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Abstract
We consider a model of robust learning in an adversarial environment. The learner gets uncorrupted
training data with access to possible corruptions that may be effected by the adversary during
testing. The learner’s goal is to build a robust classifier that would be tested on future adversarial
examples. We use a zero-sum game between the learner and the adversary as our game theoretic
framework. The adversary is limited to k possible corruptions for each input. Our model is closely
related to the adversarial examples model of Schmidt et al. (2018); Madry et al. (2017).

Our main results consist of generalization bounds for the binary and multi-class classifica-
tion, as well as the real-valued case (regression). For the binary classification setting, we both
tighten the generalization bound of Feige, Mansour, and Schapire (2015), and also are able to han-
dle an infinite hypothesis class H. The sample complexity is improved from O( 1

ε4 log( |H|
δ )) to

O( 1
ε2 (k log(k) VC(H) + log 1

δ )). Additionally, we extend the algorithm and generalization bound
from the binary to the multiclass and real-valued cases. Along the way, we obtain results on fat-
shattering dimension and Rademacher complexity of k-fold maxima over function classes; these
may be of independent interest.

For binary classification, the algorithm of Feige et al. (2015) uses a regret minimization algo-
rithm and an ERM oracle as a blackbox; we adapt it for the multi-class and regression settings. The
algorithm provides us with near optimal policies for the players on a given training sample.
Keywords: Robust Learning, Adversarial Learning, Generalization Bounds, Rademacher Com-
plexity, Fat-Shattering Dimension, Zero-Sum Game

1. Introduction

We study the classification and regression problems in a setting of adversarial examples. This set-
ting is different from standard supervised learning in that examples, both at training and testing
time, may be corrupted in an adversarial manner to disrupt the learner’s performance. This chal-
lenge to design reliable robust models gained significant attention as standard supervised learning
methods have shown vulnerability, and is named adversarial examples. We study the adversarially
robust learning paradigm from a generalization point of view and concentrate on the case of having
adversarial examples at test time.

We consider the following robust learning framework for multi-class and real valued functions
of Feige et al. (2015). There is an unknown distribution over the uncorrupted inputs domain. The
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learner receives a labeled uncorrupted sample (the labels can be categorical or real valued) and has
access during the training phase to all possible corruptions that the adversary might effect. The
learner selects a hypothesis from a fixed hypothesis class (in our case, a mixture of hypotheses
from base class H) that gives a prediction (a distribution over predictions) for a corrupted input.
The learner’s accuracy is measured by predicting the true label of the uncorrupted input while they
observe only the corrupted input during test time. Thus, their goal is to find a policy that is immune
to those corruptions. The adversary is capable of corrupting each future input, but there are only
k possible corruptions for each input. This leads to a game theoretic framework of a zero-sum
game between the learner and the adversary. The model is closely related to the one suggested by
Schmidt et al. (2018); Madry et al. (2017) and common robust optimization approaches (Ben-Tal
et al., 2009), which deal with bounded worst-case perturbations (under `∞ norm) on the samples.
In this work we do not assume any metric for the corruptions, the adversary can map an input from
the sample space to any other space, but is limited with finite possible corruptions for each input.

Our focus is on adversarial examples during testing time. The training data is clean, but we
take into consideration all possible corruptions when we build the robust classifier. Thus, we extend
the ERM paradigm by using adversarial training techniques instead of merely find a hypothesis that
minimizes the empirical risk. In contradistinction to “standard” learning, ERM often does not yield
models that are robust to adversarially corrupted examples (Szegedy et al., 2013; Biggio et al., 2013;
Goodfellow et al., 2015; Kurakin et al., 2017; Moosavi-Dezfooli et al., 2016; Tramèr et al., 2017).
Another interesting direction (not pursued here) is the setting where the training data is adversarially
corrupted beforehand, without any direct access to uncorrupted sample.

Studying worst-case (adversarial) corruptions is interesting for a couple of reasons. First, it
models situations where the corruption occurs maliciously (such as a spammer who tailors messages
to avoid a spam detector) and not merely as a result of random noise. Additionally, a robust classifier
that is successful against adversarial corruption extends to less adversarial settings.

Our main results are generalization bounds for all settings. For the binary classification setting,
we improve the generalization bound given in Feige et al. (2015). We generalize to the case of
mixture of hypotheses from H when H is not necessarily finite. The sample complexity has been
improved from O( 1

ε4
log( |H|δ )) to O( 1

ε2
(k log(k) VC(H) + log 1

δ )). Roughly speaking, the core of
all proofs is a bound on the Rademacher complexity of the k-fold maximum of the convex hull of
the loss class of H. The k-fold maximum captures the k possible corruptions for each input. In the
regression case we provide a tight bound on the fat shattering dimension of k-fold maximum class
and bound the fat shattering dimension of L1 and L2 loss classes.

For our algorithm, we employ a regret minimization algorithm proposed for binary classification
by Feige et al. (2015) for computing near optimal policies for the players on the training data. We
adapt it multiclass classification and regression as well. The algorithm is a variant of the algorithm
found in Cesa-Bianchi et al. (2005) and based on the ideas of Freund and Schapire (1999). An
ERM (empirical risk minimization) oracle is used multiple times to return a hypothesis from a
fixed hypothesis class H that minimizes the error rate on a given sample, while weighting samples
differently every time. The learner uses a randomized classifier chosen uniformly from the mixture
of hypotheses returned by the algorithm.
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1.1. Related work

The most related work studying robust learning with adversarial examples are Schmidt et al. (2018);
Madry et al. (2017). Their model deals with bounded worst-case perturbations (under l∞ norm) on
the samples. This is slightly different from our model as we mentioned above. Other closely related
works that analyse the theoretical aspects of adversarial robust generalization and learning rules are
(Yin et al., 2018; Khim and Loh, 2018; Cullina et al., 2018; Bubeck et al., 2018; Chen et al., 2017;
Diochnos et al., 2018; Mahloujifar et al., 2018; Mahloujifar and Mahmoody, 2018). A different
notion of robustness by (Xu and Mannor, 2012) is shown to be sufficient and necessary for standard
generalization.

