration of this weakness and shows that one has to be quite careful when using the training
error, e.g., for model selection; as noted already in Devroye and Wagner (1979c).

One may then think that we should never use the training error, but this is easier said than done
for most algorithms will in some form minimize the training error. Thus, the question remains, if
the Lq stability in the previous sense is insufficient to guarantee the concentration of the training
error around the true loss, what other property should an algorithm posses to control this concentra-
tion? We know that uniform stability provides a positive answer, but is there an analogue to the Lq
stability coefficients that is sufficient for this purpose? The answer to this question can be obtained
by repeating the derivations done in the proof of Theorem 6 and discovering the modifications nec-
essary to control all the terms. This results in the definition of what we call the Lq resubstitution
stability coefficients, which, given an algorithm A, are defined as follows:

γ2q (n) =
1

n

n∑
i=1

∥∥` (A(Sn), Xi)− `
(
A(S−in ), Xi

)∥∥2
q
.

This is a direct analogue of the Lq stability coefficients: The main difference is that here, the algo-
rithm is evaluated on training examples, with and without the example being removed, while for the
Lq stability coefficients, the algorithm was evaluated on an example independent of the training data.
This should make sense for already if we want to control the bias E[R̂RES(A,Sn) − R(A(Sn),P)]
we see the need to control the deviation between the loss measured at training examples and the loss
measured outside – which is exactly what is captured by the γq coefficients.

We also replace Assumption 2 with the following assumption:

Assumption 3 ∃ u1, w1 ≥ 0 s.t. for any integer q ≥ 1, it holds that

6n
(
γ24q(n) + γ24q(n− 1) + β24q(n− 1)

)
+

2γ24q(n)

n
+

2

n2

n∑
i=1

∥∥` (A(S−in ), Xi

)∥∥2
4q
≤ √qu1 ∨ qw1 .

9. Due to space limitations, Appendices I, J, K, and L are available in the full version of this manuscript on
arxiv.org/abs/1903.05457.
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Note that this assumption implies Assumption 2. Thus, any algorithm that satisfies this assumption,
will also necessarily satisfy Assumption 2. With this, we are ready to state our result for tail of the
resubstitution estimator:

Theorem 9 (Resubstitution estimate tail bound) Using the setup of Theorem 6 (again, ` ∈
[0, 1]), but using Assumption 3 in place of Assumption 2, for δ ∈ (0, 1) and a > 0, with proba-
bility 1− 2δ the following holds:

|R̂RES (A,Sn)−R(A(Sn),P)| ≤ β1(n) + γ1(n)+

4
√

(nβ22(n− 1) + C1) log
(
2
δ

)
+ C2 log

(
2
δ

)
,

where C1 = C1(a) and C2 = C2(a) are as in Theorem 6. Furthermore, the same holds for
unbounded losses provided that a modified version of Assumption 3 holds where the LHS of the
inequality in this assumption is multiplied by the constant 4.

By and large, the proof follows the same line as the proof Theorem 6 with some necessary mod-
ifications. A proof of this result is provided in Appendix H. As can be noticed, the only difference
to the bound available for the deleted estimate is the presence of the (γq(n)) terms, both in the
assumption, and the result. As our previous example shows, these cannot be removed (in the case
of the short-range nearest neighbor rule, these coefficients will be large). This suggests that the
deleted estimate is in a way a much better behaving estimator of the true risk than the resubstitution
estimate.

5. Main Tool

In this section we focus on the case when the losses are bounded in [0, 1] and comment on the general
case at the end. The main tool for our work is an extension of the celebrated Efron-Stein inequality
(Efron and Stein, 1981; Steele, 1986), to a stronger version known as the exponential Efron-Stein in-
equality (Boucheron et al., 2003). We start by introducing the Efron-Stein inequality and some vari-
ations. Let f : X n 7−→ R be a real-valued function of n variables, where X is a measurable space.
LetX1, . . . , Xn be independent (not necessarily identically distributed) RVs taking values in X and
define the RV Z = f(X1, . . . , Xn) ≡ f(Sn). Define the shorthand for the conditional expectation
E−iZ

.
= E

[
Z|S−in

]
, where S−in is defined as in the previous section. Informally, E−iZ “integrates”

Z over Xi and also over any other source of randomness in Z except S−in . For every i = 1, . . . , n,
let X ′i be an independent copy from Xi, and let Z ′i = f(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn). The

Efron-Stein inequality bounds the variance of Z as shown in the following theorem.

Theorem 10 (Efron-Stein Inequality – Replacement Case) Let V =
∑n

i=1(Z−E−iZ)2. Under
the settings described in this section, it holds that V[Z] ≤ EV = 1

2

∑n
i=1 E[(Z − Z ′i)2].

The proof of Theorem 10 can be found in (Boucheron et al., 2004). Another variant of the Efron-
Stein inequality that is more useful for our context, is concerned with the removal of one example
from Sn. To state the result, let fi : X n−1 7−→ R, for 1 ≤ i ≤ n, be an arbitrary measurable
function, and define the RV Z−i = fi(S−in ). Then, the Efron-Stein inequality can be also stated in
the following interesting form (Boucheron et al., 2004).
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Corollary 11 (Efron-Stein Inequality – Removal Case) Assume that E−i[Z−i] exists for all 1 ≤
i ≤ n, and let VDEL =

∑n
i=1 (Z − Z−i)2. Then it holds that

V[Z] ≤ EV ≤ EVDEL . (8)

The proof of Corollary 11 is given in Appendix A. This is a standard proof and it is replicated
for the reader’s benefit only.

5.1. An Exponential Efron-Stein Inequality

The work of Boucheron et al. (2003) has focused on controlling the tail of general functions of
independent RVs in terms of the tail behavior of Efron-Stein variance-like terms such as V and
VDEL, as well as other terms known as V + and V −. The variance-like terms V , V + and V − measure
the sensitivity of a function of n independent RVs w.r.t the replacement of one RV from the n
independent RVs. The term VDEL on the other hand, measures the sensitivity of a function of n
independent RVs w.r.t the removal of one RV from the n independent RVs. In this work, we favor
VDEL over the other terms since it is more suitable for our choice of stability coefficient (the Lq
stability), which is also a removal version. The removal version of stability is preferred as it is more
natural in the learning context where one is given a fixed sample. an interesting future direction),
where working with the replacement version will need extra data, or extra assumptions. It also leads
to simpler/shorter calculations, and saves a (small) constant factor in the bounds. The problem is
that it can only be applied in the case of bounded losses.

The tail of a RV is often controlled through bounding the logarithm of the moment generating
function (MGF) of the RV. This is known as the cumulant generating function (CGF) of the RV and
is defined as

ψZ(λ)
.
= logE [exp(λZ)] , (9)

where λ ∈ dom(ψZ) ⊂ R and belongs to a suitable neighborhood of zero. The main result of
Boucheron et al. (2003) bounds ψZ in terms of the MGF for V , V + and V −, but not in terms of the
MGF for VDEL. Since we are particularly interested in the RV VDEL, the following theorem bounds
the tail of ψZ in terms of the MGF for VDEL.

