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Abstract
We present a novel notion of complexity that interpolates between and generalizes some classic
complexity notions in learning theory: for empirical risk minimization (ERM) with arbitrary bounded
loss, it is upper bounded in terms of data-independent Rademacher complexity; for generalized
Bayesian estimators, it is upper bounded by the data-dependent information (KL) complexity. For
ERM, the new complexity reduces to normalized maximum likelihood complexity, i.e., a minimax
log-loss individual sequence regret. Our first main result bounds excess risk in terms of the new
complexity. Our second main result links the new complexity to L2(P ) entropy via Rademacher
complexity, generalizing earlier results of Opper, Haussler, Lugosi, and Cesa-Bianchi who covered
the log-loss case with L∞ entropy. Together, these results recover optimal bounds for VC-type and
large (polynomial entropy) classes, replacing local Rademacher complexities by a simpler analysis
which almost completely separates the two aspects that determine the achievable rates: ‘easiness’
(Bernstein) conditions and model complexity.
Keywords: NML, MDL, Rademacher complexity, PAC-Bayes, minimax excess risk

1. Introduction

We simultaneously address three questions of learning theory: (A) We precisely relate Rademacher
complexities for arbitrary bounded losses and the minimax cumulative log-loss regret, also known as
the Shtarkov integral and normalized maximum likelihood (NML) complexity. (B) We bound this
minimax regret in terms of L2 entropy; past results were based on L∞ entropy. (C) We introduce a
new type of complexity that enables a unification of data-dependent PAC-Bayesian and empirical-
process-type excess risk bounds into a single bound that often is minimax optimal.

These results are part of the tree of bounds in Figure 1. The← arrow stands for ‘bounded in terms
of’; the precise bounds are given in the respective results in the paper. Most formulas are also given in
the glossary on page 18. Red arrows indicate new results. We start with a sample space Z , a family of
predictors F for an arbitrary loss function ` : F ×Z → R, and data Zn = Z1, Z2, . . . , Zn i.i.d. ∼ P .
Examples of ` include log-loss, squared loss, and 0/1-loss. In its simplest form, the novel complexity
COMPη(F) depends on η, F , and (suppressed in the notation) P , n, and `; the parameter η may for
now be thought of as the learning rate used by an exponentially weighted aggregation forecaster. By
3 = 5 , Section 2.1, COMPη(F) is equal to the minimax cumulative individual sequence regret for
sequential prediction with log-loss relative to a family QF ,η of probability measures defined in terms
of F and η (and, suppressed in notation, P and `). This minimax cumulative regret is also known as
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Figure 1: The tree of bounds we provide; red arrows indicate new results.

the log-Shtarkov integral or Normalized Maximum Likelihood (NML) complexity and has been much
studied in the minimum description length (MDL) literature (Rissanen, 1996; Grünwald, 2007). In
the sequel, when η is clear from the context we simply use the notations COMP(F) and QF .

Problem A: NML and Rademacher Theorem 10 and Corollary 14 ( 5 ← 6 ← 8 ) establish a
precise and tight link between NML and Rademacher complexity via a new complexity we introduce
and dub H-local complexity. Both Rademacher and NML complexities are used as penalties in
model selection (although with very different motivations), but while their close conceptual similarity
has been noted by several authors (e.g. Grünwald (2007); Zhu et al. (2009); Roos (2016)), so far
any formal link has been lacking. The proof of Theorem 10 relies on a novel use of Talagrand’s
inequality, outlined in Section 4.1 (see Lemma 12). As we now explain, the result also allows us to
prove new, concrete regret bounds for log-loss.

Problem B: Bounding NML complexity with L2 entropies If F is a class of polynomial empir-
ical L2 entropy, the Rademacher complexity can be bounded (Theorem 15, 8 ← 9 , (Koltchinskii,
2011)) in terms of empirical L2 entropy; if F admits polynomial L1(P ) entropy with bracketing,
then H-local complexity is bounded (Theorem 16, 6 ← 7 , (Massart and Nédélec, 2006)) in terms
of L1(P ) entropy with bracketing. In conjunction with our new result Theorem 10, 5 ← 6 , this
becomes of significant interest for log-loss individual sequence prediction, as we now explain. For
any class F of static experts (probability distributions) for log-loss prediction, we can arrange things
such that QF ,1 = F . Theorem 10 then implies a bound on the minimax regret of F in terms of
L1(P ) entropy and empirical L2 entropy, where P can be any member of the class QF , significantly
improving previous bounds on minimax log-loss regret that have the same functional form as ours
but which relied on L∞ entropy instead (Opper and Haussler, 1999; Cesa-Bianchi and Lugosi,
2001). These bounds, and also more recent bounds on minimax log-loss regret by Rakhlin and
Sridharan (2015), become void whenever the L∞ entropy is unbounded, whereas our bounds are
still meaningful.1 In Section 4.3, we present one such concrete example where F is the class of
monotone densities and the loss is bounded. In Appendix A, we compare our results more closely to
the three aforementioned papers.

Towards Problem C To further explain Figure 1, consider an estimator Π̂ which on each sample
Zn = Z1, . . . , Zn outputs a distribution Π̂ | Zn on F ; deterministic estimators f̂ such as empirical

1. To be clear, we do not handle the case of unbounded losses. The L∞ entropy of a loss-composed class can be
unbounded even when the loss is bounded.
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risk minimization (ERM) are represented via δf̂ , the Dirac measure on f̂ . In its general form, our

novel complexity COMPη(F , Π̂, w, Zn) depends not just on F but also on the choice of estimator Π̂,2

the data Zn ∈ Zn itself, and a luckiness function w : Zn ×F → R+
0 . The function w generalizes

both the idea of an estimation penalty and the ‘prior’ in PAC-Bayesian bounds, and it can be chosen
freely; different choices lead to different complexities and excess risk bounds. If w is taken constant,
the complexity becomes data-independent and can be written as COMPη(F , Π̂); the special case
COMPη(F) considered before is the supremum of COMPη(F , Π̂) over all F-valued estimators.

We now turn to the first line in Figure 1. 2 ← 3 , Theorem 4, bounds the annealed excess risk
of any estimator Π̂ in terms of its empirical risk on the training data Zn plus the complexity in its
general form COMPη(F , Π̂, w, Zn), for any w chosen a priori. Annealed excess risk is a proxy of
actual excess risk, the expected loss difference between predicting with Π̂ | Zn and predicting with
the actual risk minimizer f∗ in F . The annealed version is defined via an η-annealed expectation of
the form −η−1 log E[e−ηU ] for a random variable U . The bound 1 ← 2 (Corollary 9) bounds the
actual excess risk in terms of the annealed excess risk, so that we get a true excess risk bound for Π̂.
In particular, for w of the form π(f)/π̂(f | zn), where π is the density of a ‘prior’ distribution Π on
F , the complexity becomes, by 3 ← 4 (Proposition 1) (strictly) upper bounded by the information
complexity of Zhang (2006a,b), involving a Kullback-Leibler (KL) divergence term KL(Π̂|Zn ‖Π).
Information complexity generalizes earlier complexities and associated bounds from information
theory such as (extended) stochastic complexity (Rissanen, 1989; Yamanishi, 1998), resolvability
(Barron and Cover, 1991), and PAC-Bayesian excess risk bounds (Audibert, 2004; Catoni, 2007).
Together, 1 ← 2 ← 3 ← 4 recover and strengthen Zhang’s bounds.

Problem C: Unifying data-dependent and empirical process-type risk bounds As lamented by
Audibert (2004, 2009), despite their considerable appeal, standard PAC-Bayes/KL excess risk bounds
do not yield the right rates for large classes, i.e., with polynomial L2(P ) entropy. On the other hand,
standard Rademacher complexity generalization and excess risk bound analyses do not easily extend
to penalized estimators or generalized Bayesian estimators based on updating a prior distribution;
also, handling log-loss appears difficult with Rademacher complexity. Yet 1 ← 2 ← 3 shows that
there exists a single bound capturing all these applications: by varying the function w one can get
both (a strict strengthening of) the KL bounds and a Rademacher complexity-type excess risk bound.
Thus, the chain of bounds 1 ← . . .← 7 / 9 recovers rates for ERM that either are minimax optimal
(for classification) or the best known rates for ERM (for other losses) for VC-type and polynomial
entropy classes; the rates depend in the right way on the ‘easiness’ of the problem as modulated by
Tsybakov’s (2004) margin condition and Bernstein conditions (Bartlett et al., 2005).

Summary and contents Technically, our most important results are Theorem 10 and Corollary 14,
leading to nontrivial bounds for minimax log-loss regret in situations in which, to the best of our
knowledge, it previously was unknown how to obtain such bounds. Conceptually (in the sense
of ‘giving insight’), the most important result is Theorem 4, which gives a sharp (in a sense we
will explain) bound on the annealed risk in terms of the new complexity, and allows us to relate
cumulative regret (an individual-sequence notion) to excess risk (a probabilistic notation). Together,
Theorems 10 and 4 lead to the full chain of implications which unifies the PAC-Bayesian bounds —
which are suitable for log-loss, can incorporate priors, but are suboptimal for large classes — with

2. A complexity being estimator-dependent has precedent from the notion of information complexity (Zhang, 2006b).
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the Rademacher style bounds — which do not easily incorporate priors or log-loss but are minimax
optimal for large classes.

In Section 2.1, we introduce the simple data-independent version of our complexity, COMP(F , f̂),
which is really the NML complexity. In Section 2.2 we extend our notion of complexity to the
generalized data-dependent form COMP(F , Π̂, w, zn). Section 3 contains our main conceptual result,
Theorem 4. In Section 4, we derive our main technical result, Theorem 10 and its Corollary 14, a
bound on COMP(F , f̂) in terms of Rademacher complexity; we also present a concrete application
of this result, Theorem 20, which provides the best known rates for ERM under Bernstein conditions
for bounded loss functions in a number of situations.

2. The Novel Complexity Notion

Preliminaries In the statistical learning problem (Vapnik, 1998), a labeled sampleZn = Z1, . . . , Zn
is drawn independently from probability distribution P over Z = (X ×Y), where Zj = (Xj , Yj) for
j ∈ [n]. We are given a model F and a loss function ` : F×Z → R, with the loss of predictor f on z
denoted as `f (z). Loss functions such as 0-1 loss and log-loss (for joint densities on z = (x, y)) can
be expressed this way: for 0-1 loss F consists of functions f : X → Y with `f (x, y) = |y − f(x)|,
and for log-loss F is a set of probability densities on Z = X × Y relative to some underlying
measure ν and `f (x, y) = − log f(x, y), with log the natural logarithm. An estimator or learner Π̂

maps from Zn to distributions over F . We write Π̂ | zn to denote the distribution chosen for data
zn. When Π̂ is supported entirely on a single function f̂ ∈ F , we write the estimator as f̂ and the f
chosen for given data zn as f̂|zn . An example of such a deterministic estimator is ERM. An example
of a randomized estimator is Π̂ | zn, the generalized η-Bayesian posterior (Zhang, 2006b). We use
the term estimator for both deterministic and randomized Π̂.