All of our results based on a robust learning model for binary classification suggested by Feige
et al. (2015). The works of Mansour et al. (2015); Feige et al. (2015, 2018) consider robust inference
for the binary and multi-class case. The robust inference model assumes that the learner knows
both the distribution and the target function, and the main task is given a corrupted input, derive
in a computationally efficient way a classification which will minimize the error. In this work we
consider only the learning setting, where the learner has only access to an uncorrupted sample, and
need to approximate the target function on possibly corrupted inputs, using a restricted hypothesis
classH.

The work of Globerson and Roweis (2006) and its extensions Teo et al. (2008); Dekel and
Shamir (2008) discuss a robust learning model where an uncorrupted sample is drawn from an
unknown distribution, and the goal is to learn a linear classifier that would be able to overcome
missing attributes in future test examples. They discuss both the static model (where the set of
missing attributes is selected independently from the uncorrupted input) and the dynamic model
(where the set of missing attributes may depend on the uncorrupted input). The model we use
(Feige et al., 2015) extends the robust learning model to handle corrupted inputs (and not only
missing attributes) and an arbitrary hypothesis class (rather than only linear classifiers).

There is a vast literature in statistics, operation research and machine learning regarding various
noise models. Typically, most noise models assume a random process that generates the noise. In
computational learning theory, popular noise models include random classification noise (Angluin
and Laird, 1988) and malicious noise (Valiant, 1985; Kearns and Li, 1993). In the malicious noise
model, the adversary gets to arbitrarily corrupt some small fraction of the examples; in contrast, in
our model the adversary can always corrupt every example, but only in a limited way.

Other motivating applications such as spam messages detection, web spam detection, computer
intrusion detection, fraud detection, network failure detection, noisy bio-sensors measurements, and
many more can be found in Laskov and Lippmann (2010).

1.2. The structure of the paper

The structure of this paper is as follows: Section 2 discusses the model in detail. Section 3 contains
relevant definitions and notations. Section 4 is the learning algorithm, and Sections 5, 6 and 7
contain the generalization bounds for binary and multiclass classification and regression.

2. Model

There is some unknown distribution D over a finite domain X of uncorrupted examples and a finite
domain of corrupted examplesZ , possibly the same asX . We work in deterministic scenario, where
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there is some concept class C such that c ∈ C has domain X and range Y that can be {1, . . . , l} or
R. There is some unknown target function c∗ ∈ C which maps an uncorrupted example to its label.

The adversary is able to corrupt an input by mapping an uncorrupted input x ∈ X to a corrupted
one z ∈ Z . There is a mapping ρ which for every x ∈ X defines a set ρ(x) ⊆ Z , such that
|ρ(x)| ≤ k. The adversary can map an uncorrupted input x to any corrupted input z ∈ ρ(x). We
assume that the learner has an access to ρ(·) during the training phase.

There is a fixed hypothesis classH of hypothesis h : Z 7→ Y over corrupted inputs. The learner
observes an uncorrupted sample Su = {〈x1, c

∗(x1)〉, . . . , 〈xm, c∗(xm)〉}, where xi is drawn i.i.d.
from D, and selects a mixture of hypotheses from H, h̃ ∈ ∆(H). In the classification setting,
h̃ : Z → ∆(Y) is a mixture {hi|H 3 hi : Z → Y}Ti=1 such that label y ∈ Y = {1, . . . , l} gets a
mass of

∑T
i=1 αi(I{hi(z)=y}) where

∑T
i=1 αi=1. For each hypothesis h ∈ H in the mixture we use

the zero-one loss to measure the quality of the classification, i.e., loss(h(z), y) = I{h(z)6=y}. The
loss of h̃ ∈ ∆(H) is defined by loss(h̃(z), y) =

∑T
i=1 αiloss(hi(z), y). In the regression setting, h̃ :

Z → R is a mixture {hi|H 3 hi : Z → R}Ti=1 and is defined by h̃(z) =
∑T

i=1 αihi(z). For each
hypothesis h ∈ H in the mixture we use L1 and L2 loss functions, i.e., loss(h(z), y) = |h(z)− y|p,
for p = 1, 2. We assume the L1 loss is bounded by 1. Again, the loss of h̃ ∈ ∆(H) is defined by
loss(h̃(z), y) =

∑T
i=1 αiloss(hi(z), y).

The basic scenario is as follows. First, an uncorrupted input x ∈ X is selected using D. Then,
the adversary selects z ∈ ρ(x), given x ∈ X . The learner observes a corrupted input Z and outputs
a prediction, as dictated by h̃ ∈ ∆(H). Finally, the learner incurs a loss as described above. The
main difference from the classical learning models is that the learner will be tested on adversarially
corrupted inputs z ∈ ρ(x). When selecting a strategy this needs to be taken into consideration.

The goal of the learner is to minimize the expected loss, while the adversary would like to
maximize it. This defines a zero-sum game which has a value v which is the learner’s error rate. We
say that the learner’s hypothesis is ε-optimal if it guarantees a loss which is at most v + ε, and the
adversary policy is ε-optimal if it guarantees a loss which is at least v − ε. We refer to a 0-optimal
policy as an optimal policy.