Theorem 12 Let Z, VDEL be defined as in Corollary 11 and assume that |Z − Z−i| ≤ 1 almost
surely for all i. For all θ > 0, s.t. λ ∈ (0, 1], θλ < 1, and EeλVDEL <∞, the following holds

logE [exp (λ(Z − EZ))] ≤ λθ
(1−λθ) logE

[
exp

(
λVDEL
θ

)]
. (10)

The proof of Theorem 12 is given in Appendix B. Theorem 12 states that the CGF of the centered
RV Z − EZ is upper bounded by the CGF of the RV VDEL. Hence, when VDEL behaves “nicely”, the
(upper) tail of Z can be controlled. The value of θ in the upper bound is a free parameter that can
be optimized to give the tightest bound. Because λ > 0, the bound is Eq. (10) is only for the upper
tail of the RV Z. A similar bound for the lower tail can be obtained by replacing Z with −Z and
applying the result. Note also that for both sides, upper tail and lower tail, the same requirements
for λ and θ in Theorem 12 apply.

For Theorem 12 to be useful in our context, further control is required to upper bound the tail of
the RV VDEL. Our approach to control the tail of VDEL will be, again, through its CGF. In particular,
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we aim to show that when VDEL is a sub-gamma RV (defined shortly) we can obtain a high probability
tail bound on the deviation of the RV Z. The obtained tail bound will be instrumental in deriving
the exponential tail bound for the deleted estimate.

5.2. Sub-Gamma Random Variables

We follow here the notation of Boucheron et al. (2013). A real valued centered RV X is said to be
sub-gamma on the right tail with variance factor v and scale parameter c if for every λ such that
0 < λ < 1/c, the following holds

ψX(λ) ≤ λ2v

2(1− cλ)
. (11)

This is denoted by X ∈ Γ+(v, c). Similarly, X is said to be a sub-gamma RV on the left tail with
variance factor v and scale parameter c if−X ∈ Γ+(v, c). This is denoted asX ∈ Γ−(v, c). Finally,
X is simply a sub-gamma RV with variance factor v and scale parameter c if both X ∈ Γ+(v, c)
and X ∈ Γ−(v, c). This is denoted by X ∈ Γ(v, c).

The sub-gamma property can be characterized in terms of moments conditions or tail bounds.
In particular, if a centered RV X ∈ Γ(v, c), then for every t > 0,

P
[
X >

√
2vt+ ct

]
∨ P

[
−X >

√
2vt+ ct

]
≤ e−t , (12)

where a ∨ b = max(a, b). The following theorem from (Boucheron et al., 2013) characterizes this
notion more precisely:

Theorem 13 Let X be a centered RV. If for some v > 0 and c ≥ 0

P
[
X >

√
2vt+ ct

]
∨ P

[
−X >

√
2vt+ ct

]
≤ e−t , for every t > 0 , (13)

then for every integer q ≥ 1

‖X‖2q ≤ (q!Aq + (2q)!B2q)1/2q ≤
√

16.8qv ∨ 9.6qc ≤ 10(
√
qv ∨ qc) ,

where A = 8v, B = 4c. Conversely, if for some positive constants u and w, for any integer q ≥ 1,

‖X‖2q ≤
√
qu ∨ qw ,

then X ∈ Γ(v, c) with v = 4(1.1u+ 0.53w2) and c = 1.46w, and therefore (13) also holds.

The reader may notice that Theorem 13 is slightly different than the version in the book of
Boucheron et al. (2013). Our extension is based on simple (and standard) calculations that are
merely for convenience with respect to our purpose.
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5.3. An Exponential Tail Bound for Z

In this section we assume that the centered RV VDEL − EVDEL ∈ Γ(v, c) with variance factor v > 0,
scale parameter c ≥ 0, 0 < c|λ| < 1. Hence, from inequality (11) it holds that

ψVDEL−EVDEL(λ) = logE [exp(λ(VDEL − EVDEL))] ≤ 1
2λ

2v(1− c|λ|)−1 .

The sub-gamma property of VDEL provides the desired control on its tail. That is, after arranging the
terms of the above inequality, the CGF of VDEL which controls the tail of VDEL, is upper bounded by
the deterministic quantities: EVDEL, the variance v, and the scale parameter c.

It is possible now to use the sub-gamma property of VDEL in the result of the exponential Efron-
Stein inequality in Theorem 12. In particular, the following lemma gives an exponential tail bound
on the deviation of a function of independent RVs, i.e. Z = f(X1, . . . , Xn), in terms of EVDEL,
the variance factor v, and the scale parameter c. This lemma will be our main tool to derive the
exponential tail bound on the DEL estimate.

Lemma 14 Let Z, Z−i, VDEL be as in Corollary 11. If VDEL − EVDEL is a sub-gamma RV with
variance parameter v > 0 and scale parameter c ≥ 0, then for any δ ∈ (0, 1), a > 0, with
probability 1− δ,

|Z − EZ| ≤ 2
3(ac+ 1/a) log

(
2
δ

)
+ 2
√

(EVDEL + a2v/2) log
(
2
δ

)
. (14)

The proof of Lemma 14 is given in Appendix C. Parameter a is a free parameter that can be
optimized to give the tightest possible bound. In particular, a can be chosen to provide the appro-
priate scaling for the RV Z such that the bound goes to zero as fast as possible. A typical choice of
a would be the inverse standard deviation of Z.

6. Proof of Theorem 6

In this section we derive our main result given in Theorem 6, namely the concentration of the
following random quantity

|R̂DEL(A,Sn)−R(A(Sn),P)| .

To bound this RV, we decompose it into three terms∣∣∣R̂DEL(A,Sn)−R(A(Sn),P)
∣∣∣ ≤ I + II + III , (15)

where

I = |ER̂DEL(A,Sn)− R̂DEL(A,Sn)| ,
II = |ER(A(Sn),P)−R(A(Sn),P)| , and

III = |ER(A(Sn),P)− ER̂DEL(A,Sn)| .

If the three terms in the RHS of (15) are properly upper bounded, we will have the desired final high
probability bound. Terms I and II shall be bounded using the exponential Efron-Stein inequality
in Lemma 14. Further, we hope that the final upper bounds can be in terms of the Lq stability
coefficient of A. Term III, however, is non-random and thus shall be directly bounded using some
Lq stability coefficient.
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For terms I and II, the key quantity for using the exponential Efron-Stein inequality in Lemma 14
is the RV VDEL. In particular, the requirement for using VDEL is two-fold. First, since VDEL =∑n

i=1(Z − Z−i)
2, where Z−i = fi(S−in ) for some function fi, we need to choose fi appropri-

ately. Second, once Z−i is defined, to be able to use Lemma 14 we need to show that VDEL is a
sub-gamma RV. For this, using Theorem 13, it will be sufficient to show that for all integers q ≥ 1,

‖VDEL‖2q ≤
√
qu ∨ qw , (16)

for some positive constants u and w. Here, we will relate ‖VDEL‖2q to Lq stability coefficients and
then we “reverse engineer” appropriate assumptions on the Lq-stability coefficients that imply (16).