We aim to learn distributions Π̂ that obtain low expected risk Ef∼Π̂[EZ∼P [`f (Z)]], where the risk

of a predictor f is EZ∼P [`f (Z)]. The quality of Π̂ on data zn is naturally measured via the excess risk
Ef∼Π̂|zn [EZ∼P [`f (Z)−`f∗(Z)]], where f∗ is a minimizer of the risk overF ; like many other authors
(e.g. Bartlett et al. (2005)) we assume that f∗ exists. We use the notation Rf (z) = `f (z)− `f∗(z),
extended to samples zn = (z1, . . . , zn) ∈ Zn as Rf (zn) =

∑n
i=1

(
`f (zi)− `f∗(zi)

)
.

2.1. The Novel Complexity Measure, Simple Case

To prepare for the definition of our complexity measure COMP, we first need to associate each f ∈ F
with a probability distribution Qf . We may assume without loss of generality that the underlying
distribution P on Z has a density p with respect to some base measure ν. Now for each f ∈ F , we
define Qf to be the distribution over Z with density (with respect to ν)

qf (z) := p(z)·e−ηRf (z)

EZ∼P
[
e
−ηRf (Z)

] . (1)

We extend the definition to n outcomes via the product density qf (zn) :=
∏n
i=1 qf (zi). In this way

the model F is itself mapped to a set QF = {qf : f ∈ F} of probability densities, the mapping
depending on the loss function ` of interest, but also (suppressed in notation) on η, f∗, and on the
‘true’ P ; this is an instance of the ‘entropification procedure’ suggested by Grünwald (1999).

We now define our new complexity measure. For simplicity we first present the data-independent
version in the special case of deterministic estimators f̂ ; this case suffices to make the connection to
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minimax regret and Rademacher complexities in Section 4. Define the Shtarkov integral as

S(F ; f̂) := EZn∼P

e−ηRf̂|Zn (Zn)

C(f̂|Zn)

 =

∫
Zn
qf̂|zn

(zn)dν(zn)
(?)
=

∫
Zn
pf̂|zn

(zn)dν(zn), (2)

where, for any f ∈ F , C(f) := EZn∼P [e−ηRf (Zn)] is the normalization constant. When S(F , f̂) is
finite, as is the case with bounded loss, the corresponding complexity of model F equipped with f̂ is

COMP(F , f̂) := η−1 log S(F , f̂). (3)

COMP, S, qf , and normalizer C all depend on η, but this is suppressed in notation unless needed
for clarity. The (?) equality in (2) holds in the very special case that the original loss function is
log-loss, η = 1, and F contains the density p of P (‘the model is correct’). In that case f∗ = p,
C(f) = 1 for all f ∈ F , QF is equal to F , and Rf (z) = − log f(z) + log p(z); thus, (1) reduces to
qf (z) = f(z), and the (?) equality follows. We also define the maximal complexity COMP(F) as

S(F) :=

∫
Zn

sup
f∈F

qf (zn)dν(zn) ; COMP(F) := η−1 log S(F) = sup
f̂

COMP(F , f̂); (4)

the final equality is trivial from the definition, the sup ranging over all deterministic estimators on F .
Let K be a finite set and let {Fk : k ∈ K} be a partition of F . Then, as shown by (e.g.) Opper

and Haussler (1999) (a proof is in Appendix E.1 for convenience), for every deterministic estimator,

COMP(F , f̂) ≤ η−1 log |K|+ max
k∈K

COMP(Fk). (5)

Using (5), we can link COMP to Rademacher complexity, as shown in Section 4.1. Below, we first link
COMP to log-loss prediction, extend it to encompass data-dependent and PAC-Bayesian complexities,
and present our excess risk bound for the general complexities.

Minimax cumulative log-loss interpretation of COMP For any estimator f̂ , we can define a

density r on Zn relative to ν by setting r(zn) :=
qf̂ (zn)

S(F ,f̂)
, which evidently integrates to 1 and hence

is a probability density (different choices of estimator f̂ lead to different r; this is suppressed in the
notation). We can use density r to sequentially predict Z1, Z2, . . . , Zn by predicting Zi with the
corresponding conditional density r(Zi | Zi−1). The cumulative log-loss thus obtained is given by∑n

i=1− log r(Zi | Zi−1) = − log r(Zn),

Because of the correspondence, via Kraft’s inequality, of log-loss prediction and data compression,
we can also think of this quantity as a codelength. Similarly, minf∈F − log qf (Zn) is the minimum
cumulative loss one could have obtained with hindsight, i.e., if one had sequentially predicted the
Zi by the qf that turned out to minimize − log qf on Zn. Assuming this minimum is well-defined,
it is achieved by f̂ML, the maximum likelihood estimator relative to QF , for which evidently also
COMP(F) = COMP(F , f̂ML). Thus, we get that for all zn ∈ Zn,

η · COMP(F , f̂) = log S(F , f̂) = − log r(zn)−
(
− log qf̂ (zn)

)
if f̂ = f̂ML

= η · COMP(F) = − log r(zn)−min
f∈F

(
− log qf (zn)

)
, (6)

5
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the first equation holding for general f̂ and the second for f̂ML. The final expression is just the
(cumulative log-loss) regret of r on data zn, which, by (6), is constant on zn. As first noted by
Shtarkov (1987), this implies that (6) is also the minimax individual sequence regret relative to the
model QF when sequentially predicting outcomes Z1, . . . , Zn with the log-loss; the corresponding
optimal sequential prediction strategy r is usually called the normalized maximum likelihood (NML)
or Shtarkov density; see (Rissanen, 1996; Grünwald, 2007) for details.

Allowing data-dependency We now generalize the complexity definition above to arbitrary de-
terministic f̂ so that it becomes data-dependent. The central concept we need is that of a luckiness
function w : Zn → R+

0 ; every combination of estimator and luckiness function will, up to scaling,
define a unique version of complexity; and every such complexity induces a different data-dependent
bound on excess risk. We call w a ‘luckiness function’ since it will improve our excess risk bounds if
we are ‘lucky’ in the sense that P is such that w(Zn) will be large with high probability.

The generalized Shtarkov integral (Grünwald, 2007) for estimator f̂ relative to luckiness function
w is defined as

S(F , f̂ , w) := EZn∼P

[
e
−ηRf̂|Zn (Zn)

C(f̂|Zn)
· w(Zn)

]
=

∫
Zn
qf̂|zn

(zn)w(zn)dν(zn), (7)

and, whenever S(F , f̂ , w) <∞, we define the corresponding data-dependent complexity as

COMP(F , f̂ , w, zn) := 1
η

(
− logw(zn) + log S(F , f̂ , w)

)
. (8)

Both expressions reduce to (2) and (3) if we take w constant over Zn. The cumulative log-loss
interpretation of COMP that held for constant w can be extended to nonuniform w (for an explanation
and an example of a nonuniform w, see Appendix C.1).

2.2. The Novel Complexity Measure, General Case

Here we further generalize the complexity definition so that it can output distributions Π̂ | Zn on F .
For this we need to extend the domain of the luckiness function to encompass F , i.e., we now take
arbitrary functions of the form w : Zn ×F → R+

0 .
The generalized Shtarkov integral for estimator Π̂ relative to luckiness function w is defined as

S(F , Π̂, w) := EZn∼P

[
exp
(
− Ef∼Π̂|Zn

[
ηRf (Zn) + logC(f)− logw(Zn, f)

])]
, (9)

and the generalized (data-dependent) model complexity corresponding to (9) is now defined as

COMP(F , Π̂, w, zn) := 1
η ·
(
Ef∼Π̂|zn

[
− logw(zn, f)

]
+ log S(F , Π̂, w)

)
. (10)

(9) and (10) are readily seen to generalize (7) and (8) respectively: if, for a given deterministic
estimator f̂ , we take Π̂(· | Zn) to be δf̂ (the Dirac measure on f̂|Zn) and we take a function
w(zn, f) ≡ w(zn) that does not depend on f , then the expressions above simplify trivially to (7)
and (8) respectively; thus COMP(F , δf̂ , w, z

n) = COMP(F , f̂ , w, zn). Finally, we define

COMPFULL(F , Π̂, w, zn) := COMP(F , Π̂, w, zn) + Ef∼Π̂|zn
[
Rf (zn)

]
, (11)
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the sum of the complexity and, for fixed data, the expected excess loss a random draw from Π̂
achieves on that data. Admittedly, in this fully general form the novel complexity is no longer
an easily interpretable quantity; instead, its power derives from the fact that in one special case it
simplifies to the readily-interpretable version for deterministic estimators (8) and hence can be related
to Rademacher complexity, while in another special case it specializes to the readily-interpretable
information complexity. Thus, it allows us to unify two notions of complexity traditionally viewed
as distinct, and associated with excess risk bounds based on different proof techniques, to a single
notion that allows us to prove excess risk bounds using a single theorem/proof technique (Theorem 4).
We already showed how (11) relates to the simpler form (8); we now explain the connection to
information complexity.

COMP generalizes information complexities To explain how PAC-Bayesian type complexities
arise as a special case of COMP, we consider luckiness measures w that are defined in terms of
probability distributions Π on F that do not depend on the data; we call these ‘priors’. For notational
convenience it is useful to assume (without loss of generality) that Π has a density π relative to some
underlying measure ρ on F and that, for all zn ∈ Zn, Π̂ | zn also has a density π̂ | zn relative to ρ.

Proposition 1 Consider arbitrary Π and Π̂ as above with densities π and π̂ | zn relative to some ρ.
Set w(zn, f) := π(f)/π̂(f | zn). Then we have S(F , Π̂, w) ≤ 1. Consequently,

COMPFULL(F , Π̂, w, zn) ≤ Ef∼Π̂|zn
[
Rf (zn)

]
+ η−1 ·KL( (Π̂ | zn) ‖Π ), (12)

where KL( (Π̂ | zn) ‖Π ) = Ef∼Π̂|zn

[
log
(
π̂(f | zn)/π(f)

)]
is KL-divergence.

Thus, COMPFULL is upper bounded by information complexity defined relative to prior Π (Zhang,
2006a,b), which is just the RHS of (12) divided by n. The notion of information complexity is also
used to bound excess risk in the PAC-Bayesian approach of Catoni (2007) and Audibert (2004).
As noted by Zhang (2006b), the right-hand side of (12) is minimized if Π̂ is taken to be a Gibbs
estimator, and in that case it evaluates to the extended stochastic complexity (Yamanishi, 1998)
−η−1 log Ef∼Π[exp(−ηRf (zn))], which for η = 1 and ` the log-loss, coincides with the standard
log Bayesian marginal likelihood (see Grünwald and Mehta (2016, Proposition 6) for details). The
cumulative log-loss interpretation of COMP extends to this case as well (see Appendix C.2).

3. First Main Result: Bounding Excess Risk in terms of New Complexity

From now on we restrict to the bounded loss setting. Specifically, we assume that

sup
f,g∈F

ess sup |`f (Z)− `g(Z)| ≤ 1

2
, (A1)

as this always can be accomplished by an appropriate scaling of a bounded loss function. Before
presenting our first main result, we introduce a variant of an ordinary expectation as well as some
notation. For η > 0 and general random variables U , we define the annealed expectation (see
Grünwald and Mehta (2016) for the origin of this terminology) as EANN,η[U ] = − 1

η log E
[
e−ηU

]
.

Below we will first bound the annealed excess risk rather than the standard excess risk and then
continue to bound the latter in terms of the former. Our first main result below may be expressed
succinctly via the notion of exponential stochastic inequality (ESI).

7
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Definition 2 (ESI) Let η > 0 and let U,U ′ be random variables with joint distribution P . We define

U Eη U
′ ⇔ EU,U ′∼P

[
eη(U−U ′)] ≤ 1, (13)

and we write U E∗η U
′ iff the right-hand side of (13) holds with equality.