Formally, the error (risk) of the learner when selecting a hypothesis h̃ ∈ ∆(H) is

Risk(h̃) = Ex∼D[ max
z∈ρ(x)

loss(h̃(z), c∗(x)],

and their goal is to choose h̃ ∈ ∆(H) with an error close to

min
h̃∈∆(H)

Risk(h̃) = min
h̃∈∆(H)

Ex∼D[ max
z∈ρ(x)

loss(h̃(z), c∗(x)] = v.

Uncorrupted Training Data Learning Algorithm. Uncorrupted training data (UTD) learning
algorithm receives an uncorrupted sample Su and outputs a hypothesis h ∈ H (mixture of hypothe-
ses in our case). The UTD-learning algorithm (ε, δ)-learns C if for any target function c∗ ∈ C, with
probability 1 − δ, the algorithm outputs some hypothesis h ∈ H, such that Risk(h) ≤ v + ε. The
risk is measured by adversarially corrupted inputs as mentioned above.

3. Definitions and Notations

For a function classH with domain Z and range Y = {1, . . . , l}, denote the zero-one loss class

LH =
{
Z × {1, . . . , l} 3 (z, y) 7→ Ih(z)6=y : h ∈ H

}
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ForH with domain Z and range R, denote the Lp loss class

LpH = {Z × R 3 (z, y) 7→ |h(z)− y|p : h ∈ H}

Throughout the article, we assume a bounded loss loss(h(z), y) ≤M . Without the loss of generality
we use M = 1, otherwise, we can rescale M .

Define the following operations on the loss class LH. The convex hull of LH is the set of all
convex combinations of hypotheses from LH:

conv(LH) =

{
Z × Y 3 (z, y) 7→

T∑
t=1

αtft(z, y) : T ∈ N, αt ∈ [0, 1],

T∑
t=1

αt = 1, ft ∈ LH

}
.

The convex hull of LH, where the data is corrupted by ρ(·), is denoted by

convρ(LH) =

{
X × Y 3 (x, y) 7→ max

z∈ρ(x)

T∑
t=1

αtft(z, y) : T ∈ N, αt ∈ [0, 1],
T∑
t=1

αt = 1, ft ∈ LH

}
.

For 1 ≤ j ≤ k define,

F (j)
H =

{
X × Y 3 (x, y) 7→ I{h(zj)6=y} : h ∈ H, ρ(x) = {z1, . . . , zk}

}
,

where we treat the set-valued output of ρ(x) as an ordered list, and F (j)
H is constructed by taking the

jth element in this list, for each input x.

Max and Max-Conv Operators. For a set W and k function classes A(1), . . . ,A(k) ⊆ RW ,
define the max operator

max((A(j))j∈[k]) :=

{
W 3 w 7→ max

j∈[k]
f (j)(w) : f (j) ∈ A(j)

}
.

We also define a hybrid max−conv operator:

max−conv((A(j))j∈[k]) :=

{
W 3 w 7→ max

j∈[k]

T∑
t=1

αtf
(j)
t (w) : T ∈ N, αt ∈ [0, 1],

T∑
t=1

αt = 1, f
(j)
t ∈ A(j)

}
.

Note that

max−conv((A(j))j∈[k]) ⊆ max(conv((A(j))j∈[k])),

and the containment will generally be strict, since the former requires the same choice of convex
coefficients for all A(j)’s, while the latter allows distinct ones.
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Remark. Observe that

convρ(LH) = max−conv((F (j)
H )j∈[k])

We use the notation max−conv((F (j)
H )j∈[k]) and exploit its structural properties.

Denote the error (risk) of hypothesis h : Z 7→ Y under corruption of ρ(·) by

Risk(h) = Ex∼D[ max
z∈ρ(x)

loss(h(z), y)],

and the empirical error on sample S under corruption of ρ(·) by

R̂isk(h) =
1

|S|
∑

(x,y)∈S

max
z∈ρ(x)

loss(h(z), y).

3.1. Combinatorial Dimensions and Capacity Measures

Rademacher Complexity. LetH be of real valued function class on the domain spaceW . Define
the empricial Rademacher complexity on a given sequence w = (w1, . . . , wn) ∈ Wn:

Rn(H|w) = Eσ sup
h∈H

1

n

n∑
i=1

σih(wi).

Fat-Shattering Dimension. For F ⊂ RX and γ > 0, we say that F γ-shatters a set S =
{x1, . . . , xm} ⊂ X if there exists an r = (r1, . . . , rm) ∈ Rm such that for each b ∈ {−1, 1}m
there is a function fb ∈ F such that

∀i ∈ [m] :

{
fb(xi) ≥ ri + γ if bi = 1

fb(xi) ≤ ri − γ if bi = −1
.

We refer to r as the shift. The γ-fat-shattering dimension, denoted by fatγ(F), is the size of the
largest γ-shattered set (possibly∞).

Graph Dimension. Let H ⊆ YX be a categorical function class such that Y = [l] = {1 . . . , l}.
Let S ⊆ X . We say that H G-shatters S if there exists an f : S 7→ Y such that for every T ⊆ S
there is a g ∈ H such that

∀x ∈ T, g(x) = f(x) and ∀x ∈ S \ T, g(x) 6= f(x).

The graph dimension of H, denoted dG(H), is the maximal cardinality of a set that is G-shattered
byH.