6.1. Upper Bounding Term I

We begin by deriving an upper bound for term I in the RHS of (15). This is the deviation |ER̂DEL(A,Sn)−
R̂DEL(A,Sn)|. Note that R̂DEL(A,Sn) is a function of n independent random variables (bounded in
[0, 1] when ` is in this range), and hence the Exponential Efron-Stein inequality from Lemma 14
can be applied to bound this deviation. Following our two-steps plan to use Lemma 14, we define
the random variables Z and Z−i as follows

Z = R̂DEL(A,Sn) =
1

n

n∑
i=1

`
(
A(S−in ), Xi

)
, Z−i =

1

n

n∑
j=1
j 6=i

`
(
A(S−i,−jn ), Xj

)
, (17)

where S−i,−jn indicates the removal of examplesXi andXj from Sn. Note thatZ−i = n−1
n R̂DEL(A,S−in )

– the scaling factor is chosen to minimize the bound soon to be presented. Recall that VDEL =∑
i(Z − Z−i)2, and given the definition of Z and Z−i in (17), we need to show that VDEL is a sub-

gamma RV and derive a bound on EVDEL. This can be done by bounding the higher order moments
of VDEL as stated in the following lemma.

Lemma 15 Let Z, Z−i be defined as in (17), and let VDEL =
∑n

i=1 (Z − Z−i)2. Then for any real
q ≥ 1/2 and integer n ≥ 2, the following holds

‖VDEL‖2q ≤
2
n2

n∑
i=1

∥∥` (A(S−in ), Xi

)∥∥2
4q

+ 2nβ24q(n− 1) , (18)

and, in particular, EVDEL ≤ 2
n2

∑n
i=1

∥∥` (A(S−in ), Xi

)∥∥2
2

+ 2nβ22(n− 1).

The proof is given in Appendix D. Lemma 15 gives the desired upper bound for the higher
order moments of VDEL including the upper bound for EVDEL. To use Lemma 14, it remains to
show that VDEL is a sub-gamma RV according to the characterization in Theorem 13. As happens,
Assumption 2, stated earlier, is sufficient to achieve this.

Corollary 16 Using the previous definitions, and under Assumption 2, VDEL ∈ Γ(v1, c1), where
v1 = 4(1.1u1 + 0.53w2

1) and c1 = 1.46w1.

The statement of Corollary 16 follows from Lemma 15, and using Assumption 2 and Theorem 13.
Plugging the result of Corollary 16 into Lemma 14 (which is possible because ` takes values in
[0, 1]) gives the desired final upper bound for Term I in the RHS of (15).
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Lemma 17 Suppose that Assumption 2 holds and n ≥ 2. Then for any δ ∈ (0, 1) and a > 0, with
probability 1− δ the following holds

|ER̂DEL(A,Sn)− R̂DEL(A,Sn)| ≤ 2
3(1.46aw1 + 1

a) log
(
2
δ

)
+ 2
√(

nβ22(n− 1) + ρ1(u1, w1)
)

log
(
2
δ

)
,

where ρ1(u1, w1) = 2.2a2u1 + 1.07a2w2
1.

Consider now the choice of a in the context of how it may scale with n and its impact on
the behavior of this bound. First, note that u1 and w1 are controlled by nβ24q(n − 1), and from
Assumption 1, we assume that β24q(n−1) is a nonincreasing function of n. If, for example, nβ22(n−
1) ∼ 1

np for some p > 0, then u1 ∼ n−2p, w1 ∼ n−p, and w1 ≈
√
u1. The terms in the bound that

depend on a scale as a
np + 1

a with n. Hence, choosing a = np/2, or a = w
−1/2
1 , makes both, the

a dependent term, as well as the whole bound, scale with n−p/2 as a function of n; i.e. the bound
scales as w1/2

1 , and w1/2
1 = o(1) as n → ∞. This translates to nβ24q(n − 1) = o(1) as n → ∞;

(and in particular, β2(n− 1) = o(n−1/2)) which is sufficient for the consistency of R̂DEL(A,Sn). A
similar condition for consistency was also identified by Bousquet and Elisseeff (2002) and Celisse
and Guedj (2016).

6.2. Upper Bounding Term II

Consider now term II in inequality (15). This is the deviation |ER (A(Sn),P) − R (A(Sn),P) |.
Note that R (A(Sn),P) is a function of n independent RVs, and therefore, Lemma 14 will be our
tool to bound this deviation. Following the steps for upper bounding Term I in the previous section,
we need to define the RVs Z and Z−i, and show that VDEL is a sub-gamma RV. Let the RVs Z and
Z−i be defined as follows

Z = R (A(Sn),P) , Z−i = R
(
A(S−in ),P

)
. (19)

Similar to Lemma 15 we have the following result:

Lemma 18 Let Z and Z−i be defined as in (19) and let VDEL =
∑n

i=1(Z −Z−i)2. Then for any
real q ≥ 1/2, and n ≥ 2, the following holds

‖VDEL‖2q ≤ nβ24q(n) , (20)

and, in particular, EVDEL ≤ nβ22(n).

By Assumption 1, n 7→ βq(n) is nonincreasing. This, combined with Assumption 2 gives the
following result, which parallels Corollary 16:

Corollary 19 Using the previous definitions, and under Assumptions 1 and 2, VDEL ∈ Γ(v1, c1),
where v1 = 4(1.1u1 + 0.53w2

1) and c1 = 1.46w1.

The steps to derive the final bound for Term II are exactly the same derivation steps for the previous
bound. The final bound is given by the following lemma which simply plugs in the results of
Lemma 18 and Corollary 19 into Lemma 14 (the conditions of the latter lemma are met thanks to
the assumption that ` takes values in [0, 1]).
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Lemma 20 Suppose that Assumptions 1 and 2 hold and n ≥ 2. Then, for any δ ∈ (0, 1) and a > 0,
with probability 1− δ the following holds

|ER (A(Sn),P)−R (A(Sn),P)| ≤ 2
3(1.46aw1 + 1

a) log
(
2
δ

)
+ 2
√

(nβ22(n) + ρ1(u1, w1)) log
(
2
δ

)
,

where, as before, ρ1(u1, w1) = 2.2a2u1 + 1.07a2w2
1.

Concerning the choice of a, the discussion after Lemma 17 applies.

6.3. Upper Bounding Term III

For term III in inequality (15) there are no random quantities to account for since both terms in the
modulus are expectations of RVs. Hence, an upper bound on this deviation will always hold.