Clearly U E∗η U
′ ⇒ U Eη U

′. An ESI captures both high probability and in-expectation results:

Proposition 3 (ESI Implications) For all η > 0, if U Eη U
′ then, (i), E[U ] ≤ E[U ′]; and, (ii), for

all K > 0, with P -probability at least 1− e−K , U ≤ U ′ +K/η.

We now present our first main result, a new bound that interpolates between Zhang’s bound (see
below) and standard empirical process theory bounds for handling large classes and that is sharp in
the sense that it really is an equality of exponential moments.

Theorem 4 For every randomized estimator Π̂ and every luckiness function w : ZN ×F → R+
0 ,

Ef∼Π̂|Zn

[
EANN,η
Z̄∼P

[
Rf (Z̄)

]]
E∗nη

1

n
· COMPFULL(F , Π̂, w, Zn). (14)

The proof is a sequence of straightforward rewritings, where the key observation is that for every
f ∈ F , the annealed risk EANN,η

Z̄∼P
[
Rf (Z̄)

]
is related to the normalization factor appearing in the

definition (1) of the probability density qf and its n-fold product C(f) appearing in (2) via the
following equality, as follows immediately from the definitions:

EANN,η
Z̄∼P

[
Rf (Z̄)

]
= 1

n ·
− logC(f)

η . (15)

By taking w as in Proposition 1, via (12), this theorem strictly generalizes Theorem 3.1 of Zhang
(2006b), the left-hand side of Zhang’s inequality being equal to the annealed excess risk and the
right-hand side to the information complexity, i.e., the right-hand side of (12). However, by taking
different w, we get different bounds which are not covered by Zhang’s results and which, as we will
see, can be used to recover minimax excess risk bounds for certain large classes of polynomial entropy.
We mention in passing that whereas Zhang’s bound is purely data-dependent and hence one can
select an estimator Π̂ that optimizes the bound, COMPFULL(F , Π̂, w, Zn) additionally incorporates
the distribution dependent quantity S(F , Π̂, w) and hence cannot be optimized with respect to w.

The above ESI’s have annealed expectations on their left-hand sides and thus still fall short of
providing excess risk bounds. This gap can be resolved under the v-central condition.

Definition 5 Let v : [0,∞)→ [0,∞) be a bounded, non-decreasing function. We say that (P, `,F)
satisfies the v-central condition if, for all γ > 0, E[e−v(γ)Rf (Z)] ≤ ev(γ)·γ .

In the special case of constant v ≡ η ∈ (0,∞), we say that the η-central condition holds.

If the loss is η-exp-concave and F is convex, the η-central condition holds (Van Erven et al., 2015,
p. 1798)). For bounded losses the v-central condition is equivalent to the Bernstein condition.

Definition 6 Let β ∈ [0, 1]. We say that (P, `,F) satisfies the β-Bernstein condition if, for a
constant B <∞, it holds that E

[
Rf (Z)2

]
≤ B E

[
Rf (Z)

]β for all f ∈ F .

We only recall one direction of the equivalence of the v-central condition to the Bernstein
condition here; the full equivalence is due to Van Erven et al. (2015, Theorem 5.4).

8
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Lemma 7 Assume for all f ∈ F that Rf (Z) ∈ [−1/2, 1/2] a.s. If the β-Bernstein condition holds
for a β ∈ [0, 1] and a constant B, then the v-central condition holds for v(γ) = min{γ1−β/B, 1}.

Note that for such bounded loss functions, the weakest Bernstein condition with β = 0 holds
automatically, as does the v-central condition with v(γ) ∝ γ.

The following lemma is a translation of Lemma 2 of Grünwald (2012) which addresses the
aforementioned gap between the annealed and actual expectations.

Lemma 8 Suppose that the v-central condition holds for some v as in Definition 5. If Rf (Z) ∈
[−1/2, 1/2] a.s., then for all γ > 0, for all η ≤ v(γ)

2 , and for a constant Cη := 2 + 2η,

EZ∼P
[
Rf (Z)

]
≤ Cη · EANN,η

Z∼P
[
Rf (Z)

]
+ (Cη − 1)η−1v(γ) · γ,

A version of the above result also holds for general bounded losses.
The next two excess risk bounds in terms of COMP are nearly immediate.

Corollary 9 Take the setup of Lemma 8. For any randomized estimator Π̂ and luckiness function w,

Ef∼Π̂|Zn

[
EZ∼P

[
Rf (Z)

]]
Ev(γ)·n/6

3
n · COMPFULL

v(γ)/2(F , Π̂, w, Zn) + 4γ. (16)

If f̂ is ERM, then EZ∼P
[
Rf̂ (Z)

]
Ev(γ)·n/6

3
n · COMPv(γ)/2(F , f̂) + 4γ. (17)

To help interpret Corollary 9, we give two special cases of (16). In both cases, we will suppose
(as in Proposition 1) that w(zn, f) := π(f)/π̂(f | zn), where π is the density of a fixed probability
measure on F independent of the sample, so that COMP is bounded by information complexity. First,
if the η-central condition holds, then, setting η′ = η/2 and using (12), it further follows that

Ef∼Π̂|Zn

[
EZ∼P

[
Rf (Z)

]]
Enη

6

3
n

(
Ef∼Π̂|Zn [Rf (Zn)] + 2

η ·KL( (Π̂ | Zn) ‖Π )
)
.

In the second case, we take Π̂ to be any posterior whose Π̂-expected empirical risk is at most the
empirical risk of f∗ (e.g. Π̂ could be the Dirac measure on ERM), and for simplicity we further assume
that a β-Bernstein condition holds for someB ≥ 2 (if it holds for a smallerB it also holds forB = 2).
Thus, from the bounded loss assumption the v-central condition holds for v(γ) = γ1−β

B (provided that
we only consider γ ≤ B1/(1−β)), and tuning γ yields γ = A1 ·n−1/(2−β) KL( (Π̂ | Zn) ‖Π )1/(2−β)

for a constant A1 depending only on β and B, so that

Ef∼Π̂|Zn

[
EZ∼P

[
Rf (Z)

]]
En·an A1 ·

(
1
n ·KL( (Π̂ | Zn) ‖Π )

)1/(2−β)
, (18)

where an = A2(KL( (Π̂ | Zn) ‖Π )/n)(1−β)/(2−β) for a constant A2 depending only on β and B.
Lastly, in both cases when the class is finite and the prior Π is uniform, the KL-divergence term
reduces to log |F|. We thus retrieve the familiar O(n−1/2) rate in the worst case (β = 0, for which
the Bernstein condition holds vacuously for bounded losses) and O(n−1) in the best case, β = 1.

9
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4. Bounds on Maximal Complexity COMP(F) and Excess Risk Bounds they Imply

We now leverage and extend ideas of Opper and Haussler (1999) and results from empirical process
theory to get explicit bounds on COMP for two important types of large classes: classes whose
empirical entropy grows polynomially and sets of classifiers with polynomial entropy with bracketing.
Along the way, we form vital connections to expected suprema of certain empirical processes,
including Rademacher complexity. Finally, we present explicit excess risk bounds which are simple
consequences of our bounds on COMP. Analogues of all these results, including excess risk bounds
with optimal rates, also hold for classes of VC-type; for space, we leave these results to Appendix D.

Preliminaries To properly capture losses like log-loss and supervised losses like 0-1 loss and
squared loss, we introduce two parameterizations of the loss function: the supervised loss parame-
terization `f (z) = `(y, f(x)) for z = (x, y); and the direct parameterization `f (z) = f(z). We use
the direct parameterization for density estimation with log-loss, where we define f(z) = `f (z) =
− log pf (z) (we return to conditional density estimation with pf of the form pf (y|x) in Appendix A).
Thus, each f ∈ F has domain Z , and the equivalence F = {`f : f ∈ F} holds. For supervised
losses, however, each f ∈ F has domain X while each loss-composed function `f has domain Z .

Unlike previous sections, in this section we require an additional assumption in the case of
the supervised loss parameterization: we assume that, for each outcome (x, y) = z ∈ Z , the loss
`f (z) = `(y, f(x)) is L-Lipschitz in its second argument, i.e. for all f, g ∈ F ,∣∣`(y, f(x))− `(y, g(x))

∣∣ ≤ L ∣∣f(x)− g(x)
∣∣ . (A2)

In the case of classification with 0-1 loss, F is the set of classifiers taking values in {0, 1} and
Y = {0, 1}, and so (A2) will hold with L = 1 (and is in fact an equality). For convenience in the
analysis, in the case of the direct parameterization we may always take L = 1.

We review some of the standard notions of complexity before presenting our bounds; for more
details, see, e.g., Van der Vaart and Wellner (1996) . Let H be a class of functions mapping from
some space S to R; we typically will take S equal to either X or Z . For a pseudonorm ‖ · ‖, the
ε-covering number N (H, ‖ · ‖, ε) is the minimum number of radius-ε balls in the pseudonorm
‖ · ‖ whose union contains H. We will work with the L2(Q) (or L1(Q)) pseudonorms for some
probability measure Q. A case that will occur frequently is when Q = Pn is the empirical measure
1
n

∑n
j=1 δSj based on a sample S1, . . . , Sn; here, δs (for s ∈ S) is a Dirac measure, and the sample

will always be clear from the context.
For two functions h(l) and h(u), the bracket [h(l), h(u)] is the set of all functions f that satisfy

h(l) ≤ f ≤ h(u). An ε-bracket (in some pseudonorm ‖ · ‖) is a bracket [h(l), h(u)] satisfying
‖h(l) − h(u)‖ ≤ ε. The ε-bracketing number N[ ](H, ‖ · ‖, ε) is the minimum number of ε-brackets
that coverH; the logarithm of the ε-bracketing number is called the ε-entropy with bracketing.

Let ε1, . . . , εn be independent Rademacher random variables (distributed uniformly on {−1, 1}).
The empirical Rademacher complexity ofH and the Rademacher complexity ofH respectively are

Rn(H | Sn) := Eε1,...,εn

[
sup
h∈H

∣∣∣ 1
n

∑n
i=1εih(Si)

∣∣∣ ]; Rn(H) := E
[

sup
h∈H

∣∣∣ 1
n

∑n
i=1εih(Si)

∣∣∣ ],
where the first expectation is conditional on Sn = (S1, . . . , Sn).

10
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4.1. H-local Complexity and Rademacher Complexity Bounds on the NML Complexity

We first show that the simple form of the complexity COMP(F , f̂) ≤ COMP(F) can be directly upper
bounded in terms of two other complexity notions, the H-local complexity (defined below) and
Rademacher complexity, up to a constant depending on supf,g∈F ‖f − g‖L2(P ), the L2(P ) diameter
of F .

Theorem 10 (Main Technical Result) Fix ε > 0 and let F have diameter ε in the L2(P ) pseudo-
metric. Define σ := eL ε, fix arbitrary f0 ∈ F , and define the loss class G := {`f0 − `f : f ∈ F}.

Define Tn := supf∈F

{∑n
j=1

(
`f0(Zj)− `f (Zj)

)
− EZn∼Qf0

[∑n
j=1

(
`f0(Zj)− `f (Zj)

)]}
.