Natarajan Dimension. Let H ⊆ YX be a categorical function class such that Y = [l] =
{1 . . . , l}. Let S ⊆ X . We say that H N -shatters S if there exist f1, f2 : S 7→ Y such that
for every y ∈ S f1(y) 6= f2(y), and for every T ⊆ S there is a g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S \ T, g(x) = f2(x).

The Natarajan dimension of H, denoted dN (H), is the maximal cardinality of a set that is N -
shattered byH.
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Growth Function. The growth fuction ΠH : N 7→ N for a binary function class H : X 7→ {0, 1}
is defined by

∀m ∈ N, ΠH(m) = max
{x1,...,xm}⊆X

| {(h(x1), . . . , h(xm)) : h ∈ H} |

And the VC-dimension ofH is defined by

VC(H) = max {m : ΠH(m) = 2m} .

4. Algorithm

We have a base hypothesis class H with domain Z and range Y that can be {1, . . . , l} or R. The
learner receives a labeled uncorrupted sample and has access during the training to possible cor-
ruptions by the adversary. We employ the regret minimization algorithm proposed by Feige et al.
(2015) for binary classification, and extend it to the regression and multi-class classification settings.

A brief description of the algorithm is as follows. Given x ∈ X , we define a |ρ(x)| × H loss
matrixMx such thatMx(z, h) = I{h(z)6=y}, where y = c∗(x). The learner’s strategy is a distribution
Q over H. The adversary’s strategy Px ∈ ∆(ρ(x)), for a given x ∈ X , is a distribution over the
corrupted inputs ρ(x). We can treat P as a vector of distributions Px over all x ∈ X . Via the
minimax principle, the value of the game is

v = min
Q

max
P

Ex∼D[P Tx MxQ] = max
P

min
Q

Ex∼D[P Tx MxQ]

For a given P , a learner’s minimizing Q is simply a hypothesis that minimizes the error when the
distribution over pairs (z, y) ∈ Z × Y is DP , where

DP (z, y) =
∑

x: c∗(x)=y∧z∈ρ(x)

Px(z)D(x).

Hence, the learner selects

hP = arg min
h∈H

E(z,y)∼DP [loss(h(z), y)].

A hypotheses hP can be found using the ERM oracle, when DP is the empirical distribution over a
training sample.

Repeating this process multiple times yields a mixture of hypotheses h̃ ∈ ∆(H) (mixed strategy-
a distribution Q over H) for the learner. The learner uses a randomized classifier chosen uniformly
from this mixture. This also yields a mixed strategy for the adversary, defined by an average of
vectors P . Therefore, for a given x ∈ X , the adversary uses a distribution Px ∈ ∆(ρ(x)) over
corrupted inputs.
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Algorithm 1
parameter: η > 0

1: for all (x, y) ∈ S, z ∈ ρ(x) do . initialize weights and distributions vector
2: w1(z, (x, y))← 1, ∀(x, y) ∈ S, ∀z ∈ ρ(x)

3: P 1(z, (x, y))← w1(z,(x,y))∑
z′∈ρ(x) w1(z′,(x,y)) . for each (x, y) ∈ S we have a distribution over ρ(x)

4: end for
5: for t = 1:T do
6: ht ← arg min

h∈H
E(z,y)∼DPt [loss(h(z), y] . using the ERM oracle forH

7: for all (x, y) ∈ S, z ∈ ρ(x) do . update weights for P t+1

8: wt+1(z, (x, y))← (1 + η · [loss(ht(z), y]) · wt(z, (x, y))

9: P t+1(z, (x, y))← wt+1(z,(x,y))∑
z′∈ρ(x) wt+1(z′,(x,y))

10: end for
11: end for
12: return h1, . . . , hT for the learner, 1

T

∑T
t=1 P

t for the adversary

Similar to Feige et al. (2015, Theorem 1), for the binary classification case and zero-one loss we
have:

Theorem 1 (Feige, Mansour, and Schapire, 2015, Theorem 1) Fix a sample S of size n, and let
T ≥ 4n log(k)

ε2
, where k is the number of possible corruptions for each input. For an uncorrupted

sample S we have that the strategies P = 1
T

∑T
t=1 P

t for the adversary and h1, . . . , hT (each one
of them chosen uniformly) for the learner are ε-optimal strategies on S.

Assuming a bounded loss, i.e., loss(h(z), y) ≤ 1 , ∀x ∈ X , ∀z ∈ Z, ∀h ∈ H, the result remains the
same for the other settings.

5. Generalization Bound For Binary Classification

We would like to show that if the sample S is large enough, then the policy achieved by the al-
gorithm above will generalize well. We both improve a generalization bound, previously found in
Feige et al. (2015), which handles any mixture of hypotheses from H, and also are able to han-
dle an infinite hypothesis class H. The sample complexity is improved from O( 1

ε4
log( |H|δ )) to

O( 1
ε2

(k log(k) VC(H) + log 1
δ )).

Theorem 2 LetH : Z 7→ {0, 1} be a hypothesis class with finite VC-dimension. There is a sample
complexity m0 = O( 1

ε2
(k log(k) VC(H) + log 1

δ )), such that for |S| ≥ m0, for every h̃ ∈ ∆(H)

|Risk(h̃)− R̂isk(h̃)| ≤ ε

with probability at least 1− δ.