Lemma 21 Using the previous setup and definitions, let A be a learning rule with L2 stability
coefficient β2(n). Then for n ≥ 2, the following holds

|ER(A(Sn),P)− ER̂DEL(A,Sn)| ≤ β1(n) ≤ β2(n) . (21)

6.3.1. PROOF OF THEOREM 6

At this point, we have obtained the three desired upper bounds for each term in the RHS of inequality
(15). The proof of Theorem 6 starts by plugging the results of Lemma 17, Lemma 20, and Lemma 21
into inequality (15) and then simplifying the expression to improve the presentation of the final
result.

For unbounded losses, one can repeat the steps of this proof, with the exception that instead
of the removal version VDEL of the variance proxy, one should use the “classic” variance proxy, V
(from Theorem 10) everywhere VDEL is used. Note that for V , the exact analogue of Theorem 12
can be shown to hold as shown in Theorem 28 of Appendix L.10 Now, one can show that Lemma 15
continues to hold with the removal variance proxy replaced with the classic variance proxy if the
RHS in the display of this lemma is multiplied by 4 (see Lemma 26 in Appendix J). The same
holds for term II (see Lemma 18 in Appendix K). These changes mean that if in the display of
Assumption 2, the LHS is multiplied by four, the rest of the proof goes through without any further
changes.

7. Example (Application to Unbounded Ridge Regression)

In this section we apply the exponential tail bound in Theorem 6 to the ridge regression rule with
bounded covariates and unbounded response variables. Note that in the presence of unbounded
response variables, ridge regression is not uniformly stable. In particular, the bound of Bousquet
and Elisseeff (2002) is not directly applicable in this setting.11 We follow the setup of Celisse and
Guedj (2016) (except that we allow unbounded response variables) and we will borrow some results

10. Due to space limitations, Appendices I, J, K, and L are available in the full version of this manuscript on
arxiv.org/abs/1903.05457.

11. As noted earlier, one approach to save this is to use a case-based analysis, where one case is that some of the response
variables are above a threshold to be chosen later, the other case is that they are all below a threshold. The probability
of the first case can be kept below δ, by choosing the threshold high enough. The price of this compared to the bound
below is increased constants, and also an extra log(n) factor.
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from their work. Let the data be (x1, Y1), . . . , (xn, Yn), xi ∈ Rd, Yi ∈ R (1 ≤ i ≤ n), and fix
λ > 0. The ridge regression estimator Aλ is defined via

Aλ(Sn) = argmin
w∈Rd

{
1

n

n∑
i=1

(Yi −w>xi)
2 + λ ‖w‖22

}
= (Σ̂ + nλId)

−1X>y , (22)

where X is the n×dmatrix obtained by stacking the d-dimensional vectors x>1 , . . . ,x
>
n , Σ̂ = X>X

is the (unnormalized) sample covariance matrix, and y = [Y1, . . . , Yn]> is the vector of response
variables. The loss ` (·) is the quadratic loss: ` (w, (x, y)) = (w>x − y)2. As usual, we assume
that the data is i.i.d. from some common distribution. For the purpose of this example, we have the
following two assumptions on this distribution:

Assumption 4 ∃ 0 < BX < +∞ s.t. ‖x1‖ ≤ BX a.s.

Assumption 5 ∃ uY , wY ≥ 0 s.t. ∀q ≥ 1,
∥∥Y 4

1

∥∥
2q
≤ √quY ∨ qwY .

Note that this last assumption allows unbounded responses, as long as their 4th moment is sub-
gamma. For example, Y1 =

√
|Z| sgn(Z) with a gaussian Z satisfies this condition.

To use Theorem 6, the Lq stability coefficient for the ridge estimator, or an upper bound on it,
needs to be calculated. This is given in the next theorem taken from the paper of Celisse and Guedj
(2016). Their result is applicable because the ridge regression estimator is symmetric, and hence,
our definition for the Lq stability coefficients then coincides with theirs, as it was noted earlier.12

Theorem 22 Let Aλ be the ridge estimator in Eq. (22) and let Assumption 4 hold. Then, for any
sample size n > 1, as long as sλ,n = λ− 1

n−1 > 0, for any q ≥ 1, Aλ is Lq stable with the following
bound on its stability:

βq(Aλ, `,P, n) ≤ 2 ‖Y1‖22q
B2
X

nλ

(
1 +

B2
X + λ

sλ,n

)(
1 +

B2
X

λ

)
. (23)

To simplify the expression for the upper bound in Eq. (23), let

κ = 2
B2
X

λ

(
1 +

B2
X + λ

sλ,n−1

)(
1 +

B2
X

λ

)
. (24)

Then, β2(n) ≤ κ
n

∥∥Y 2
1

∥∥
2
, nβ22(n − 1) ≤ n κ2

(n−1)2
∥∥Y 2

1

∥∥2
2
, Furthermore, βq(n − 1) ≤ κ

n−1 ‖Y1‖
2
2q

and, hence

nβ24q(n− 1) ≤ κ2

n−1 ‖Y1‖
4
8q = κ2

n−1
∥∥Y 4

1

∥∥
2q
.

Some calculations gives (cf. Appendix G)

2
n

∥∥` (Aλ(S−1n ), (x1, Y1)
)∥∥2

4q
≤

4‖Y 4
1 ‖2q
n

(
1 +

B4
X

λ2

)2

. (25)

12. The result is streamlined by choosing the value of η in their result to minimize the upper bound on the stability
coefficient.
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Thus,

8nβ24q(n− 1) + 8
n

∥∥` (Aλ(S−1n ), (x1, Y1)
)∥∥2

4q
≤
‖Y 4

1 ‖2q
n−1 κ̂

where

κ̂ = 8

(
κ2 + 2

(
1 +

B4
X

λ2

)2
)
.

Thus, to meet the modified Assumption 2 where the LHS of Eq. (3) is multiplied by 4, we can choose
u1 = κ̂2

(n−1)2uY and w1 = κ̂
(n−1)wY . Note that κ̂ only depends on BX and λ, but is independent

of n. In particular κ̂ scales with 1/λ6 (κ scales with 1/λ3). We can now plug into the simplified
version (5) of the bound of Theorem 6 to obtain an exponential tail bound for the deleted estimate
for ridge regression.

Corollary 23 Given all definitions above, let R̂DEL (Aλ,Sn) be the deleted estimate for the ridge
regression rule, R(Aλ(Sn),P) be its risk, and assume that Assumption 4 and Assumption 5 hold.
Further, let µ =

∥∥Y 2
1

∥∥
2
. Then, for δ ∈ (0, 1), with probability 1− δ the following holds

|R(Aλ(Sn),P)− R̂DEL (Aλ,Sn) | ≤ κµ

n
+ 4κµ

√
n

(n−1)2 log
(
2
δ

)
+

+ 8

√
κ̂

3(n−1)

(√
(2.2uY + 1.07w2

Y ) + 1
31.46wY

)
log
(
2
δ

)
. (26)

Note that as far as we know this is the first bound for the deleted estimate for ridge regression
which allows unbounded response variables.The proof of Corollary 23 is straightforward and is
hence omitted. As we see the bound scales with 1/

√
n regardless the value of λ. However, the

bound scales quite poorly with 1/λ. This poor scaling is not inherent to ridge regression but follows
from the (oversimplified) analysis. However, for now, we leave it to future work to address this
defect of our bound. Finally, let us note that while not shown here, a similar bound is available for
the resubstitution estimate: The γq coefficients show a behavior similar to the βq coefficients.

