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Abstract

Partial monitoring is a generalization of the well-known multi-armed bandit framework where the
loss is not directly observed by the learner. We complete the classification of finite adversarial
partial monitoring to include all games, solving an open problem posed by Bartok et al. (2014).
Along the way we simplify and improve existing algorithms and correct errors in previous analyses.
Our second contribution is a new algorithm for the class of games studied by Barték (2013) where
we prove upper and lower regret bounds that shed more light on the dependence of the regret on
the game structure.

Keywords: Partial monitoring, online learning.

1. Introduction

Partial monitoring is a generalization of the bandit framework that relaxes the relationship between
the feedback and the loss. This makes the framework applicable to a wider range of problems such
as spam filtering and product testing. Equally importantly, it offers a rich and elegant framework to
study the exploration/exploitation dilemma beyond bandits.

We consider the finite adversarial version of the problem where a learner and adversary interact
over n rounds. At the start of the game the adversary secretly chooses a sequence of n outcomes
from a finite set. In each round the learner chooses one of finitely many actions and receives a
feedback that depends on its action and the choice of the adversary for that round. The loss is
also determined by the action/outcome pair, but is not directly observed by the learner. Although
the learner does not know the choices of the adversary, the feedback/loss functions are known in
advance and the learner must use them to estimate the behavior of the adversary. The learner’s
goal is to minimize the regret, which is the difference between the total loss suffered and the loss
that would have been suffered by playing the best single action given knowledge of the adversaries
choices.

Contributions

e We develop an improved version of NEIGHBORHOODWATCH by Foster and Rakhlin (2012)
that correctly deals with degenerate games and completes the classification for all finite partial
monitoring games, closing an open question posed by Bartok et al. (2014). At the same time
our algorithm is simpler and enjoys a regret guarantee that holds with high probability.
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e Barték (2013) introduced a class of partial monitoring games and suggested a complicated
algorithm with improved regret relative to NEIGHBORHOODWATCH. We propose a novel
algorithm and prove that for these games its regret satisfies O(F'y/nKjo log(K)), where
K is the number of actions and F' is the number of feedback symbols. The quantity Ko
depends on the game and satisfies Ko < K. This bound improves on the result of Bartok
(2013) in several ways: (a) we eliminate the dependence on arbitrarily large game-dependent
constants, (b) the new algorithm is simpler and (c¢) our bound is better by logarithmic factors
of the horizon.

e We prove a variety of lower bounds. First correcting a minor error in the proof by Bartok et al.
(2014) and second showing the linear dependence on the number of feedbacks is unavoidable
in general, which together with the previous item makes a step towards understanding how
the regret depends on the structure of the game beyond the basic classification.

Problem setup Given a natural number n let [n] = {1,2,...,n}. We use (z,y) to denote the
usual inner product in Euclidean space. The d-simplex is Py = {z € [0,1]%*! : ||z, = 1}, where
|||, is the p-norm of z. The relative interior of Py is 1i(Py) = {z € (0, 1)@+ ||z, = 1}. The
dimension of a set A C R+ is the dimension of its affine hull. For any set A the indicator function
is 1 4(+) and for function f : A — R the supremum norm of f is || || ., = sup,c4 |f(a)|.

A partial monitoring problem G = (L, ®) is a game between
a learner and an adversary over n rounds and is specified by a loss | Game type R (G)
matrix £ € [0,1)5*F and a feedback matrix ® € [F)5*F for natural Trivial 0
numbers E/, F'and K. Atthe beginning of the game the learner is given YR
L and ¢ and the adversary secretly chooses a sequence of outcomes Easy O ")
i1.n = (i1,...,1,) where i; € [E] for eacht € [n]. In each round ¢ the | Hard O(n*/?)
learner chooses an action A; € [K] and observes feedback ®; = ®4,;,. | Hopeless Q(n)