Lemma 3 For any k real valued function classesF (1), . . . ,F (k), over a setX and x = (x1, . . . , xn) ∈
X n, we have

Rn(max−conv((F (j))j∈[k])|x) = Rn(max((F (j))j∈[k])|x).
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Proof It is easily seen that max((F (j))j∈[k]) ⊆ max−conv((F (j))j∈[k]), since for any f (j) ∈ F (j),
j ∈ [k] and T = 1 we have that maxj f

(j) ∈ max−conv((F (j))j∈[k]). This proves that the right-
hand side is at least as large as the left-hand side. Conversely,

Rn(max−conv((F (j))j∈[k])|x) = Eσ sup
(f

(j)
t )j∈[k],t∈[T ]

(αt)t∈[T ]

1

n

n∑
i=1

σi max
j∈[k]

T∑
t=1

αtf
(j)
t (xi)

≤ Eσ sup
(f

(j)
t )j∈[k],t∈[T ]

(αt)t∈[T ]

1

n

n∑
i=1

σi

T∑
t=1

αt max
j∈[k]

f
(j)
t (xi)

= Rn(conv(max((F (j))j∈[k]))|x) = Rn(max((F (j))j∈[k])|x),

where the last equality stems from the well-known identityRn(F|x) = Rn(conv(F)|x) (Boucheron
et al., 2005, Theorem 3.3).

Lemma 4 Let Ψ : F1×. . .×Fk → F be an arbitrary mapping, whereF ,F1, . . . ,Fk ⊆ {−1, 1}X
and VC(Fj) = dj for j ∈ [k]. Then the VC-dimension of Ψ(F1×. . .×Fk) is less than 2k log(3k)d̄,
where d̄ := 1

k

∑k
i=1 dj .

Proof We adapt the argument of Blumer et al. (1989, Lemma 3.2.3), which is stated therein for
k-fold unions and intersections. The k = 1 case is trivial, so assume k ≥ 2. For any S ⊆ X ,
define Ψ(F1 × . . .× Fk)(S) ⊆ {−1, 1}S to be the restriction of Ψ(F1 × . . .× Fk) to S. The key
observation is that

|Ψ(F1 × . . .×Fk)(S)| ≤
k∏
j=1

|Fj(S)|

≤
k∏
j=1

(e|S|/dj)dj

≤ (e|S|/d̄)d̄k.

The last inequality requires proof. After taking logarithms and dividing both sides by k, it is equiv-
alent to the claim that

d̄ log d̄ ≤ 1

k

k∑
j=1

dj log dj ,

an immediate consequence of Jensen’s inequality applied to the convex function f(x) = x log x.
The rest of the argument is identical that of Blumer et al.: one readily verifies that for m =

|S| = 2d̄k log(3k), we have (em/d̄)d̄k < 2m.

Theorem 5 (Mohri et al., 2012, Theorem 3.1) Let F be a family of functions mapping fromW to
[0,1]. Denote E(f) := Ew∼D[f(w)] and ÊS(f) = 1

n

∑n
i=1 f(wi). Then, for every δ > 0 with
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probability at least 1− δ, for all f ∈ F:

E[f ]− ÊS(f) ≤ 2Rn(F|w) + 3

√
log(2/δ)

2n
.

Theorem 6 (Dudley, 1967; Bartlett and Mendelson, 2002) Let d = VC(F) and S = (w1, . . . , wn) =
w ∈ Wn, then for n ≥ d ≥ 1 and for some absolute constant c > 0:

Rn(F|w) ≤ c
√
d

n
.

Proof of Theorem 2 Our strategy is to bound the empirical Rademacher complexity of the loss class
of h̃ ∈ ∆(H). As we mentioned in Section 3, the loss class is convρ(LH) = max−conv((F (j)

H )j∈[k]),

we use the notation max−conv((F (j)
H )j∈[k]). Recall that functions contained in F (j)

H are loss func-
tions of the learner when the adversary corrupts input x to zj ∈ ρ(x). Combining everything
together,

|Risk(h̃)− R̂isk(h̃)| = |E(x,y)∼D max
j∈[k]

T∑
t=1

αtf
(j)
t (x, y)− 1

|S|
∑

(x,y)∈S

max
j∈[k]

T∑
t=1

αtf
(j)
t (x, y)|

(i)

≤ 2Rn(max−conv((F (j)
H )j∈[k])|(x× y)) + 3

√
log(2/δ)

2|S|

(ii)
= 2Rn(max((F (j)

H )j∈[k])|(x× y)) + 3

√
log(2/δ)

2|S|

(iii)

≤ 2c

√
VC(max((F (j)

H )j∈[k])

|S|
+ 3

√
log(2/δ)

2|S|

(iv)

≤ 2c

√
2k log(3k) maxj∈[k] VC(F (j)

H )

|S|
+ 3

√
log(2/δ)

2|S|

(v)

≤ 2c

√
2k log 3kVC(H)

|S|
+ 3

√
log(2/δ)

2|S|
≤ ε,

where (i) stems from Theorem 5 (generalization error by Rademacher complexity bound for the
function class max−conv((F (j)

H )j∈[k]), (ii) stems from Lemma 3, (iii) stems from Theorem 6 (bound
on Rademacher complexity using VC-dimension), (iv) stems from Lemma 4 and (v) stems from
Lemma 8.

6. Generalization Bound For Multi-Class Classification

LetH ⊆ YZ be a function class such that Y = [l] = {1 . . . , l}. We follow similar arguments to the
binary case.
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Theorem 7 Let H be a function class with domain Z and range Y = [l] with finite Graph-
dimension dG(H). There is a sample complexity m0 = O( 1

ε2
(k log(k)dG(H) + log 1

δ )), such that
for |S| ≥ m0, for every h̃ ∈ ∆(H),

|Risk(h̃)− R̂isk(h̃)| ≤ ε

with probability at least 1− δ.

Lemma 8 Let H be a function class with domain Z and range Y = [l]. Denote the Graph-
dimension ofH by dG(H). Then

VC(F (j)
H ) ≤ dG(H).