The reader may also be wondering about how the presented bound compares with that presented
by Celisse and Guedj (2016) in their Theorem 4. Unfortunately, this comparison is meaningless
as the bounds here are incorrect. The problem originates in Proposition 3 where on the right-
hand side some terms (corresponding to (25)) are missing: In the proof, the authors incorrectly use
(w>x− y)2− (w>x′− y′)2 = (w>(x−x′) + y′− y)(w>(x+x′)− y− y′): It appears that in their
calculations, Celisse and Guedj have accidentally dropped the y′− y term from the first term on the
RHS. After correcting for this, the Lq norm of Y will appear on the right-hand side in the inequality
stated in this proposition, corresponding to the bound (25). We believe that after the mistakes are
corrected, one will arrive at a bound that will near identical to ours.

8. Concluding Remarks

In this work we consider the gap between two regimes of stability-based generalization results; (i)
exponential generalization bounds based on strong notions of stability which are distribution inde-
pendent and computationally intractable, such as uniform stability, and (ii) polynomial generaliza-
tion bounds based on weaker notions of stability but are distribution dependent and computationally
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tractable such as hypothesis stability and Lq stability. Using the exponential Efron-Stein inequal-
ity we were able to bridge this gap by deriving an exponential concentration bound for Lq stable
learning rules, where the loss of the learning rules is expressed in terms of the deleted estimate.

We believe that our result is one step forward on two fronts; (i) computing empirical tight
confidence intervals for the expected loss of a learning rule where the confidence interval holds
with high probability; and (ii) understanding the role of stability in the concentration of different
empirical loss estimates around their expectations (in supervised and unsupervised learning). For
instance, it will be interesting to understand how the stability of a learning rule can guide our choice
for k, and hence the fold size, for the KFCV estimate, such that the estimate concentrates well
around the expected risk. Last, we second on the question posed by Bousquet and Elisseeff (2002),
of whether it is possible to design algorithms that can maximize their own stability while gaining
also on performance.
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Appendix A. Proof of Corollary 11

Corollary 11 (Efron-Stein Inequality – Removal Case) Assume that E−i[Z−i] exists for all 1 ≤
i ≤ n, and let VDEL =

∑n
i=1 (Z − Z−i)2. Then it holds that

V[Z] ≤ EV ≤ EVDEL . (8)

Proof For any RV X , we have the following fact: V[X] ≤ E[(X − a)2], for any a ∈ R. Assume
that E−i[Z−i] exists for all 1 ≤ i ≤ n, and applying the previous fact conditionally for S−in , then
E−i[(Z − E−iZ)2] ≤ E−i[(Z − Z−i)2]. Taking expectations and summing over all i we get that
EV ≤ EVDEL. Combining the Efron-Stein inequality for RV Z with the previous inequality, we get
the desired result.

Appendix B. Proof of Theorem 12

Theorem 12 Let Z, VDEL be defined as in Corollary 11 and assume that |Z − Z−i| ≤ 1 almost
surely for all i. For all θ > 0, s.t. λ ∈ (0, 1], θλ < 1, and EeλVDEL <∞, the following holds

logE [exp (λ(Z − EZ))] ≤ λθ
(1−λθ) logE

[
exp

(
λVDEL
θ

)]
. (10)

Proof The proof of this theorem relies on the result of Theorem 6.6 in (Boucheron et al., 2013)
which we state here for convenience as a proposition without proof.

Proposition 24 Let φ(u) = eu − u− 1. Then for all λ ∈ R,

λE [Z exp(λZ)]− E [exp(λZ)] logE [exp(λZ)] ≤
n∑
i=1

E [exp(λZ)φ (−λ(Z − Z−i))] . (27)

To make use of inequality (27), we need to establish an appropriate upper bound for the RHS of
(27). Note that for u ≤ 1, φ(u) ≤ u2. By assumption |Z − Z−i| ≤ 1 holds almost surely. Since
0 < λ ≤ 1, we get

n∑
i=1

E [exp(λZ)φ (−λ(Z − Z−i))] ≤ λ2
n∑
i=1

E
[
exp(λZ) (Z − Z−i)2

]
= λ2E [VDEL exp(λZ)] .

It follows that (27) can be written as

λE [Z exp(λZ)]− E [exp(λZ)] logE [exp(λZ)] ≤ λ2E [exp(λZ)VDEL] . (28)

The RHS of the previous inequality has two coupled random variables; exp(λZ) and VDEL. To make
use of (27), we decouple the two random variables using the following useful tool from (Massart,
2000) which we state as a proposition without a proof.

Proposition 25 For random variable W , and for any λ ∈ R, if E [exp(λW )] < ∞, then the
following holds

EλW exp(λZ)

Eexp(λZ)
≤ EλZ exp(λZ)

Eexp(λZ)
− logE exp(λZ) + logE exp(λW ) . (29)
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Multiplying both sides of (29) by Eexp(λZ) and replacing W with VDEL/θ we get that:

Eexp(λZ)VDEL ≤ θ
[
EZ exp(λZ)− 1

λ
Eexp(λZ) logEexp(λZ) +

1

λ
Eexp(λZ) logEexp

(
λ
VDEL

θ

)]
.

(30)

Introduce F (λ) = Eexp(λZ), and G(λ) = logEexp(λVDEL). Note that F ′(λ) = EZ exp(λZ).
Plugging (30) into (28) and using the compact notation F (λ), F ′(λ), and G(λ/θ) we get that:

λF ′(λ)− F (λ) logF (λ) ≤ λ2θ
(
F ′(λ)− 1

λ
F (λ) logF (λ) +

1

λ
F (λ)G(λ/θ)

)
. (31)

Dividing both sides by λ2F (λ) and rearranging the terms:

1

λ

F ′(λ)

F (λ)
− 1

λ2
logF (λ) ≤ θG(λ/θ)

λ(1− λθ)
. (32)

The rest of the proof continues exactly as the proof of Theorem 2 from (Boucheron et al., 2003):
As the left-hand side of the above display is just the derivative of H(λ) = 1

λ logF (λ), (32) is
equivalent to H ′(λ) ≤ θG(λ/θ)

λ(1−λθ) . Recalling that limλ→0+H(λ) = E[Z], the integration of the

differential inequality gives H(λ) ≤ E[Z] + θ
∫ λ
0

G(s/θ)
s(1−sθ) ds. Notice that G is convex. This implies

that the integrand is a nondecreasing function of s and therefore logF (λ) ≤ λE[Z] + λθG(λ/θ)
1−λθ .