Then COMPη(F) ≤ 3EZn∼Qf0 [Tn] + nησ2 ≤ 6nEZn∼Qf0
[
Rn(G | Zn)

]
+ nησ2. (19)

We call the quantity EZn∼Qf0 [Tn] an entropified local complexity, or H-local complexity for
short. The “local” nomenclature stems from how (a) in the empirical process inside the supremum for
Tn; the loss is localized around `f0 , and (b) we apply this H-local complexity only for subclasses of
small diameter. “Entropified” refers to the sample being distributed according to Qf0 , itself defined
via entropification. The attentive reader may have noticed that in the above theorem, the expectation
in the Rademacher complexity is relative to the distribution Qf0 for arbitrary f0 ∈ F , rather than the
distribution P generating the data. The appearance of Qf0 appears to dampen the utility of F having
small L2(P ) diameter. This apparent mismatch will be of no concern due to a technical lemma
(Lemma 27 in Appendix E.3), which relates the L2(Qf0) and L2(P ) pseudometrics.

The proof of Theorem 10 is in three steps; the first part of (19) is a consequence of Lemmas 11
and 12 below. Step 1 is a simple generalization of an argument of Opper and Haussler (1999):

Lemma 11 Take arbitrary F and fix arbitrary f0 ∈ F . Then COMPη(F) ≤ 1
η log EZn∼Qf0

[
eηTn

]
.

Step 2 is to bound E[eηTn ]. The next lemma (proved via Talagrand’s inequality) does this.

Lemma 12 (‘Reverse Jensen’ for Tn) Let F , σ, and G be as in Theorem 10. Then

EZn∼Qf0 [eηTn ] ≤ exp
(

3η EZn∼Qf0 [Tn] + nη2σ2
)
. (20)

Opper and Haussler (1999) obtained a result similar to (20) but under the considerably stronger
assumption that the original class has finite sup-norm entropy and, consequently, that the class Gk
has sup-norm radius at most O(ε). The first inequality of (19) now follows. Step 3 proves the second
inequality via standard results from empirical process theory:

Lemma 13 Take the setting of Theorem 10. Then EZn∼Qf0 [Tn] ≤ 2nEZn∼Qf0
[
Rn(G | Zn)

]
.

To use Theorem 10 for F with large L2(P ) diameter, we first decompose COMPη(F) in terms of
the L2(P ) covering numbers at a small, optimally-tuned resolution ε plus the maximal complexity
among all Voronoi cells induced by the cover, as in (5). We then use known bounds on H-local
complexity and Rademacher complexity to sharply bound COMP(F) in terms of covering numbers.
To this end, let F be arbitrary and let {f1, . . . , fNε} be an (ε/2)-cover for F in the L2(P ) pseudo-
metric, with Nε := N (F , L2(P ), ε/2), and let Fε,1, . . . ,Fε,Nε be the corresponding partition of F
into Voronoi cells according to the L2(P ) pseudometric. That is, for k ∈ [Nε], Voronoi cell Fε,k is
defined (breaking ties arbitrarily) as

{
f ∈ F : k = arg mini∈[Nε] ‖f − fi‖L2(P )

}
. Clearly, each cell

Fε,k has L2(P ) diameter at most ε. For each k, fix an arbitrary fk ∈ Fε,k and let T (k)
n be defined as

Tn above with fk in the role of f0. Via (5), the following corollary of Theorem 10 is now immediate.

11
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Corollary 14 Let σ := eL ε and, for k ∈ [Nε], define the loss class Gk := {`fk − `f : f ∈ Fε,k}.

Then COMPη(F) ≤ η−1 logNε + max
k∈[Nε]

{
3EZn∼Qfk

[
T (k)
n

]
+ ηnσ2

}
(21)

≤ η−1 logNε + max
k∈[Nε]

{
6nEZn∼Qfk

[
Rn(Gk | Zn)

]
+ ηnσ2

}
. (22)

4.2. From H-local Complexity and Rademacher Complexity to Excess Risk Bounds

We now show concrete implications of our link between COMP, E[Tn], and Rn for classes with
polynomial empirical entropy and sets of classifiers of polynomial L2(P ) entropy with bracketing.
LetH be a class of functions over a space S. ClassH is said to have polynomial empirical entropy
if, for some A ∈ (0,∞), ρ ∈ (0, 1), for all ε > 0, the empirical entropy ofH satisfies

sup
s1,...,sn∈S

logN (H, L2(Pn), ε) ≤
(
A/ε

)2ρ
. (23)

We say class H has polynomial L1(P ) entropy with bracketing if, for some A ∈ (0,∞), ρ ∈
(0, 1), for all ε > 0, the L1(P ) entropy with bracketing ofH satisfies

logN[ ](H, L1(P ), ε) ≤
(
A2/ε

)ρ
. (24)

To obtain explicit bounds from Corollary 14, we require suitable upper bounds on either the
Rademacher complexity EZn∼Qfk

[
Rn(Gk | Zn)

]
or directly on the H-local complexity EQfk

[
T

(k)
n

]
itself for the above two types of classes. It is simple to obtain such bounds using Dudley’s entropy
integral, a product of the chaining technique of empirical process theory. However, the trick here is
to somehow leverage that Gk has small L2(P ) diameter. Koltchinskii (2011) (see equation (3.19))
obtained a bound which improves with reductions in the L2(P ) diameter; we restate a simplified
version here. In the sequel, . means inequality up to multiplication by a universal constant.

Theorem 15 Let H be a class of functions over Z with: polynomial empirical entropy as in (23)
with exponent ρ; suph∈H EZ∼Q[h(Z)2] ≤ σ2; and U := suph∈H ‖h‖∞. If Q ∈ ∆(Z), then

EZn∼Q
[
Rn(H | Zn)

]
. max

{
Aρσ1−ρn−1/2, A2ρ/(ρ+1)U (1−ρ)/(1+ρ)n−1/(1+ρ)

}
. (25)

For classes of polynomial entropy with bracketing, we appeal to upper bounds on EQfk

[
T

(k)
n

]
. If the

class Gk has small L1(Qfk) diameter and, moreover, if it also has polynomial L1(Qfk) entropy with
bracketing, then Lemma A.4 of Massart and Nédélec (2006) provides precisely such a bound. Below,
we present a straightforward consequence thereof.

Theorem 16 LetH be a class of functions over Z with: polynomial entropy with bracketing as in
(24) with exponent ρ; suph∈H EZ∼Q[|h(Z)|] ≤ σ2; and suph∈H ‖h‖∞ ≤ 1. If Q ∈ ∆(Z), then

EZn∼Q

[
sup
h∈H

{
1

n

n∑
j=1

h(Zj)− E[h(Z)]

}]
. max

{
Aρσ1−ρn−1/2, A2ρ/(ρ+1)n−1/(1+ρ)

}
. (26)

The following theorem builds on Corollary 14 and nearly follows by plugging in (25) into (22)
and tuning ε in terms of n and η (which gives the non-bracketing case of (27)), and plugging in (26)
into (21) and then tuning (which gives the bracketing case of (27)). The remaining work is to resolve
a minor discrepancy between L2(P ) pseudonorms and L2(Qfk) pseudonorms (or the L1 versions
thereof). This theorem will allow us to show optimal rates under Bernstein conditions.

12
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Theorem 17 If F has polynomial empirical entropy as in (23) or is a set of classifiers of polynomial
entropy with bracketing as in (24) with exponent ρ, then, for all η ∈ (0, 1],

n−1COMPη(F) . (AL)
2ρ
1+ρ · n−

1
1+ρ · η−

1−ρ
1+ρ . (27)

We now prepare for our results on the rates of ERM on a class F . In the following corollary,
note that in both cases, the occurrence of the Bernstein exponent β (or κ−1) is consistent with its
occurrence in the simple finite F setting of (18).
Corollary 18 Assume that a β-Bernstein condition holds for F as in Definition 6 for some β and
B, and impose assumption (A1). Define κ := β−1. Let f̂ be ERM over F . Then (27) further implies,
taking γ = n

− κ
2κ−1+ρ and assuming that n > (2B)−

2κ−1+ρ
κ−1 , that for all zn ∈ Zn,

n−1COMPv(γ)(F , f̂) + γ .
(

(AL)
2ρ
ρ+1 + 1

)
·B

1−ρ
1+ρn

− κ
2κ−1+ρ . (28)

We used the notation κ = β−1 here to make the results more easily comparable to Tsybakov (2004)
and Audibert (2004); however, the result still holds for the case β = 0 if we simply replace κ−1 by β
in all exponents above; e.g. κ/(2κ− 1 + ρ) in (28) becomes 1/(2−κ−1 +κ−1ρ) = 1/(2−β+βρ).

4.3. Applications

We now sketch two applications. The premise for the first is that the results of Opper and Haussler
(1999) hinge on the log-loss-composed class having finite sup-norm entropy. Yet, our bounds on
COMP (and hence the cumulative minimax regret under log-loss) instead only require this class to
have finite empirical L2 entropy. Our first application illustrates how different these metric entropies
can be via the example of individual sequence prediction under log-loss with a class of monotone
probability densities. The second application shows how our results recover optimal rates under
Bernstein conditions for large classes.

Monotone densities and bounded log-loss regret Let cmin and cmax be positive constants satis-
fying 0 < cmin < 1 and 2 ≤ cmax < ∞. Consider the class P of monotone probability densities
on [0, 1] for which cmin ≤ p(x) ≤ cmax for all p ∈ P and all x ∈ [0, 1]; we require the densities
to be uniformly lower bounded by a constant due to our bounded loss assumption. This class is
well-studied in nonparametric statistics (see e.g. Ghosal et al. (2000); Giné and Nickl (2016)).

As we explain in Appendix B, the loss-composed class ` ◦ P := {− log p : p ∈ P} has
polynomial empirical L2 entropy that grows as O(ε−1). The bound (23) thus holds with ρ = 1

2 .
Taking η = 1, applying Theorem 17, and leveraging the connection between COMP and the minimax
individual sequence regret under log-loss (from (6)), we immediately have:

Theorem 19 For the class P , the minimax individual sequence regret under log-loss is O(n1/3).

Using the fact that the log-loss satisfies the 1-central condition and that (as is easily shown) COMPη(F)

is increasing in η, we can also apply our excess risk bounds with η = 1/2 and f̂ set to ERM (i.e.,
maximum likelihood) to this problem. In combination with Theorem 19 this yields an excess log-risk
(i.e. KL divergence) rate of O(n1/3/n) = O(n−2/3), implying a maximum likelihood Hellinger
convergence rate of O(

√
n−2/3) = O(n−1/3) which is known to be minimax optimal (Ghosal et al.,

2000). On the other hand, we show in Appendix B that the sup-norm entropy of P cannot be finite
for small enough ε; this in fact holds even for a 1-dimensional parametric subclass! Consequently,
the results of Opper and Haussler (1999) and Rakhlin and Sridharan (2015) cannot yield non-trivial
regret bounds here.

13
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Recovering bounds under Bernstein conditions for large classes We now show how Lemma 8
can recover optimal rates under the Tsybakov margin condition and the best known rates for ERM
under Bernstein-type conditions. While other techniques can achieve the same rates for ERM, we
feel that our approach embodies a simpler analysis; it also leads to new results for other estimators,
as shown in the long version.