In particular, for binary-valued classes, VC(F (j)
H ) ≤ VC(H) — since for these, the VC- and Graph-

dimensions coincide.

For the proof of Theorem 7, we follow the same proof of Theorem 2 and use the Graph-dimension
property of Lemma 8 in the (v) inequality.

Remark. A similar bound to that of Theorem 2 can be achieved by using the Natarajan dimension
and the fact that

dG(H) ≤ 4.67 log2(|Y|)dN (H)

as previously shown Ben-David et al. (1995).

7. Generalization Bound For Regression

LetH ⊆ RZ be a hypothesis class of real functions. We refer to a bounded regression problem, we
assume a bounded loss function by 1.

In order to use similar arguments to the binary case, we need an analogous to Lemma 4 for the
fat-shattering dimension and understand the connection between the shattering dimension of loss
classes (L1 and L2) to the original function class.

Theorem 9 Let H be a function class with domain Z and range R. Assume H has a finite γ-fat-
shattering dimension for all γ > 0. DenotemH(γ) =

∫ 1
0

√
fatcγ(H) log( 2

γ )dγ, where c¿0 is an ab-

solute constant. For theL1 loss function, there is a sample complexitym0 = O( 1
ε2

(k log(k)mH(γ)+

log 1
δ )), such that for |S| ≥ m0, for every h̃ ∈ ∆(H),

|Risk(h̃)− R̂isk(h̃)| ≤ ε

with probability at least 1− δ.

Remark. In case of integral divergence we can use a refined version of Dudley’s entropy integral
as in Theorem 17.

Corollary 10 Let H be a function class of homogeneous hyperplanes with domain Rm. Using the
same assumptions as in Theorem 9, the sample complexity is m0 = O( 1

ε2
(k log2(k/ε) + log 1

δ )).

Corollary 11 For the L2 loss the same result of Theorem 9 holds when we redefine mH(γ) =∫ 1
0

√
fatcγ/2(H) log( 2

γ )dγ.

11



7.1. Shattering dimension of the class max((A(j))j∈[k])

The main result of this section is bounding the fat shattering dimension of max((A(j))j∈[k]) class.

Theorem 12 For any k real valued functions classes F1, . . . ,Fk with finite fat-shattering dimen-
sion, we have

fatγ(max((Fj)j∈[k])) < 2 log(3k)
k∑
j=1

fatγ(Fj)

for all γ > 0.

Remark. This result generalizes an analogous bound obtained in Kontorovich (2018) for maxima
of linear classes. For a fixed scale γ > 0, Csikos et al. (2018) have recently shown that the O(log k)
factor cannot, in general, be removed. Whether a single function class can attain the lower bound
for every γ > 0 simultaneously is an open problem.

We begin with an auxiliary definition. We say that F “γ-shatters a set S at zero” if the shift (or
witness) r is constrained to be 0 in the the usual γ-shattering definition (has appeared previously in
Gottlieb et al. (2014)). The analogous dimension will be denoted by fat0

γ(F).

Lemma 13 For all F ⊆ RX and γ > 0, we have

fatγ(F) = max
r∈RX

fat0
γ(F − r), (1)

where F − r = {f − r : f ∈ F} is the r-shifted class; in particular, the maximum is always
achieved.

Proof Fix F and γ. For any choice of r ∈ RX , if F − r γ-shatters some set S ⊆ X at zero, then
then F γ-shatters S in the usual sense with shift rS ∈ RS (i.e., the restriction of r to S). This proves
that the left-hand side of (1) is at least as large as the right-hand side. Conversely, suppose that F
γ-shatters some S ⊆ X in the usual sense, with some shift r ∈ RS . Choosing r′ ∈ RX by r′S = r
and r′X\S = 0, we see that F − r′ γ-shatters S at zero. This proves the other direction and hence
the claim.

Lemma 14 Suppose that F ⊆ {−1, 1, ?}m has VC-dimension d in the sense that some J ⊆ [m] of
size d verifies F (J) = {−1, 1}J and for all J ′ ⊆ [m] with |J ′| > d, we have F (J ′) ( {−1, 1}J

′
.

Then there is a mapping ϕ : F → {−1, 1}m such that (i) for all v ∈ F and all i ∈ [m], we have
vi 6= ? =⇒ (ϕ(v))i = vi and (ii) ϕ(F ) does not shatter more than d points.

Proof The mapping ϕ must resolve each “ambiguity” vi = ? as (ϕ(v))i ∈ {−1, 1} in such a way
that the resulting set of vectors ϕ(F ) does not shatter more points than F does. We achieve this
via an iterative procedure, which initializes F ′ := F and modifies each v ∈ F ′, element-wise, until
F ′ ⊆ {−1, 1}m — that is, all of the ambguities have been resolved.

Suppose that the VC-dimension of F ′ is d and some v ∈ F ′ and i ∈ [m] are such that vi = ?;
we must choose a value for (ϕ(v))i ∈ {−1, 1}. If one of these choices ensures the condition that
the VC-dimension will not increase, then we’re done. Otherwise, the VC-dimension will increase

12



from d to d+1 for both choices of (ϕ(v))i = 1 and (ϕ(v))i = −1. This means, in particular, that F
shatters some set J ⊆ [m] of size d and i /∈ J — since otherwise, disambiguating vi from ? to ±1
would not increase the VC-dimension. Since the choice (ϕ(v))i = 1 increases the VC-dimension,
it must be the case that

F (J ∪ {i}) = {−1, 1}J∪{i} \
{
zJ∪{i}

}
(2)

for some “missing witness” z ∈ {−1, 1, ?}m, which agrees with v on J and zi = 1; the notation zE
indicates the restriction of Z to the index set E ⊆ [m]. Analogously, since the choice (ϕ(v))i = −1
also increases the VC-dimension, we have

F (J ∪ {i}) = {−1, 1}J∪{i} \
{
z′J∪{i}

}
, (3)

where z′J = vJ and z′i = −1. The conditions (2) and (3) are in obvious contradiction, from which we
conclude that the ambiguity can be resolved for each vi = ? without increasing the VC-dimension.