Appendix C. Proof of Lemma 14

Lemma 14 Let Z, Z−i, VDEL be as in Corollary 11. If VDEL − EVDEL is a sub-gamma RV with
variance parameter v > 0 and scale parameter c ≥ 0, then for any δ ∈ (0, 1), a > 0, with
probability 1− δ,

|Z − EZ| ≤ 2
3(ac+ 1/a) log

(
2
δ

)
+ 2
√

(EVDEL + a2v/2) log
(
2
δ

)
. (14)

Proof Since VDEL − EVDEL ∈ Γ+(v, c), for any λ ∈ (0, 1/c) we have

ψVDEL−EVDEL(λ) = logE [exp(λ(VDEL − EVDEL))] ≤
λ2v

2(1− cλ)
.

Rearranging the terms we get

logE [exp(λVDEL)] ≤ λEVDEL +
λ2(v/2)

1− cλ
. (33)

Combining this with the result of Theorem 12 where we choose θ = 1, we get

ψZ−EZ(λ) ≤ λ

1− λ

(
λEVDEL +

λ2(v/2)

1− cλ

)
. (34)
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We upper bound the term on the right-hand side as follows

λ

1− λ

(
λEVDEL +

λ2(v/2)

1− cλ

)
=

λ

1− λ

(
λEVDEL − cλ2EVDEL + λ2v/2

(1− cλ)

)
≤ λ

1− λ

(
λEVDEL + λ2(v/2)

(1− cλ)

)
=
λ2EVDEL + λ3(v/2)

(1− λ)(1− cλ)

≤ λ2EVDEL + λ2(v/2)

(1− λ)(1− cλ)

=
λ2(EVDEL + v/2)

(1− λ)(1− cλ)

≤ λ2(EVDEL + v/2)

(1− (c+ 1)λ)
,

where the last inequality holds provided that 0 < λ < 1/(c+ 1). Thus we finally get that

ψZ−EZ(λ) ≤ λ2(EVDEL + v/2)

(1− (c+ 1)λ)
. (35)

Recall that the Cramer-Chernoff method gives that for any λ > 0,

P [Z > EZ + t] ≤ exp(−(λt− ψZ−EZ(λ))) .

This combined with (35), we see that we need to lower bound

λt− ψZ−EZ(λ) ≥ λt− λ2(EVDEL + v/2)

(1− (c+ 1)λ)
,

where λ ∈ (0, 1] ∩ (0, 1/(c + 1)) = (0, 1/(c + 1)) can be chosen so that the lower bound is the
largest. From Lemma 11 of Boucheron et al. (2003), we have that for any p, q > 0,

sup
λ∈[0,1/q)

(
λt− λ2p

1− qλ

)
≥ t2

4p+ 2q(t/3)
,

and the supremum is attained at

λ =
1

q

(
1−

(
1 +

qt

p

)−1/2)
.

Setting p = EVDEL + v/2, q = c+ 1, we see that the optimizing λ belongs to (0, 1/(c+ 1)). Hence,

P [Z > EZ + t] ≤ exp

(
−t2

4(EVDEL + v/2) + 2(c+ 1)t/3

)
.

The previous inequality gives an exponential bound on the upper tail for the deviation of the RV Z
from its expectation.

26



AN EXPONENTIAL EFRON-STEIN INEQUALITY FOR Lq STABLE LEARNING RULES

Finally, letting the right hand side of the previous inequality to equal δ and solving for t then after
some further upper bounding to simplify the resulting expression (in particular, using

√
|a|+ |b| ≤√

|a|+
√
|b|) and using a union bound to obtain a two-sided tail inequality, we get

|Z − EZ| ≤ 2
3(c+ 1) log

(
2
δ

)
+ 2
√

(EVDEL + v/2) log
(
2
δ

)
. (36)

The result now follows by applying (36) to Z ′ = aZ, Z ′−i = aZ−i and V ′DEL =
∑

i(Z
′ − Z ′−i)2.

Noting that V ′DEL = a2VDEL ∈ Γ(a4v, a2c), we get

a |Z − EZ| ≤ 2
3(a2c+ 1) log

(
2
δ

)
+ 2
√

(a2EVDEL + a4v/2) log
(
2
δ

)
.

Dividing both sides by a gives the desired inequality.

Appendix D. Proof of Lemma 15

Lemma 15 Let Z, Z−i be defined as in (17), and let VDEL =
∑n

i=1 (Z − Z−i)2. Then for any real
q ≥ 1/2 and integer n ≥ 2, the following holds

‖VDEL‖2q ≤
2
n2

n∑
i=1

∥∥` (A(S−in ), Xi

)∥∥2
4q

+ 2nβ24q(n− 1) , (18)

and, in particular, EVDEL ≤ 2
n2

∑n
i=1

∥∥` (A(S−in ), Xi

)∥∥2
2

+ 2nβ22(n− 1).

Proof Let q ≥ 1. Then,

‖VDEL‖q =

∥∥∥∥∥
n∑
i=1

(Z − Z−i)2
∥∥∥∥∥
q

≤
n∑
i=1

∥∥(Z − Z−i)2
∥∥
q
, (37)

where the inequality is by the triangle inequality. Now, using the definitions of Z and Z−1 (cf.
Eq. (17)),

(Z − Z−1)2

=

(
1

n
`
(
A(S−1n ), X1

)
+

1

n

n∑
i=2

(
`
(
A(S−in ), Xi

)
− `

(
A(S−1,−in ), Xi

)))2

≤ 2

n2
`2
(
A(S−1n ), X1

)
+ 2

(
1

n

n∑
i=2

(
`
(
A(S−in ), Xi

)
− `

(
A(S−1,−in ), Xi

)))2

((a+ b)2 ≤ 2a2 + 2b2)

≤ 2

n2
`2
(
A(S−1n ), X1

)
+ 2

1

n

n∑
i=2

(
`
(
A(S−in ), Xi

)
− `

(
A(S−1,−in ), Xi

))2
. (Jensen’s inequality)

Taking the q-norm of both sides, using the triangle inequality and that for any U RV,
∥∥U2

∥∥
q

=

‖U‖22q, we get

∥∥(Z − Z−1)2
∥∥
q
≤ 2

n2
∥∥` (A(S−1n ), X1

)∥∥2
2q

+
2

n

n∑
i=2

∥∥` (A(S−in ), Xi

)
− `

(
A(S−1,−in ), Xi

)∥∥2
2q
.

(38)
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An analogous inequality holds for
∥∥(Z − Z−j)2

∥∥
q

with j > 1. Summing up all these, using that

(A(S−jn ), Xj)j share the same distribution and combining with Eq. (37), we get

‖VDEL‖q ≤
2

n2

n∑
j=1

∥∥` (A(S−jn ), Xj

)∥∥2
2q

+ 2
1

n

n∑
j=1

∑
i 6=j

∥∥` (A(S−in ), Xi

)
− `

(
A(S−j,−in ), Xi

)∥∥2
2q

=
2

n2

n∑
j=1

∥∥` (A(S−jn ), Xj

)∥∥2
2q

+ 2
n∑
i=1

1

n

∑
j 6=i

∥∥` (A(S−in ), Xi

)
− `

(
A(S−i,−jn ), Xi

)∥∥2
2q︸ ︷︷ ︸

β2
2q(n−1)

=
2

n2

n∑
i=1

∥∥` (A(S−in ), Xi

)∥∥2
2q

+ 2nβ22q(n− 1) .