The loss incurred by playing action a in round t is yiq = Lg4i,. The
loss in partial monitoring is not observed by the learner, even for the action played. A policy m
is a map from sequences of action/observation pairs to a distribution over the action-set [K]. The
performance of a policy 7 is measured by its regret,

n 7-:n: — Yta) - 1
Ry (7, i1:0) g%;(ytAt Yta) (D

When the outcome sequence and policy are fixed we abbreviate R,, = R,,(7,41.,). The minimax
expected regret associated with partial monitoring game G is the worst-case expected regret of the
best policy. R} (G) = inf; max;,,, E[R,(m,1.,)] where the inf is taken over all policies, the max
over all outcome sequences of length n and the expectation with respect to the randomness in the
actions. We let ; = o(Aj, Ag, ..., A;) be the o-algebra generated by the information available
after round ¢ and abbreviate E;[-]| = E[- | F;]. A core question in partial monitoring is to understand
how £ and & affect the growth of R} (G) in terms of the horizon. The main theorem of Bartok et al.
(2014) shows that for all ‘nondegenerate’ games the minimax regret falls into one of four categories
as illustrated in the table. The colloquial meaning of the adjective degenerate suggests that only
nondegenerate games are interesting, but this is not the case. The term is used in a technical sense
(to be clarified soon) referring to a subclass of games that we have no reason to believe should be
less important than the nondegenerate ones.
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Related work The study of partial monitoring started with the work by Rustichini (1999) where
the definition of regret differed slightly from what is used here and the results have an asymptotic
flavor. These results have been strengthened in an interesting line of work by Mannor and Shimkin
(2003); Lugosi et al. (2008); Perchet (2011a,b); Mannor et al. (2014); Kwon and Perchet (2017).
The definition of the regret in Eq. (1) was first considered by Piccolboni and Schindelhauer (2001),
who showed that a variant of exponential weights achieves O(n3/ 4) regret in nontrivial games.
This was improved to O(nQ/ 3) by Cesa-Bianchi et al. (2006), who also showed that in general this
result is not improvable, but that there exist many types of game for which the regret is O(nl/ .
They posed the question of classifying finite adversarial partial monitoring games in terms of the
achievable minimax regret. An effort started around 2010 to achieve this goal, which eventually led
to the paper by Bartdk et al. (2014) who made significant progress towards solving this problem. In
particular, they gave an almost complete characterization of partial monitoring games by identifying
four regimes: trivial, easy, hard and hopeless games. The characterization, however, left out the
set of games with actions that are only optimal on low-dimensional subspaces of the adversaries
choices. Although these actions are never uniquely optimal, they can be informative and until now
it was not known how to use these actions when balancing exploration and exploitation. Games
in this tricky regime have been called ‘degenerate’, but there is no particular reason to believe
these games should not appear in practice. This problem is understood in the stochastic variant
of partial monitoring where the adversary chooses the outcomes independently at random (Antos
et al., 2013), but a complete understanding of the adversarial setup has remained elusive. There is
a modest literature devoted to the stochastic setting (Bartok et al., 2011), where the degenerate case
is understood (Antos et al., 2013). The asymptotics are also understood (Komiyama et al., 2015)
and there exist quite practical algorithms (Vanchinathan et al., 2014). Extensions to infinite-action
games also exist (Lin et al., 2014).

2. The structure of partial monitoring and classification

To illustrate some of the difficulties of partial monitoring relative to bandits we formalize a simplistic
version of the spam filtering problem.

L S Not
Example 1 Let ¢ > 0 and define partial monitoring game S;Z:n(ﬁ) Opam I S
G = (£, ®) by Not spam 1 0
0 1 11 Don’t know c c
L=1|1 0], d=(1 1]. Feedback (®) | Spam | Not spam
c ¢ 1 2 Spam 1 1
Not spam 1 1
The idea is also illustrated in the tables on the right. Rows | Don’t know 1 2

correspond to actions of the learner and columns to outcomes

selected by the adversary. The learner has three actions in this game corresponding to ‘spam’, ‘not
spam’ and ‘don’t know’ while the adversary chooses between ‘spam’ and ‘not spam’. The learner
suffers a loss of 1 if it guesses incorrectly. Alternatively the learner can say they don’t know in
which case they suffer a loss of ¢ and observe some meaningful feedback. The minimax regret for
this game depends on the price of information. If ¢ > 1/2, then the minimax regret is ©(n?/?). On
the other hand, if ¢ € (0,1/2] the minimax regret is ©(n'/2). Finally, when ¢ = 0 a policy can
suffer no regret by playing just the third action.
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0 1 11
Example 2 The game on the right is hopeless because the learner £ = <1 0> d = (1 1)
cannot gain information about her loss and the adversary can always

force the expected regret to be Q(n).