Proof of Theorem 12 First, we observe that r-shift commutes with the max operator:

max((Fj − r)j∈[k]) = max((Fj)j∈[k])− r

and so, in light of Lemma 13, we have

fatγ(max((Fj)j∈[k])) = max
r

fat0
γ(max((Fj)j∈[k])− r) = max

r
fat0

γ(max((Fj − r)j∈[k])).

Hence, to prove Theorem 12, it suffices to show that

fat0
γ(max((Fj)j∈[k])) ≤ 2 log(3k)

k∑
j=1

fat0
γ(Fj). (4)

To prove (4), let us fix some S = {x1, . . . , xm} ⊂ X and convert each Fj(S) ⊆ Rm to a finite
class F?j (S) ⊆ {−γ, γ, ?}m as follows. For every vector in v ∈ Fj(S), define v? ∈ F?j (S) by:
v?i = sgn(vi)γ if |vi| ≥ γ and v?i = ? else. The notion of shattering (at zero) remains the same: a
set T ⊆ S is shattered by Fj iff F?j (T ) = {−γ, γ}T . Lemma 14 furnishes a mapping ϕ : F?j (S)→
{−γ, γ}m such that (i) for all v ∈ F?j (S) and all i ∈ [m], we have vi 6= ? =⇒ (ϕ(v))i = vi and
(ii) ϕ(F?j (S)) does not shatter more points than F?j (S). Together, properties (i) and (ii) imply that
fat0

γ(Fj(S)) = fat0
γ(ϕ(F?j (S))) for all j.

Finally, observe that any d points in S γ-shattered by max(Fj∈[k]) are also shattered by max(ϕ(F?j∈[k](S)).
Applying Lemma 4 with Ψ(f1, . . . , fk)(x) = maxj∈[k] fj(x) shows that max(ϕ(F?j∈[k](S)) can-

not shatter 2 log(3k)
∑k

j=1 dj points, where dj = fat0
γ(ϕ(F?j (S))) = fat0

γ(Fj(S)) ≤ fat0
γ(Fj). We

have shown that, for all finite S ⊆ X , we have fat0
γ(max(Fj∈[k](S))) ≤ 2 log(3k)

∑k
j=1 fat0

γ(Fj(S).
Since this latter estimate holds independently of S, it is also an upper bound on fat0

γ(max(Fj∈[k])).
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7.2. Shattering dimension of L1 and L2 loss classes

Lemma 15 Let H ⊂ RX be a real valued function class. denote L1
H and L2

H the L1 and L2 loss
classes ofH respectively. Assume L2

H is bounded by M . For anyH,

fatγ(L1
H) ≤ 8 fatγ(H), and fatγ(L2

H) ≤ 8 fatγ/2M (H).

Lemma 16 For p ∈ {1, 2} and j ∈ [k], define

F (p,j)
H = {X × Y 3 (x, y) 7→ |h(zj) 6= y|p : h ∈ H, ρ(x) = {z1, . . . , zk}} .

Then

convρ(LpH) = max−conv((F (p,j)
H )j∈[k])

and, for all γ > 0,

fatγ(F (p,j)
H ) ≤ fatγ(LpH).

Proof The first claim is immediate from the definitions, while the second is proved using the argu-
ment (almost verbatim) of Lemma 8.

Proof [of Lemma 15] For any X and any function class H ⊂ RX , define the difference class
H∆ ⊂ RX×R as

H∆ = {X × R 3 (x, y) 7→ ∆h(x, y) := h(x)− y;h ∈ H} .

In words: H∆ consists of all functions ∆h(x, y) = h(x)− y indexed by h ∈ H.
It is easy to see that for all γ > 0, we have fatγ(H∆) ≤ fatγ(H). Indeed, ifH∆ γ-shatters some

set {(x1, y1), . . . , (xk, yk)} ⊂ X×R with shift r ∈ Rk, thenH γ-shatters the set {x1, . . . , xk} ⊂ X
with shift r + (y1, . . . , yk).

Next, we observe that taking the absolute value does not significantly increase the fat-shattering
dimension. Indeed, for any real-valued function class F , define abs(F) := {|f |; f ∈ F}. Observe
that abs(F) ⊆ max((Fj)j∈[2]), where F1 = F and F2 = −F =: {−f ; f ∈ F}. It follows from
Theorem 12 that

fatγ(abs(F)) < 2 log 6(fatγ(F) + fatγ(−F)) < 8 fatγ(F). (5)

Next, define F as the L1 loss class ofH:

F = {X × R 3 (x, y) 7→ |h(x)− y)|;h ∈ H} .