Replacing q with 2q gives the desired result.

Appendix E. Proof of Lemma 18

Lemma 18 Let Z and Z−i be defined as in (19) and let VDEL =
∑n

i=1(Z −Z−i)2. Then for any
real q ≥ 1/2, and n ≥ 2, the following holds

‖VDEL‖2q ≤ nβ24q(n) , (20)

and, in particular, EVDEL ≤ nβ22(n).

Proof Let q ≥ 1. Then, similar to the previous proof,

‖VDEL‖q =

∥∥∥∥∥
n∑
i=1

(Z − Z−i)2
∥∥∥∥∥
q

≤
n∑
i=1

∥∥∥(Z − Z−i)2
∥∥∥
q

=
n∑
i=1

‖(Z − Z−i)‖22q , (39)

where the last inequality is because for any RV U ,
∥∥U2

∥∥
q

= ‖U‖22q. Then, using the definitions of
Z and Z−1,

‖Z − Z−1‖22q ≤
∥∥R(A(Sn),P)−R(A(S−1n ),P)

∥∥2
2q

=
∥∥E [` (A(Sn), X)− `

(
A(S−1n ), X

)
|Sn
]∥∥2

2q
(tower rule)

= E
[
|E
[
` (A(Sn), X)− `

(
A(S−1n ), X

)
|Sn
]
|2q
]2/(2q)

≤ E
[
E
[
|` (A(Sn), X)− `

(
A(S−1n ), X

)
|2q |Sn

]]2/(2q) (Jensen’s inequality)

= E
[
|` (A(Sn), X)− `

(
A(S−1n ), X

)
|2q
]2/(2q) (tower rule)

=
∥∥` (A(Sn), X)− `

(
A(S−1n ), X

)∥∥2
2q
. (40)

An analogous inequality holds for ‖Z − Z−i‖22q with i > 1. Summing up all these, combining with
(39) we get

‖VDEL‖q ≤ n
1

n

n∑
i=1

∥∥` (A(Sn), X)− `
(
A(S−in ), X

)∥∥2
2q

= nβ22q(n) .
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Replacing q with 2q yields that

‖VDEL‖2q ≤ nβ24q(n) .

Appendix F. Proof of Lemma 21

Lemma 21 Using the previous setup and definitions, let A be a learning rule with L2 stability
coefficient β2(n). Then for n ≥ 2, the following holds

|ER(A(Sn),P)− ER̂DEL(A,Sn)| ≤ β1(n) ≤ β2(n) . (21)

Proof To derive a bound on |ER(A(Sn),P) − ER̂DEL(A,Sn)| in terms of Lq-stability, we proceed
as follows. First, note that ER (A(Sn),P) = E [` (A(Sn), X)]. Second, for ER̂DEL(A,Sn), we have

ER̂DEL(A,Sn) = E

[
1

n

n∑
i=1

`
(
A
(
S−in

)
, Xi

)]

=
1

n

n∑
i=1

E
[
`
(
A
(
S−in

)
, Xi

)]
=

1

n

n∑
i=1

E
[
`
(
A
(
S−in

)
, X
)]
, (by i.i.d of the examples)

where X ∼P is independent of Sn.13

It follows that∣∣∣ER (A(Sn),P)− ER̂DEL(A,Sn)
∣∣∣ =

∣∣∣∣∣E[` (A(Sn), X)]− 1

n

n∑
i=1

E[`(A(S−in ), X)]

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

E
[
` (A(Sn), X)− `(A(S−in ), X)

]∣∣∣∣∣
≤ 1

n

n∑
i=1

E
[∣∣` (A(Sn), X)− `(A(S−in ), X)

∣∣] (Jensen’s inequality)

= β1(n) ≤ β2(n) , (41)

where the last equality uses the definition of β1, and the last inequality uses that βq ≤ βq′ for q ≤ q′.

13. Note that, of course, as is well known, E
[
`
(
A
(
S−i
n

)
, X

)]
= E

[
`
(
A
(
S−1
n

)
, X

)]
also holds for any i > 1, but we

will not need this identity here.
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Appendix G. Ridge regression: Proving Eq. (25)

For the convenience of the reader, let us restate Eq. (25):

2
n

∥∥` (Aλ(S−1n ), (x1, Y1)
)∥∥2

4q
≤

4‖Y 4
1 ‖2q
n

(
1 +

B4
X

λ2

)2

.

Introduce the shorthand w̃ = Aλ(S−1n ). We have

`
(
Aλ(S−1n ), (x1, Y1)

)
= (x>1 w̃ − Y1)2 ≤ 2(x1x

>w̃)2 + 2Y 2
1

Then, |x>1 w̃| ≤ ‖x1‖ ‖w̃‖ ≤ BX ‖w̃‖ (‖·‖ denotes the 2-norm). Introduce the abbreviation
‖Z‖2,q = ‖‖Z‖‖q. Hence, ∥∥∥|x>1 w̃|2∥∥∥

q
≤ B2

X

∥∥∥‖w̃‖2∥∥∥
q

= B2
X ‖w̃‖

2
2,2q .

Let X̃ = [x2 . . . xn]> (thus, X̃ ∈ R(n−1)×d, with x1 left out), Ỹ = [Y2, . . . , Yn]> and Σ̃λ =
X̃>X̃ + nλI so that w̃ = Σ̃−1λ X̃>Ỹ .

We calculate ‖w̃‖ ≤
∥∥∥Σ̃−1λ

∥∥∥∑n
i=2 |Yi| ‖xi‖ ≤

BX
nλ

∑n
i=2 |Yi| and so

‖w̃‖2,2q =
∥∥∥Σ̃−1λ X̃>Ỹ

∥∥∥
2,2q
≤ BX

λ
‖Y1‖2q ,

where the second inequality used that Y1 has the same distribution as Yi with i > 1. Putting things
together, ∥∥` (Aλ(S−1n ), (x1, Yn)

)∥∥
q
≤ 2

B4
X

λ2
‖Y1‖22q + 2 ‖Y1‖22q = 2 ‖Y1‖22q

(
1 +

B4
X

λ2

)
(42)

and thus

2

n

∥∥` (Aλ(S−1n ), (x1, Yn)
)∥∥2

4q
≤ 4

n
‖Y1‖48q

(
1 +

B4
X

λ2

)2

=
4

n

∥∥Y 4
1

∥∥
2q

(
1 +

B4
X

λ2

)2

,

finishing the proof.