Cell decomposition In order to understand what makes a partial monitoring game hard, easy or
hopeless, it helps to introduce a linear structure. Let uy = e;;, € Pg_1 be the standard basis
vector that is nonzero in the coordinate of the outcome ¢; chosen by the adversary in round ¢. For
action a let £, € [0,1]¥ be the ath row of matrix £. The cell C, of action a is the subset of
Pr—1 on which action a is optimal: C, = {u € Pg_1 : (€g,u) < miny,q(ly,u)}. Action a
is optimal in hindsight if and only if % Y iequr € Cq. Each nonempty C, is a polytope and the
collection {C, : a € [K]} is called the cell decomposition of G. An action is called dominated
if it is never optimal: C, = (). We define the dimension of nondominated action a to be the
dimension of C,, which ranges between 0 and £ — 1. Nondominated actions with dimension
less than ' — 1 are called degenerate while actions with dimension E' — 1 are called Pareto
optimal. A partial monitoring game is degenerate if it has at least one degenerate action. For
each u € Pr_1 leta}, € argmin, (¢,, u) and af € argmin, > ", (£s, us), which means that a, is
an optimal action if the adversary is playing v on average and ay is the optimal action in hindsight
when the adversary plays the sequence (uj,...,u;). Without loss of generality we assume that
a; and aj are nondegenerate. A pair of nondegenerate actions a, b are neighbors if Cy N Cp, has
dimension E — 2. They are weak neighbors if C, N Cy, # (). Actions a and b are called duplicates
if 4, = £,. We let N, be the set of actions consisting of a and its neighbors. For any pair of
neighbors (a, b) let Ny = {c € [K]: C, N Cy C C..}. Although a is not a neighbor of itself we
define Ny, = 0.

Lemma 1 (Bartok et al. 2014, Lem. 11) Let a and b be neighbors. Then for all d € Ny, there
exists a unique o € [0, 1] such that {g = olg + (1 — )by,

A corollary is that for d € N, and if « from the lemma lies in (0, 1), then Cy = Cy N Cp.
Degenerate and dominated actions can never be uniquely optimal in hindsight, but they can provide
information to the learner that proves the difference between a hard and hopeless game (or easy and
hard). This is also true for duplicate actions, which have the same loss, but not necessarily the same
feedback.

Observability The neighborhood structure determines which actions can be uniquely optimal and
when. This is only half of the story. The other half is the relationship between the feedback and
loss matrices that defines the difficulty of identifying the optimal action. A natural first attempt
towards designing an algorithm would be to construct an unbiased estimator of y;, for each Pareto
optimal action a. A moments thought produces easy games where this is impossible (Exhibit 1
in Appendix H). A more fruitful idea is to estimate the loss differences v, — y;p for Pareto
optimal actions a and b, which is sufficient (and essentially necessary) to discover the optimal
action. Suppose in round ¢ the learner has chosen to sample A; ~ P, where P, € ri(Px_1).
A conditionally unbiased estimator of vy, — yu is a function ¢ : [K] x [F] — R such that
Ei1[9(As, @1)] = Y. Picg(c, Pei,) = Yta — Y- Whether or not such an estimator exists and
its structure determines the difficulty of a partial monitoring game. A pair of actions (a,b) are
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called globally observable if there exists a function v : [K] x [F] — R such that

K
> w(e, Bei) = Loy — Ly foralli € [E]. 2)

c=1

They are locally observable if in addition to the above a and b are neighbors and v(c, f) = 0
whenever ¢ ¢ Ny Finally, they are pairwise observable if v(c, f) = 0 whenever ¢ ¢ {a,b}. If
the learner is sampling action A; from distribution P, € ri(Px_1), then the existence of a function
satisfying Eq. (2) means that v( Ay, ®;)/P;4, is an unbiased estimator of (€, — y, ut) = Yta — Y- A
game G is called globally/locally observable if all pairs of neighbors are globally/locally observable.
A game is called point-locally observable if all pairs of weak neighbors are pairwise observable. The
cell decomposition and observability structure for the spam game is described in detail in Exhibit 2.
Note that in globally observable games it is easy to see that any pair of Pareto optimal actions are
globally observable, not just the neighbors.

Classification theorem The following theorem classifies partial monitoring games into four
categories depending on the observability structure.

Theorem 2 The minimax regret of partial monitoring game G = (L, ®) satisfies

0, if G has no pairs of neighboring actions ;
(:)(nl/ 3), if G is locally observable and has neighboring actions ;

R*
O(n?/3), if G is globally observable, but not locally observable ;

n

(@) =
Q(n), otherwise .