Then

fatγ(F) = fatγ(abs(H∆))

≤ 8 fatγ(H∆)

≤ 8 fatγ(H);

this proves the claim for L1.
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To analyze the L2 case, consider F ⊂ [0,M ]X and define F◦2 :=
{
f2; f ∈ F

}
. We would like

to bound fatγ(F◦2) in terms of fatγ(F). Suppose that F◦2 γ-shatters some set {x1, . . . , xk} with
shift r2 = (r2

1, . . . , r
2
k) ∈ [0,M ]k (there is no loss of generality in assuming that the shift has the

same range as the function class). Using the elementary inequality

|a2 − b2| ≤ 2M |a− b|, a, b ∈ [0,M ],

we conclude thatF is able to γ/(2M)-shatter the same k points and thus fatγ(F◦2) ≤ fatγ/(2M)(F).
To extend this result to the case where F ⊂ [−M,M ]X , we use (5). In particular, define F as

the L2 loss class ofH:

F =
{
X × R 3 (x, y) 7→ (h(x)− y)2;h ∈ H

}
.

Then

fatγ(F) = fatγ((H∆)◦2)

= fatγ((abs(H∆))◦2)

≤ fatγ/(2M)(abs(H∆))

≤ 8 fatγ/(2M)(H∆)

≤ 8 fatγ/(2M)(H).

7.3. Generalization bound proof

Theorem 17 (Dudley, 1967; Mendelson and Vershynin, 2003) For any F ⊆ [−1, 1]X , any γ ∈
(0, 1) and S = (w1, . . . , wn) = w ∈ Wn,

Rn(F|w) ≤ 12

√
K̃

n

∫ 1

0

√
fatcγ(F) log(

2

γ
)dγ

where c and K̃ are universal constants.

Remark. When the integral above diverges, a refined version is available:

Rn(F|w) ≤ inf
α≥0

4α+ 12

√
K̃

n

∫ 1

α

√
fatcγ(F) log(

2

γ
)dγ
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Proof [of Theorem 9] Similar to the proof for binary case, we bound the empirical Rademacher
complexity of the loss class of h̃ ∈ ∆(H).

|Risk(h̃)− R̂isk(h̃)| = |E(x,y)∼D max
j∈[k]

T∑
t=1

αtf
(j)
t (x, y)− 1

|S|
∑

(x,y)∈S

max
j∈[k]

T∑
t=1

αtf
(j)
t (x, y)|

(i)

≤ 2Rn(max−conv((F (j)
H )j∈[k])|(x× y)) + 3

√
log(2/δ)

2|S|

(ii)
= 2Rn(max((F (j)

H )j∈[k])|(x× y)) + 3

√
log(2/δ)

2|S|

(iii)

≤ 24

√
K̃

|S|

∫ 1

0

√
fatcγ(max((F (j)

H )j∈[k]) log(
2

γ
)dγ + 3

√
log(2/δ)

2|S|

(iv)

≤ 24

√
2k log(3k)K̃

|S|

∫ 1

0

√
max
j∈[k]

fatcγ(F (j)
H ) log(

2

γ
)dγ + 3

√
log(2/δ)

2|S|

(v)

≤ 24

√
2k log(3k)K̃

|S|

∫ 1

0

√
(8 fatcγ(H)) log(

2

γ
)dγ + 3

√
log(2/δ)

2|S|
≤ ε

(i) stems from Theorem 5 (generalization error by Rademacher complexity bound for the function
class max−conv((F (j)

H )j∈[k])), (ii) stems from Lemma 3, (iii) stems from Theorem 17, (iv) stems
from Theorem 12 (fat shattering of max operator) and (v) stems from Lemmas 15 and 16.

Proof [of Corollary 10] Let H be a function class of homogeneous hyperplanes bounded by 1 with
domain Rm.

Rn(max((F (j)
H )j∈[k])|(x× y)) ≤ inf

α≥0

4α+ 12

√
K̃

|S|

∫ 1

α

√
fatcγ(max((F (j)

H )j∈[k])) log(
2

γ
)dγ


≤ inf

α≥0

4α+ 12

√
2k log(3k)K̃

|S|

∫ 1

α

√
max
j∈[k]

fatcγ(F (j)
H ) log(

2

γ
)dγ


≤ inf

α≥0

4α+ 12

√
2k log(3k)K̃

|S|

∫ 1

α

√
(8 fatcγ(H)) log(

2

γ
)dγ


(i)

≤ inf
α≥0

{
4α+ 12c′

√
2k log(3k)

|S|

∫ 1

α

1

t

√
log

2

t
dt

}
(i) stems from the bound fatδ(H) ≤ 1

δ2
(Bartlett and Shawe-Taylor, 1999).

Compute ∫ 1

α

1

t

√
log

2

t
dt =

2

3

(
log(2/α)3/2 − (log 2)3/2

)
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and choosing α = 1/
√
|S| yields

Rn(max((F (j)
H )j∈[k])|(x× y)) ≤ 4√

|S|
+ 8c′

√
2k log(3k)

|S|

(
log(2

√
|S|)3/2 − (log 2)3/2

)
= O

(√
k log k · (log |S|)3

|S|

)
.

A standard calculation yields sample complexity m0 = O( 1
ε2

(k log2(k/ε) + log 1
δ )).
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Appendix A. Proof of Lemma 8

Suppose that the binary function class F (j)
H shatters the points {(x1, y1), . . . , (xd, yd)} ⊂ X × Y .

That means that for each b ∈ {0, 1}d, there is an hb ∈ H such that I{hb(zj(xi)) 6=yi} = bi for all
i ∈ [d], where zj(x) is the jth element in the (ordered) set-valued output of ρ on input x. We
claim that H is able to G-shatter S = {zj(x1), . . . , zj(xd)} ⊂ Z . Indeed, for each T ⊆ S, let
b = b(T ) ∈ {0, 1}S be its characteristic function. Taking f : S → Y to be f(xi) = yi, we see that
the definition of G-shattering holds.
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