Appendix H. Proof for Theorem 9

Here, we provide a proof for the exponential tail bound for the generalization gap defined using the
empirical error:

Theorem 9 (Resubstitution estimate tail bound) Using the setup of Theorem 6 (again, ` ∈ [0, 1]),
but using Assumption 3 in place of Assumption 2, for δ ∈ (0, 1) and a > 0, with probability 1− 2δ
the following holds:

|R̂RES (A,Sn)−R(A(Sn),P)| ≤ β1(n) + γ1(n)+

4
√

(nβ22(n− 1) + C1) log
(
2
δ

)
+ C2 log

(
2
δ

)
,

where C1 = C1(a) and C2 = C2(a) are as in Theorem 6. Furthermore, the same holds for
unbounded losses provided that a modified version of Assumption 3 holds where the LHS of the
inequality in this assumption is multiplied by the constant 4.
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Proof We show the proof for the case when ` takes values in [0, 1]. The unbounded case requires
the same modifications and similar calculation to what has been shown for Theorem 6 and is left to
the reader. As before,

|R̂RES (A,Sn)−R (A(Sn),P) | ≤ |R̂RES (A,Sn)− ER̂RES (A,Sn) |
+ |R (A(Sn),P)− ER (A(Sn),P) |

+ |ER̂RES (A,Sn)− ER (A(Sn),P) | . (43)

To control the first term, one can use the same argument as in Section 6.1 with the difference that
we should use

Z = R̂RES(A,Sn) =
1

n

n∑
i=1

` (A(Sn), Xi) , Z−i =
1

n

n∑
j=1
j 6=i

`
(
A(S−in ), Xj

)
, (44)

As required, Z−i does not depend on Xi. The proof of Lemma 15 presented in Appendix D goes
through verbatim with the necessary adjustments to account for the differences in the definitions of
Z and Z−i. To show the differences encountered, note that

Z − Z−1 =
1

n
` (A(Sn), X1) +

1

n

n∑
i=2

(
` (A(Sn), Xi)− `

(
A(S−1n ), Xi

))
.

Then, following the steps of the proof of Appendix D, we get

‖VDEL‖q ≤
2

n2

n∑
i=1

‖` (A(Sn), Xi)‖22q +
2

n

n∑
i,j=1

i 6=j

∥∥` (A(Sn), Xi)− `
(
A(S−jn ), Xi

)∥∥2
2q

Now, notice that

1

n

∑
i

‖` (A(Sn), Xi)‖22q ≤
1

n

∑
i

∥∥` (A(Sn), Xi)− `
(
A(S−in ), Xi

)∥∥2
2q︸ ︷︷ ︸

γ22q(n)

+
1

n

∑
i

∥∥` (A(S−in ), Xi

)∥∥2
2q
.

Furthermore,∥∥` (A(Sn), Xi)− `
(
A(S−jn ), Xi

)∥∥
2q

≤
∥∥` (A(Sn), Xi)− `

(
A(S−in ), Xi

)∥∥
2q

+
∥∥` (A(S−jn ), Xi

)
− `

(
A(S−in ), Xi

)∥∥
2q
.

For the second term in the RHS we have∥∥` (A(S−jn ), Xi

)
− `
(
A(S−in ), Xi

)∥∥
2q

≤
∥∥` (A(S−jn ), Xi

)
− `
(
A(S−i,−jn ), Xi

)∥∥
2q

+
∥∥` (A(S−in ), Xi

)
− `

(
A(S−i,−jn ), Xi

)∥∥
2q
.
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Combining these inequalities and using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we get∑
i 6=j

∥∥` (A(Sn), Xi)− `
(
A(S−jn ), Xi

)∥∥2
2q
≤ 3

∑
i 6=j

∥∥` (A(Sn), Xi)− `
(
A(S−in ), Xi

)∥∥2
2q

+ 3
∑
i 6=j

∥∥` (A(S−jn ), Xi

)
− `
(
A(S−i,−jn ), Xi

)∥∥2
2q

+ 3

n∑
i,j=1

i 6=j

∥∥` (A(S−in ), Xi

)
− `
(
A(S−i,−jn ), Xi

)∥∥2
2q

= 3n2γ22q(n) + 3n2γ22q(n− 1) + 3n2β22q(n− 1) .

Putting things together,

‖VDEL‖q ≤
2

n2

n∑
i=1

∥∥` (A(S−in ), Xi

)∥∥2
2q

+ 6n(γ22q(n) + γ22q(n− 1) + β22q(n− 1)) +
2

n
γ22q(n) .

Replacing q with 2q we get the analogue of Eq. (18). It follows that under Assumption 3 (in place of
Assumption 2), Corollary 16 and Lemma 17 will hold with R̂DEL replaced by R̂RES, and βq replaced
with γq, but with no other changes.

The second term of the RHS of (43) is controlled and the derivations here are applicable given
that Assumption 3 implies Assumption 2. Previously, the third term was controlled in Section 6.3.
Here, we need to change the reasoning a bit. We start by noting that

ER̂RES (A,Sn)− ER (A(Sn),P) =
1

n

n∑
i=1

E [` (A(Sn), Xi)− ` (A(Sn), X)] ,

where X ∼ P is independent of Sn. Define Si\xn = (X1, . . . , Xi−1, x,Xi+1, . . . , Xn). Then,
E` (A(Sn), Xi) = E`

(
A(S

i\X
n ), X

)
and hence

E [` (A(Sn), Xi)− ` (A(Sn), X)] = E
[
`
(
A(Si\Xn ), X

)
− ` (A(Sn), X)

]
.

Now, taking absolute values, using |E[V ]| ≤ E[|V |], subtracting and adding `
(
A(S−in ), X

)
, and

using the triangle inequality,

E
[∣∣∣`(A(Si\Xn ), X

)
− ` (A(Sn), X)

∣∣∣]
≤ E

[∣∣∣`(A(Si\Xn ), X
)
− `
(
A(S−in ), X

)∣∣∣]+ E
[∣∣` (A(Sn), X)− `

(
A(S−in ), X

)∣∣]
= E

[∣∣` (A(Sn), Xi)− `
(
A(S−in ), Xi

)∣∣]+ E
[∣∣` (A(Sn), X)− `

(
A(S−in ), X

)∣∣] .
where the equality follows because the joint distribution of (S

i\X
n ,S−in , X) is the same as that of

(Sn, S
−i
n , Xi). Putting things together, we get∣∣∣ER̂RES (A,Sn)− ER (A(Sn),P)

∣∣∣
≤ 1

n

n∑
i=1

E
[∣∣` (A(Sn), Xi)− `

(
A(S−in ), Xi

)∣∣]+
1

n

n∑
i=1

E
[∣∣` (A(Sn), X)− `

(
A(S−in ), X

)∣∣]
≤ γ1(n) + β1(n) ,
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where the last inequality is by Cauchy-Schwartz. Combining this with the bounds on the other two
terms in (43) gives the desired result.
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