Theorem 20 Assume that the β-Bernstein condition holds for F as in Corollary 18 and define
κ := β−1. Let f̂ be ERM over F . Suppose that F has polynomial empirical entropy as in (23) or is
a set of classifiers of polynomial entropy with bracketing as in (24) with exponent ρ. Then there is a
C2 such that for all n large enough so that n > (2B)−

2κ−1+ρ
κ−1 , we have, with ψ2(n) = 1

6 · n
κ+ρ

2κ−1+ρ ,

EZ∼P

[
Rf̂ (Z)

]
Eψ2(n) C2

[(
(AL)

2ρ
ρ+1 + 1

)
·B

1−ρ
1+ρ · n−

κ
2κ−1+ρ

]
, (29)

In the long version, we extend this result to general deterministic estimators. Theorem 20 combined
with part (ii) of Proposition 3 implies that, with probability at least 1 − δ, ERM obtains the rate
n
− κ

2κ−1+ρ + n
− κ+ρ

2κ−1+ρ · log 1
δ . For sets of classifiers of polynomial entropy with bracketing, the rate

n
− κ

(2κ−1+ρ) is known to be optimal, matching results of Tsybakov (2004, Theorem 1), Audibert (2004)
(see the discussion after Theorem 3.3), and Koltchinskii (2006, p. 36). Outside of classification, for
classes of polynomial empirical entropy the rate we obtain is to our knowledge the best known for
ERM. In particular, if the nonparametric class is convex and the loss is exp-concave, then κ = β = 1,
and our rates for ERM are minimax optimal (Rakhlin et al., 2017, Theorem 7). Yet, there are cases
where β < 1 in which an aggregation scheme can obtain a rate as if β = 1; one such example is in
the case of squared loss with a non-convex class (Rakhlin et al., 2017; Liang et al., 2015).

Additional insights and results Theorem 20 offers a distribution-dependent bound that recovers
minimax optimal rates for ERM. We can extend the result to obtain the optimal rates in the (easier)
case of VC-type classes as well, as we show in Appendix D. In the long version of the paper, we
further extend these results to general deterministic estimators. Our bounds are arguably simpler than
those based on local Rademacher complexity; further discussion is in Appendix A (“Discussion”).
There, we also discuss why our minimax cumulative log-loss regret results do not easily transfer
to conditional density estimation, and we indicate how our Corollary 9 leads to a general 1-to-1
correspondence between excess risk bounds, luckiness functions w, and lossless codes for data
compression: as just two special cases, the right-hand side of PAC-Bayesian bounds with w set as in
Proposition 1 can be interpreted as the log-loss/codelength regret of a Bayesian coding strategy; and
the data-independent NML bound on excess risk is obtained with w = 1.
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Glossary

Notation Description Page
Losses
Rf (z) Excess loss, `f (z)− `f∗(z) 4
Rf (zn) Cumulative excess loss, `f (zn)− `f∗(zn) 4

qf (z) Entropified version of f , p(z)·e−ηRf (z)

EZ∼P
[
e−ηRf (Z)

] 4

Notation
U Eη U ′ Exponential stochastic inequality, EU,U ′∼P

[
eη(U−U ′)

]
≤ 1 7

EANN,η [U ] Annealed expectation, − 1
η log E

[
e−ηU

]
7

Complexities
C(f) Normalization constant for Shtarkov integral, EZn∼P

[
e−ηRf (Zn)

]
5

S(F ; f̂) Shtarkov integral (deterministic version), EZn∼P

[
e
−ηR

f̂|Zn
(Zn)

C(f̂|Zn )

]
5

S(F) Maximal Shtarkov integral (deterministic version),∫
Zn supf∈F qf (zn)dν(zn)

5

S(F ; f̂ , w) Generalized Shtarkov integral (deterministic version)

EZn∼P

[
e
−ηR

f̂|Zn
(Zn)

C(f̂|Zn )
· w(Zn)

]
=
∫
Zn qf̂|zn (zn)w(zn)dν(zn)

6

S(F , Π̂, w) Generalized Shtarkov integral,

EZn∼P

[
exp

(
−Ef∼Π̂|Zn

[
ηRf (Zn) + logC(f)− logw(Zn, f)

])] 6

COMP(F , f̂) Complexity, η−1 log S(F , f̂) 5
COMP(F , f̂ , w, zn) Generalized complexity (deterministic version),

1
η

(
− logw(zn) + log S(F , f̂ , w)

) 6

COMP(F) Maximal complexity, η−1 log S(F) = supf̂ COMP(F , f̂) 5
COMP(F , Π̂, w, zn) Generalized complexity,

1
η ·
(
Ef∼Π̂|zn

[
− logw(zn, f)

]
+ log S(F , Π̂, w)

) 6

COMPFULL(F , Π̂, w, zn) Full generalized complexity, COMP(F , Π̂, w, zn) + Ef∼Π̂|zn [Rf (zn)] 6

Tn sup
f∈F

{
n∑
j=1

(
`f0(Zj)− `f (Zj)

)
− EZn∼Qf0

[
n∑
j=1

(
`f0(Zj)− `f (Zj)

)]}
11

EZn∼Qf0 [Tn] H-local complexity 11
N (H, ‖ · ‖, ε) ε-covering number forH in the norm ‖ · ‖ 10
N[ ](H, ‖ · ‖, ε) ε-bracketing number forH in the norm‖ · ‖ 10

Rn(H | Sn) Empirical Rademacher complexity, Eε1,...,εn
[
suph∈H

∣∣ 1
n

∑n
i=1 εih(Si)

∣∣] 10

Rn(H) Rademacher complexity, E
[
suph∈H

∣∣ 1
n

∑n
i=1 εih(Si)

∣∣] 10
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Appendix A. Further Discussion and Comparison to Existing Work

Implications and insights for log-loss individual sequence regret Our strategy for controlling
COMP(F) owes much to an ingenious argument of Opper and Haussler (1999). They analyzed
the minimax regret in the individual sequence prediction setting with log-loss, where the class of
comparators is the set of static experts (i.e. experts that predict according to the same distribution
in each round). Cesa-Bianchi and Lugosi (2001) obtain bounds in the more general setting where
the comparator class consists of arbitrary experts that can predict conditionally on the past. For a
further considerable extension within the realm of log-loss, see Rakhlin and Sridharan (2015) who
allow prediction based not just on the past but also on side information, and who bound the minimax
cumulative regret in terms of sequential complexities and sequential covering numbers. These three
papers all end up with bounds in terms of variations of an L∞ metric entropy. While the precise
variation differs from paper to paper, due to the different generality of the setting, in all cases they
would lead to vacuous bounds for classes F of static experts admitting finite L2(P ) but no finite L∞
covers, such as the set of nonincreasing densities we consider in Appendix B.

The present paper does handle such cases; we note, however, that unlike the non-i.i.d. setting of
(Cesa-Bianchi and Lugosi, 2001; Rakhlin and Sridharan, 2015), the present paper is restricted to the
unconditional (i.e. without side information) i.i.d./static experts setting. In some of their examples
(see e.g. their Section 6), Rakhlin and Sridharan (2015) do consider settings with static experts (like
ours), but (unlike us) predictions can make use of side information: thus, the observations are of the
form zi = (xi, yi), the regret of a predictor p̃ is

n∑
i=1

− log p̃(yi | xi, zi−1)− inf
f∈F

n∑
i=1

(− log pf (yi | xi)),

and we want to find the p̃ achieving minimax regret. One might conjecture that our techniques
are extendable to this conditional setting, based on the fact that any conditional density estimation
problem can be turned into an unconditional one by fixing a distribution p′(x) on X and defining
p′f (x, y) := pf (y|x)p(x). For Bayesian prediction strategies, the − log p(xi) terms indeed cancel in
the regret and the conditional and unconditional settings are equivalent; but this does not turn out
to be the case for the minimax optimal prediction strategy, and it is at this point unclear whether
our nonsequential L2(P )-covering numbers can replace the sequential L∞ covers of Rakhlin and
Sridharan (2015) for the static, conditional setting.

Insights for the relation between excess risk bounds and data compression For general (pos-
sibly randomized) estimators, Corollary 9 with the choice w(zn, f) := π(f)/π̂(f | zn) for prior π
provides an excess risk bound in terms of information complexity which itself can be expressed in
terms of a (generalization of) the cumulative log-loss of a Bayesian sequential prediction strategy
(Zhang, 2006a; Grünwald, 2012) defined relative to the constructed probability model QF . By the
correspondence between codelengths and cumulative log-loss, we may say that we bound an excess
risk in terms of a codelength. Recalling Figure 1, the equality 3 = 5 shows that we also get a
useful excess risk bound in terms of the codelengths of the minimax (NML) code. In Appendix C,
we extend this idea by showing, much more generally, that every luckiness function (up to scaling)
uniquely defines an idealized code and vice versa; and moreover, every such luckiness function/code
uniquely defines an excess risk bound.
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Insights for excess risk bounds Theorem 20 offers a distribution-dependent bound that recovers
minimax optimal rates for ERM. We can extend the result to obtain the optimal rates in the (easier)
case of VC-type classes as well, as we show in Appendix D. In the long version of the paper, we
further extend these results to general deterministic estimators. Theorem 20 and its extension to VC
classes, Theorem 26, thus offer minimax optimal distribution-dependent excess risk bounds whose
derivation we view as simpler than similar bounds based on local Rademacher complexities. In
particular, our strategy completely avoids complicated (at least in the view of the authors) fixed point
equations that have been used to obtain good excess risk bounds in other works (such as Koltchinskii
and Panchenko (1999); Bartlett et al. (2005); Koltchinskii (2006)). We note, however, that the bounds
in the present paper lack the kind of data-dependence exhibited by previous works leveraging local
Rademacher complexities. Indeed, the bound in Theorem 20 is an exact oracle inequality which is
distribution-dependent and, consequently, is not computable by a practitioner who does not know
the β for which a Bernstein condition holds. In contrast, bounds obtained via local Rademacher
complexities can be computed without distributional knowledge and have been shown to behave
like the correct (but unknown to the practitioner) distribution-dependent bounds asymptotically (see
Theorem 4.2 of Bartlett et al. (2005)).

Yet, the present work gives rise to results which allow a different kind of data-dependence: a PAC-
Bayesian improvement for situations when the posterior distribution is close to a prior distribution; it
also shows that, as long one restricts attention to oracle inequalities, there exists a single unifying
proof technique and ensuing bound that can recover optimal rates for large and small classes, and
(bounded versions of) log-loss and other losses alike.

Appendix B. A nontrivial regret bound for a class of monotone probability densities

B.1. Proof of Theorem 19

For convenience, we restate the definition of the class of monotone probability densities P . Let cmin

and cmax be positive constants satisfying 0 < cmin < 1 and 2 ≤ cmax < ∞. Consider the class
P of monotone probability densities on [0, 1] for which cmin ≤ p(x) ≤ cmax for all p ∈ P and all
x ∈ [0, 1].

We first show that, for all ε > 0, the L2(P ) ε-entropy of the loss-composed class ` ◦ P :=
{− log p : p ∈ P} is finite. We will make use of Proposition 3.5.17 of Giné and Nickl (2016) (see
also Theorem 2.7.5 of Van der Vaart and Wellner (1996)), restated here for convenience.

Theorem 21 Let F be the class of monotone functions on R for which, for constants −∞ < a <
b <∞, we have for all f ∈ F and all x ∈ R that a ≤ f(x) ≤ b. We have for some positive constant
K depending only on a and b, uniformly for all Borel probability measures P on R,

logN[ ](F , L2(P ), ε) ≤ K

ε
for 0 < ε ≤ b− a.

Taking a = cmin, b = cmax, and restricting to the domain to [0, 1], the same result holds for F = P .
Since the result holds uniformly for all (Borel) probability measures on R, it also holds for the
empirical L2 bracketing numbers.

Moreover, from Van der Vaart and Wellner (1996) (see the top display on page 84), for any
probability measure P (including the empirical measures), the covering numbers are upper bounded
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by the bracketing numbers:

N (P, L2(P ), ε) ≤ N[ ](P, L2(P ), ε).

Finally, since r 7→ log r is (1/cmin)-Lipschitz on the domain r ≥ cmin, it holds that the loss-
composed class ` ◦ P satisfies

N (` ◦ P, L2(P ), ε) ≤ N (P, L2(P ), cmin · ε).

Consequently, we have, for some constant A depending only on cmin and cmax,

sup
z1,...,zn∈Z

N (` ◦ P, L2(Pn), ε) ≤ A

ε
.

Next, we observe that ` ◦ P satisfies the polynomial empirical entropy bound (23) with ρ = 1
2 ,

and so applying Theorem 17 with η = 1, we have

COMP1(` ◦ P) = O(n1/3).

But, from (6), the COMP1(` ◦P) is precisely equal to the minimax individual sequence regret relative
to the class P under log-loss.

B.2. The sup-norm entropy of ` ◦ P fails to be finite

We now show that sup-norm ε-covering numbers of ` ◦ P are unbounded for sufficiently small ε.
We actually show this to be true even when P is replaced by the following, significantly smaller
parametric subclass:

PΘ :=

{
pθ : 0 ≤ θ ≤ 1− cmin

cmax

}
,

where density pθ is defined as

pθ(x) =

{
cmax if x ∈ [0, θ],
1−cmax·θ

1−θ if x ∈ (θ, 1].

We first show that the class of densities itself cannot admit a finite ε-cover in sup-norm (for small
enough ε). We then show why an ε-cover in sup-norm for ` ◦ PΘ is a (Kε)-cover in sup-norm for
PΘ, thereby prohibiting the existence of the former for small enough ε.

We begin by taking any ε ∈ (0, 1
2 ], finite N , and θ1 < θ2 < · · · < θN . We will show that the set

{pθ1 , pθ2 , . . . , pθN } cannot be a proper ε-cover (in sup-norm) for our parametric class.
To this end, let θ′ = θ1+θ2

2 index a probability density in the parametric class. For any x ∈ (θ1, θ
′),

it holds that pθ′(x) = cmax ≥ 2 whereas pθ1(x) = 1−cmax·θ1
1−θ1 ≤ 1, and so |pθ1(x) − pθ′(x)| ≥ 1.

Hence, pθ′ cannot be covered by an ε-ball centered at pθ1 . Similarly, for any x ∈ (θ′, θ2), we have
that |pθ2(x)− pθ′(x)| ≥ 1 (and from monotonicity the same is true if replacing pθ2 by pθj for any
j > 2). Consequently, the ε-covering property fails to hold.

Finally, suppose that there exists a finite proper ε-cover for ` ◦ PΘ, say, PΘε := {pθ : θ ∈ Θε}
for some finite set Θε ⊂ Θ. Then, for any θ ∈ Θ, there exists θ′ ∈ Θε such that, for all x ∈ [0, 1],
we have

| log pθ(x)− log pθ′(x)| ≤ ε.
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But r 7→ er is elog cmax-Lipschitz for r ≤ log cmax, and so

|pθ(x)− pθ′(x)| = | exp(log pθ(x))− exp(log pθ′(x))|
≤ cmax| log pθ(x)− log pθ′(x)|
≤ cmax · ε,

a contradiction of the non-existence of a finite (cmax · ε)-cover for ` ◦ PΘ for small enough ε.

Appendix C. Cumulative log-loss interpretation

C.1. For deterministic estimators and general w

Fix an arbitrary estimator f̂ . Then for any luckiness function w with S(F , f̂ , w) <∞, we can define
the probability density

rw(zn) :=
qf̂ |zn(zn) · w(zn)

S(F , f̂ , w)
, (30)

with r(zn) :=
qf̂ (zn)

S(F ,f̂)
(introduced in the last paragraph on page 5) being the special case with

w ≡ 1. Just as with r1, for general such w, rw can be thought of as a sequential prediction strategy,
and η · COMP(F , f̂ , w, zn) − log qf̂|zn

(zn) = − log rw(zn) is the cumulative log-loss achieved
by rw. Different (up to scaling) w generate different log-loss prediction strategies (codes) and
corresponding complexities. Conversely, for every probability density r′ relative to ν on Zn, we
can set a luckiness measure w(zn) proportional to r′(zn)/qf̂ |zn(zn); with the appropriately scaled
choice of w, rw will coincide r′; we thus have a 1-to-1-correspondence between luckiness functions
w with S(F , f̂ , w) <∞, codes and complexities.

Grünwald (2007) and Bartlett et al. (2013) consider various nonuniform w. To give but one
example, if Z = Rk, F ⊆ Rk, and (for f ∈ F) qf (z) = pf (z) ∝ exp(−‖z − f‖22/2) denotes a
Gaussian with mean f , then a natural choice is to take w of Gaussian form w(zn) = exp(−‖f̂|zn‖22)

for a given estimator f̂ ; the corresponding sequential prediction strategy rw gives smaller cumulative
log-loss to data with f̂|zn close to 0.

C.2. For general estimators and general w

Just as for deterministic estimators, we note that every randomized estimator Π̂ and luckiness function
w defines a probability density/prediction strategy on Zn by setting

rw(zn) :=

exp

(
Ef∼Π̂|zn

[
log qf (zn) · w(zn, f)

])
S(F , Π̂, w)

,

and just as before, COMP can be interpreted in terms of the ‘code’ rw.

Appendix D. Full version of Section 4 (includes results for VC-type classes)

For space, we limited the results appearing in the main text to large classes of polynomial entropy or
polynomial entropy with bracketing. In this section, we restate Section 4.2 and the second part of
Section 4.3 with the bounds for VC-type classes included.
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D.1. From H-local complexity and Rademacher complexity to excess risk bounds

We now show concrete implications of our link between COMP, E[Tn], and Rn for three types of
classes: classes of VC-type, classes with polynomial empirical entropy, and sets of classifiers of
polynomial L2(P ) entropy with bracketing. LetH be a class of functions over a space S . The class
H is said to be of VC-type if, for some A ∈ (0,∞) and V > 0, for all ε > 0, the empirical covering
numbers ofH satisfy

sup
s1,...,sn∈S

N (H, L2(Pn), ε) ≤
(
A/ε

)V
. (31)

Class H is said to have polynomial empirical entropy if, for some A ∈ (0,∞), ρ ∈ (0, 1), for all
ε > 0, the empirical entropy ofH satisfies

sup
s1,...,sn∈S

logN (H, L2(Pn), ε) ≤
(
A/ε

)2ρ
. (32)

We say class H has polynomial L1(P ) entropy with bracketing if, for some A ∈ (0,∞), ρ ∈
(0, 1), for all ε > 0, the L1(P ) entropy with bracketing ofH satisfies

logN[ ](H, L1(P ), ε) ≤
(
A2/ε

)ρ
. (33)

To obtain explicit bounds from Corollary 14, we require suitable upper bounds on either the
Rademacher complexity EZn∼Qfk

[
Rn(Gk | Zn)

]
or directly on theH-local complexity EQfk

[
T

(k)
n

]
itself for the above three types of classes. It is simple to obtain such bounds using Dudley’s entropy
integral, a product of the chaining technique of empirical process theory. However, the trick here is to
somehow leverage that Gk has small L2(P ) diameter. Koltchinskii (2011) (see equations (3.17) and
(3.19)) obtained a bound which improve with reductions in the L2(P ) diameter; we restate simplified
versions of these bounds here. In the sequel, . means inequality up to multiplication by a universal
constant.

Theorem 22 LetH be a class of functions overZ , and letQ ∈ ∆(Z). Let suph∈H EZ∼Q[h(Z)2] ≤
σ2 and U := suph∈H ‖h‖∞. Assume that H is of VC-type as in (31) with exponent V . Then, for
σ2 ≥ c

n (for some constant c)

EZn∼Q
[
Rn(H | Zn)

]
. max

{√
V

n
σ

√
log

A

σ
,
V U

n
log

A

σ

}
. (34)

If insteadH is of polynomial empirical entropy as in (32) with exponent ρ, then

EZn∼Q
[
Rn(H | Zn)

]
. max

{
Aρ√
n
σ1−ρ,

A2ρ/(ρ+1)U (1−ρ)/(1+ρ)

n1/(1+ρ)

}
. (35)

For classes of polynomial entropy with bracketing, we appeal to upper bounds on EQfk

[
T

(k)
n

]
. If the

class Gk has small L1(Qfk) diameter and, moreover, if it also has polynomial L1(Qfk) entropy with
bracketing, then Lemma A.4 of Massart and Nédélec (2006) provides precisely such a bound. Below,
we present a straightforward consequence thereof.
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Theorem 23 LetH be a class of functions over Z with: polynomial entropy with bracketing as in
(33) with exponent ρ; suph∈H EZ∼Q[|h(Z)|] ≤ σ2; and suph∈H ‖h‖∞ ≤ 1. If Q ∈ ∆(Z), then

EZn∼Q

[
sup
h∈H

{
1

n

n∑
j=1

h(Zj)− E[h(Z)]

}]
. max

{
Aρσ1−ρn−1/2, A2ρ/(ρ+1)n−1/(1+ρ)

}
. (36)

The following theorem builds on Corollary 14 and nearly follows by plugging in either (34) or
(35) into (22) and tuning ε in terms of n and η (which gives the VC case, (37)) , and plugging in (36)
into (21) and then tuning (which gives the polynomial entropy case, (38)). The remaining work is
to resolve a minor discrepancy between L2(P ) pseudonorms and L2(Qfk) pseudonorms (or the L1

versions thereof). This theorem will allow us to show optimal rates under Bernstein conditions.

Theorem 24 If F is of VC-type as in (31) with exponent V , then for all η ∈ (0, 1],

COMPη(F)

n
. V log

ALn

V
· n−1 · η−1. (37)

If F has polynomial empirical entropy as in (32) or is a set of classifiers of polynomial entropy with
bracketing as in (33) with exponent ρ, then, for all 0 < η < 1,

COMPη(F)

n
. (AL)

2ρ
1+ρ · n−

1
1+ρ · η−

1−ρ
1+ρ . (38)

The proof of Theorem 24 can be found in Appendix E.4. We now prepare for our results on the
rates of ERM on a class F . In the following corollary, note that in both cases, the occurrence of the
Bernstein exponent β (or κ−1) is consistent with its occurrence in the simple finite F setting of (18).

Corollary 25 Assume that a β-Bernstein condition holds for F as in Definition 6 for some β and B,
and impose assumption (A1). Define κ := β−1. Let f̂ be ERM over F . Then, (37) further implies,

taking γ =
(
B
(
V log ALn

V
n

))κ/(2κ−1)
and taking n large enough so that V

n log ALn
V ≤ B1/(1−β),

that for all zn ∈ Zn,

COMPv(γ)(F , f̂)

n
+ γ .

(
B

(
V log

ALn

V

)) κ
2κ−1

· n−
κ

2κ−1 . (39)

Analogously, under such a Bernstein condition, (38) further implies, taking γ = n
− κ

2κ−1+ρ and
assuming that n > (2B)−

2κ−1+ρ
κ−1 , that for all zn ∈ Zn,

COMPv(γ)(F , f̂)

n
+ γ .

(
(AL)

2ρ
ρ+1 + 1

)
·B

1−ρ
1+ρn

− κ
2κ−1+ρ . (40)

We used the notation κ = β−1 here to make the results more easily comparable to Tsybakov (2004)
and Audibert (2004); however, the result still holds for the case β = 0 if we simply replace κ−1 by β
in all exponents above; e.g. κ/(2κ− 1) in (39) becomes 1/(2− κ−1) = 1/(2− β).
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D.2. Recovering Bounds under Bernstein Conditions for Large Classes

We now show how Lemma 8 can recover the optimal rates under the Tsybakov margin condition and
the best known rates for ERM under Bernstein-type conditions. While other techniques can achieve
the same rates for ERM, we feel that our approach embodies a simpler analysis for the polynomial
entropy case; it also leads to new results for other estimators, as shown in the long version.

Theorem 26 Assume that the β-Bernstein condition holds for F as in Corollary 25 and define
κ := β−1. Let f̂ be ERM on F . First suppose F is of VC-type as in (31) with exponent V . Then
there is a universal constant C1 such that for all n large enough so that Vn log ALn

V + τ ≤ B1/(1−β),
we have

EZ∼P

[
Rf̂ (Z)

]
Eψ1(n) C1

(
B

(
V log

ALn

V

)) κ
2κ−1

· n−
κ

2κ−1 , (41)

where ψ1(n) = 1
6B ·

(
B
(
V log ALn

V

))(κ−1)/(2κ−1)

nκ/(2κ−1) � (log n)(κ−1)/(2κ−1) · nκ/(2κ−1).

Analogously, suppose that F has polynomial empirical entropy as in (32) or is a set of classifiers of
polynomial entropy with bracketing as in (33) with exponent ρ. Then there is a C2 such that for all n
large enough so that n > (2B)−

2κ−1+ρ
κ−1 , we have

EZ∼P

[
Rf̂ (Z)

]
Eψ2(n) C2

[(
(AL)

2ρ
ρ+1 + 1

)
·B

1−ρ
1+ρ · n−

κ
2κ−1+ρ

]
, (42)

where ψ2(n) = 1
6 · n

κ+ρ
2κ−1+ρ .

In the long version, we extend this result to general deterministic estimators. The ESI (42) of
Theorem 26 combined with part (ii) of Proposition 3 implies that, with probability at least 1 − δ,
ERM obtains the rate n−

κ
2κ−1+ρ + n

− κ+ρ
2κ−1+ρ · log 1

δ . For sets of classifiers of polynomial entropy
with bracketing, the rate n−

κ
(2κ−1+ρ) is known to be optimal, matching results of Tsybakov (2004,

Theorem 1), Audibert (2004) (see the discussion after Theorem 3.3), and Koltchinskii (2006, p. 36).
Outside of classification, for classes of polynomial empirical entropy the rate we obtain is to our
knowledge the best known for ERM. In particular, if the nonparametric class is convex and the loss
is exp-concave, then κ = β = 1, and our rates for ERM are minimax optimal (Rakhlin et al., 2017,
Theorem 7). Yet, there are cases where β < 1 in which an aggregation scheme can obtain a rate as if
β = 1; one such example is in the case of squared loss with a non-convex class (Rakhlin et al., 2017;
Liang et al., 2015).
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Appendix E. Proofs omitted from the main text

E.1. Proofs for Section 2

Proof of (5) The proof of this result is simple enough to state in just a few lines:

COMP(F , f̂) ≤ 1

η
log

∫
Zn

max
k∈K

sup
f∈Fk

qf (zn)dν(zn)

≤ 1

η
log

∫
Zn

∑
k∈K

sup
f∈Fk

qf (zn)dν(zn)

≤ 1

η
log |K|+ 1

η
max
k∈K

log

∫
Zn

sup
f∈Fk

qf (zn)dν(zn).

Proof of Proposition 1 The first result follows since, by Jensen’s inequality applied to (9), we have,
using the definition of w and Fubini’s theorem, that S(F , Π̂, w) is at most

EZn∼P Ef∼Π̂|zn

[
e−ηRf (zn)

C(f)
· w(zn, f)

]
= EZn∼P Ef∼Π

[
e−ηRf (zn)

C(f)

]
= Ef∼Π

[∫
zn
qf (zn)dν(zn)

]
,

which equals 1. For (12), plug in our choice of w into the definition of COMP.

E.2. Proofs for Section 3

Proof of Proposition 3 Jensen’s inequality yields (i). Apply Markov’s inequality to e−η(U−U ′) for
(ii).

Proof of Theorem 4 Let us abbreviate ANN(f) = nEANN,η
Z̄∼P

[
Rf (Z̄)

]
. By the definition of ESI (13)

we see that the statement in the theorem is equivalent to

EZn∼P

exp

(
η ·
(
Ef∼Π̂|Zn

[
ANN(f)

]
− COMPFULL(F , Π̂, w, Zn)

)) = 1. (43)

Plugging in the definition of COMPFULL and then COMP, the left-hand side can be rewritten as

E

exp

η ·(Ef∼Π̂|Zn

[
ANN(f)−Rf (Zn)

]
− 1

η
·
(
Ef∼Π̂|Zn

[
− logw(f, Zn)

]
+ log S(F , Π̂, w)

))


=

E

exp

(
η ·
(
Ef∼Π̂|Zn

[
ANN(f)−Rf (Zn)

]
− 1

η · Ef∼Π̂|Zn

[
− logw(f, Zn)

]))
EZn∼P

[
exp

(
−Ef∼Π̂|zn

[
ηRf (zn) + logC(f)− logw(zn, f)

])] ,

where the denominator is just the definition of S. It is thus sufficient to prove that this expression is
equal to 1. But this is immediate from the definition of C(f) and ANN(·).
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Proof of Lemma 7 For clarity, let ā and b̄ refer to the constants a and b from part 1(a) of Theorem
5.4 of Van Erven et al. (2015). Apply that result with b̄ = 1

2ā , ā = 1/2, and the u function there
set to x 7→ Bxβ . Note that although the statement of Theorem 5.4 actually imposes the stronger
condition that the loss ` be [0, 1/2]-valued, the proof thereof only requires that Rf ∈ [−1/2, 1/2]
a.s. for all f ∈ F .

Proof of Corollary 9 For (16), start with Lemma 8 with η = v(γ)/2 for the desired γ > 0, and
then apply Theorem 4 to (stochastically) upper bound the annealed excess risk term. Since v(γ) ≤ 1
by assumption, we have Cv(γ)/2 ≤ 3. For (17), start with (16), and take w ≡ 1 and Π̂(· | Zn) equal
to the Dirac measure on f̂|Zn . From these settings and the optimality of ERM for the empirical risk,
COMPFULL(F , Π̂, w, Zn) reduces to the simpler form COMP(F , f̂).

E.3. Proof of Theorem 10

We first prove the results that imply the first inequality of (19) and then prove the result that implies
the second inequality.

E.3.1. PROOF OF FIRST INEQUALITY OF (19)

The first inequality of (19) from Theorem 10 is a consequence of Lemmas 11 and 12, which we
prove in turn.

Proof of Lemma 11

eη·COMPη(F) = S(F) = EZn∼Qf0

[
sup
f∈F

qf (Zn)

qf0(Zn)

]

= EZn∼Qf0

exp

(
sup
f∈F

log
qf (Zn)

qf0(Zn)

)

≤ EZn∼Qf0

exp

sup
f∈F

log
qf (Zn)

qf0(Zn)
− EZn∼Qf0

[
log

qf (Zn)

qf0(Zn)

]

 ,

where the inequality follows because the second term inside the supremum is a negative KL-
divergence. Now, using the definition of Qf and Qf0 , the above is equal to

EZn∼Qf0


exp


η sup
f∈F


n∑
j=1

(
`f0(Zj)− `f (Zj)

)
− EZn∼Qf0

 n∑
j=1

(
`f0(Zj)− `f (Zj)

)
︸ ︷︷ ︸

Tn




.

It remains to prove Lemma 12.
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Proof of Lemma 12 First, from our assumption on the loss and η ≤ 1 together imply that

sup
f,g∈F

ess sup
{
η
(
`f (Z)− `g(Z)− E[`f (Z)− `g(Z)]

)}
≤ 1.

Our goal now is to be able to apply Talagrand’s inequality. To this end, observe that

sup
f,g∈F

Var
[
η
(
`f (Z)− `g(Z)− E[`f (Z)− `g(Z)]

)]
≤ η2 sup

f,g∈F
‖(`f − `g)‖2L2(Qf0 ).

Now, if F had a small L2(Qf0) diameter, then the Lipschitzness of the loss would imply that the
above term is also small. However, by assumption, the class F is only known to have small L2(P )
diameter (of at most ε). Lemma 27 (stated after this proof) effectively bridges the gap between these
two pseudonorms, showing that

sup
f,g∈F

‖`f − `g‖L2(Qf0 ) ≤ eL sup
f,g∈F

‖f − g‖L2(P ), (44)

which is then at most eL ε = σ.
Bousquet’s version of Talagrand’s inequality (see Theorem 2.3 of Bousquet (2002) or, for a more

direct presentation, Theorem 12.5 of Boucheron et al. (2013)) now yields

EQf0 [eληT
(k)
n,η ] ≤ exp

(
EQf0 [ηT (k)

n ] + (eλ − (λ+ 1))(nη2σ2 + 2EQf0 [ηT (k)
n ])

)
.

Inequality (20) now follows by taking λ = 1.

The following lemma was used to control the complexity of the class F .

Lemma 27 For the supervised loss parameterization,

‖`f − `g‖L2(Qf0 ) ≤ e · L‖f − g‖L2(P ). (45)

For the direct parameterization,

‖`f − `g‖L2(Qf0 ) ≤ e‖f − g‖L2(P ). (46)

Proof of Lemma 27 We first prove (45), the supervised loss parameterization result. The Lipschitz
assumption on the loss implies that

E(X,Y )∼Qf0

[(
`f (X,Y )− `g(X,Y )

)2] ≤ L2 EX∼Qf0

[(
f(X)− g(X)

)2]
.

Next, observe that for ∆(x) =
qf0 (x)

p(x)

EX∼Qf0

[(
f(X)− g(X)

)2]
= EX∼P

[
∆(x)

(
f(X)− g(X)

)2]
.

Since the inside of the expectation is nonnegative, it remains to upper bound ∆(x). By definition,

∆(x) =
p(x)

∫
p(y | x)e−ηRf (x,y)dy

p(x)E(X̄,Ȳ )∼P

[
e−ηRf (X̄,Ȳ )

] =
EY∼P |X=x

[
e−ηRf (x,Y )

]
E(X̄,Ȳ )∼P

[
e−ηRf (X̄,Ȳ )

] ≤ eη ≤ e,
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since η ≤ 1 and the excess loss random variable takes values in [−1/2, 1/2].
We now prove the direct parameterization result (46). Observe that for ∆(z) =

qf0 (z)

p(z)

EZ∼Qf0

[(
`f (Z)− `g(Z)

)2]
= EZ∼P

[
∆(Z)

(
f(Z)− g(Z)

)2]
,

where we use the fact that `f = f for all f ∈ F in the direct parameterization. As above, it remains
to upper bound ∆(z). By definition,

∆(z) =
p(z)e−ηRf (z)

p(z)EZ̄∼P

[
e−ηRf (Z̄)

] ≤ eη ≤ e.

E.3.2. PROOF OF SECOND INEQUALITY OF (19)

The second inequality of (19) is a consequence of the first part of (19) and a standard empirical
process theory result, Lemma 13. For completeness, we provide a proof of this result below.

Proof of Lemma 13 Recall that G = {`f0 − `f : f ∈ F}, and let ε1, . . . εn be independent
Rademacher random variables. In the below, both Zn and Z̄n are drawn from Qf0 .

The following sequence of inequalities is a standard use of symmetrization from empirical
process theory:

E

sup
f∈F


n∑
j=1

(
`f0(Zj)− `f (Zj)

)
− E

 n∑
j=1

(
`f0(Z̄j)− `f (Z̄j)

)



= E

sup
g∈G


n∑
j=1

g(Zj)− E

 n∑
j=1

g(Z̄j)





≤ E

sup
g∈G

n∑
j=1

(
g(Zj)− g(Z̄j)

)
= E

sup
g∈G

n∑
j=1

εj
(
g(Zj)− g(Z̄j)

)
≤ 2E

sup
g∈G

n∑
j=1

εjg(Zj)


≤ 2E

sup
g∈G

∣∣∣∣∣∣
n∑
j=1

εjg(Zj)

∣∣∣∣∣∣
 .
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E.4. Proof of Theorem 24 (subsumes proof of Theorem 17)

Proof of Theorem 24 Taking the results of Corollary 14 and dividing by n gives the two inequalities

COMPη(F)

n
≤ logN (F , L2(P ), ε/2)

nη
+

3

n
max
k∈[Nε]

EZn∼Qfk

[
T (k)
n

]
+ ησ2 (47)

and
COMPη(F)

n
≤ logN (F , L2(P ), ε/2)

nη
+ 6 max

k∈[Nε]
EZn∼Qfk

[
Rn(Gk | Zn)

]
+ ησ2, (48)

where we remind the reader that Nε = N (F , L2(P ), ε/2).
In the below applications of Theorems 22 and 23, we make use of the following two observations.

First, from Lemma 27 (which we previously applied to yield (44)), it follows that the L2(Qfk)
diameter of Gk is at most σ. Second, for any distribution Q ∈ ∆(Z), for all u > 0,

N (Gk, L2(Q), u) = N ({`f : f ∈ Fε,k}, L2(Q), u) ≤ N (Fε,k, L2(Q), u/L) (49)

and (in the case of sets of classifiers)

N[ ](Gk, L2(Qfk), u) = N[ ]({`f : f ∈ Fε,k}, L2(Qfk), u) = N[ ](Fε,k, L2(Qfk), u) (50)

≤ N[ ](Fε,k, L2(P ), u/e);

in both (49) and (50), the first equality holds because Gk is a shifted version of {`f : f ∈ F}. In the
case of the supervised loss parameterization, the inequality in (49) holds from the Lipschitzness of
the loss, and, in the case of the direct parameterization, the inequality is actually equality (recall that
L = 1 in this case). The second equality of (50) holds because we only consider sets of classifiers
with 0-1 loss. Lastly, the inequality in (50) is due to the 1-Lipschitzness of 0-1 loss for sets of
classifiers and Lemma 27. From (49), if F is a VC-type class (and hence so is Fε,k), then Gk also is a
VC-type class. Analogously, if F has polynomial empirical entropy, the same property extends to Gk.
From (50), if F is a class whose L2(P ) entropy with bracketing is polynomial (and hence so is Fε,k),
then Gk is a class whose L2(Qfk) entropy with bracketing is polynomial with the same exponent.

VC-type classes. First, Theorem 28 (stated after this proof) implies that, for all u > 0,

N (F , L2(P ), u) ≤
(

2A

u

)V
.

Starting from (48), inequality (34) from Theorem 22 combined with (49) then implies that (coarsely
using η ≤ 1)

COMPη(F)

n
.
V log 4A

ε

nη
+ max

{√
V

n
σ

√
log

AL

σ
,
V U

n
log

AL

σ

}
+ ησ2

.
V log 4A

ε

nη
+ max

{√
V

n
L ε

√
log

A

ε
,
V U

n
log

A

ε

}
+ (Lε)2.

Finally, setting ε = 4
L

√
V
n yields (up to a universal multiplicative constant) the bound

V log ALn
V

nη
+ max

{
V

n

√
log

ALn

V
,
V

n
log

ALn

V

}
+
V

n
.

V log ALn
V

nη
,

where we used the assumption that η ≤ 1. This proves (37).
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Classes of polynomial empirical entropy or polynomial entropy with bracketing. The first
order of business is to control Nε = logN (F , L2(P ), ε/2). In the case of classes of polynomial
empirical entropy, we again invoke Theorem 28 to conclude that, for all u > 0,

logN (F , L2(P ), u) ≤
(

2A

u

)2ρ

.

In the case of sets of classifiers of polynomial entropy with bracketing, the L2(P ) entropy can be
controlled by the relationship

logN (F , L2(P ), u) ≤ logN[ ](F , L2(P ), u) = logN[ ](F , L1(P ), u2) ≤
(
A

u

)2ρ

.

Next, for (i) classes of polynomial empirical entropy, we start from (48) and apply inequality (35)
from Theorem 22 combined with (49); or (ii) for classes of polynomial entropy with bracketing, we
start from (47) and apply3 Theorem 23 combined with (50); both cases imply that, for 0 < η ≤ 1,
using ρ < 1,

COMPη(F)

n
.

1

nη

(
2A

ε

)2ρ

+ max

{
(AL)ρ√

n
σ1−ρ,

(AL)2ρ/(ρ+1)U (1−ρ)/(1+ρ)

n1/(1+ρ)

}
+ ησ2

.
1

nη

(
A

ε

)2ρ

+
AρL√
n
ε1−ρ + η

ρ−1
ρ+1 · (AL)2ρ/(ρ+1)

n1/(1+ρ)
+ η · (Lε)2. (51)

(the enlargement of the third term will not affect the rates, as will now become clear). We now set
ε := C0n

− 1
2(1+ρ) · η−

1
1+ρ for a constant C0 > 0 to be determined later (this choice for ε was obtained

by minimizing the sum of the first and second terms in the last line of (51) by setting the derivative
to 0). With this choice, we get, as a very simple yet tedious calculation shows:

n−1η−1ε−2ρ = C−2ρ
0 · n−

1
1+ρ · η

ρ−1
ρ+1

n−1/2ε1−ρ = C1−ρ
0 · n−

1
1+ρ · η

ρ−1
ρ+1

ηε2 = C2
0 · n

− 1
1+ρ · η

ρ−1
ρ+1

so that (51) becomes

COMPη(F)

n
. CA,C0,L · n

− 1
1+ρ · η

ρ−1
ρ+1 (52)

where

CA,C0,L =

(
2A

C0

)2ρ

+AρLρ(C0 e)
1−ρ + (AL)2ρ/(ρ+1) + (eLC0)2. (53)

Plugging in C0 = Aρ/(ρ+1)L−1/(ρ+1), the four terms become of the same order:

CA,C0,L .
(
L1/(ρ+1)A

1− ρ
ρ+1

)2ρ
+ L

1− 1−ρ
1+ρA

ρ+
ρ(1−ρ)
ρ+1 + (AL)2ρ/(ρ+1) + (L

1− 1
1+ρA

ρ
ρ+1 )2

. (AL)2ρ/(ρ+1),

3. Note that in classification, for any Q, the L1(Q) diameter is equal to the square of the L2(Q) diameter.
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and (38) follows.

The above proof made use of the universal L2(P ) metric entropy being essentially equivalent to
the universal L2(Pn) metric entropy. This result extends an analogous result of Haussler (1995) for
VC classes (see Corollary 1 therein).

Theorem 28 (Extended Haussler)
Let F be a class of functions over a space S . Suppose that, for all ε > 0 and all n ∈ N, there is

some function ψ : R+ → N such that

sup
s1,...,sn∈S

N (F , L2(Pn), ε) ≤ ψ(ε).

Then, for any probability measure P ∈ ∆(S) and any ε > 0,

N (F , L2(P ), ε) ≤ ψ(ε/2).

The proof is essentially due to Haussler with little change to the argument for the more general result.

Proof of Theorem 28 Let d be some pseudometric on F . We say that U ⊂ F is ε separated if, for
all f, g ∈ U , it holds that d(f, g) > ε. Let the ε-packing numberM(F , d, ε) be the maximal size of
an ε-separated set in F .

The packing numbers and covering numbers satisfy the following relationship (Vidyasagar, 2002,
Lemma 2.2)

M(F , d, ε) ≤ N (F , d, ε/2).

Thus, it is sufficient to boundM(F , L2(P ), ε).
Suppose thatM(F , L2(P ), ε) >M(F , L2(Pn), ε), and take U to be some ε-separated subset

of F in the L2(P ) pseudometric of cardinality |U | >M(F , L2(Pn), ε).
Next, draw s1, . . . , sn i.i.d. from P . Since U is finite, by taking n large enough we can ensure

that the event Af,g, defined as,

‖f − g‖L2(Pn) =

 1

n

n∑
j=1

(f(sj)− g(sj))

1/2

< ε,

occurs with probability at most 1
|U |2 . Since

(|U |
2

)
< |U |2, it follows that the probability that no event

Af,g occurs among all f, g ∈ U is positive. Hence, there exists a set of points s1, . . . , sn for which U
is an ε-packing in the L2(Pn) pseudometric. But then it must be the case thatM(F , L2(Pn), ε) ≥
|U |, contradicting our assumption that |U | >M(F , L2(Pn), ε).
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E.5. Proof of Corollary 25 (subsumes proof of Corollary 18)

Proof of Corollary 25 To see (39), we begin by upper bounding
COMPv(γ)(F)

n using (37) with η =

v(γ) = min
{
γ1−β

B , 1
}

(from Lemma 7). Tentatively suppose that Bγ−(1−β) ≥ 1; then v(γ)−1 .

Bγ−(1−β), and hence

COMPv(γ)(F , f̂)

n
+ γ .

B

n

(
V log

ALn

V
+ τ

)
γ−(1−β) + γ.

Tuning γ such that it is equal to the first term on the RHS above yields (39); it is simple to verify that
the supposition Bγ−(1−β) ≥ 1 is ensured by the constraint on n stated in the corollary.

We now prove (40). Let γn := n
− κ

2κ−1+ρ be the value of γ used at sample size n. We get from
the definition of the Bernstein condition and Lemma 7 that

ηn := v(γn) = B−1
(
n
− κ

2κ−1+ρ

)(κ−1)/κ
= B−1n

− κ−1
2κ−1+ρ

for all n for which the RHS above is at most 1. This will hold whenever n ≥ (1/B)
2κ−1+ρ
κ−1 . For

such n, we will also have ηn ≤ 1 and thus can apply (38), plugging in η = ηn = v(γn). The result
follows by simple algebra for all n larger than the given bound.

E.6. Proof of Theorem 26 (subsumes proof of Theorem 20)

Proof of Theorem 26 For both results, observe from Corollary 9 that, for all γ > 0,

EZ∼P

[
Rf̂ (Z)

]
Ev(γ)·n/6

3
(

COMPv(γ)/2(F , f̂)
)

n
+ 4γ. (54)

The result now follows by plugging in (39) and (40).
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