The theorem follows by proving upper and lower bounds for each class of games. Most of the
pieces already exist in the literature. The upper bound for globally observable games is by Cesa-
Bianchi et al. (2006). The upper bound for games with no pairs of neighboring actions is trivial,
since in this case there exists an action ¢ with C, = Pg_; and playing this action alone ensures
zero regret. The lower bound for easy games is by Antos et al. (2013, §6) and for hard games by
Bartok et al. (2014, §4). All that remains is to prove an upper bound for locally observable games
with at least one pair of neighboring actions.

3. Algorithm for locally observable games

Fix a locally observable game G = (L, ®) with at least one pair of neighboring actions. We
introduce a policy called NEIGHBORHOODWATCH?2 (Algorithm 1).

Preprocessing The new algorithm always chooses its action A; € u2
Umb./\/ab where the union is over pairs of neighboring actions. For

example, in the game with cell decomposition shown in Figure 1 the Ca
policy only plays actions 1, 2, 3 and 4. Removing (some) degenerate c

) . .. Cg—r SR,
actions can only increase the minimax regret so from now on we assume

that all actions in [K] are in Ny, for some neighbors a and b. Let Abe C5—>§ Cs

. . . C
an arbitrary largest subset of Pareto optimal actions such that 4 does - u1
not contain actions that are duplicates of each other and D = [K] \ A
be the remaining actions. Figure 1
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Estimating loss differences The definition of local observability means that for each pair of
neighboring actions a, b there exists a function v® : [K] x [F] — R satisfying Eq. (2) and
with v®(c, f) = 0 whenever ¢ ¢ N,;. Even though a is not a neighbor of itself, for notational
convenience we define v®(c, f) = 0 for all ¢ and f. The policy works for any such of v, but the
analysis suggests minimizing V = max, s [|[v®|~ with the maximum over all pairs of neighbors.

Algorithm 1 NEIGHBORHOODWATCH?2

fort=1,...,ndo
]lNkﬂA(a) €xp (_77 Zi;ll Zska)

t—1
D _beN,NA XD (—77 Iy Zskb)

Find distribution Pt such that 1575T = PtTQt

+ ]lD(k)]lf%(l?)

Fora,k € [K]let Qua = 1 a(k)

Compute P; = (1 — 7)REDISTRIBUTE(P;) + %1 and sample A; ~ P,

Compute loss-difference estimators for each k € A and a € N}, N A.

D ak P2 - N
Iiha = —————— and By, = 77V2 Z Pftlz and  Zika = Ztka — Btka 3)
bENak t

p—ty

unction REDISTRIBUTE (p)

q<p

for d € D do
Find a, b such that d € N, and « € [0, 1] such that {3 = b, + (1 — @)l (Lemma 1)
Ca 7aqb+?‘fﬁa)qa and ¢, <+ 1 —cq and p + ﬁ min qf—ga, qub
qd < pPCaGa + pcpgp and qq < (1 — pca)qa and g, < (1 — pep)qp

end

return q

Description In each round the algorithm first computes a collection of exponential weights
distribution Qy, € Pk _1, one for each k € A. The distribution @y, is supported on the N N A
when k € A and for £ € D it is uniform on .A. These local distributions are then combined into a
global distribution P, which is taken to be the stationary distribution of right-stochastic matrix (),
which means that

P, = Z Ptht;m forany a, k € A. ()
ke A

These steps are the same as the original NEIGHBORHOODWATCH, which samples its action from
(1 —~)P; +~1/K. This does not work when there are degenerate actions because Qyxqy = 0 when
d € D, which by the above display means that P,; = /K for actions d € D and non-adaptive
forced exploration is not sufficient for O(/n) regret in partial monitoring. This is the role of the
redistribution function, which is analyzed formally in Appendix A. The final part of the algorithm
is to estimate the loss differences for each k € A and a € N}, N A. Our choice of loss estimators
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are another departure from the original algorithm, which only updated the estimators for one local
game in each round and then used a complicated aggregation strategy.

Remark 3 The estimators Zy,, are negatively biased by By, in order to prove high probability
bounds, which is reminiscent of the Exp3.P algorithm for finite-armed adversarial bandits (Auer
et al, 2002). As a minor contribution, we generalize their analysis to the case where the loss
estimators satisfy certain constraints, rather than taking the specific importance-weighted form
used for adversarial bandits.

Theorem 4 Suppose Algorithm 1 is run on locally observable G = (L, ®) with parameters
5 €(0,1) and

n:%\/log(K/é)/(nK) and v=VKn.

Then with probability at least 1 — 0 the regret is bounded by R,, < Cg+/nlog(e/d)), where Cg is
a constant that depends on the game G, but not the horizon n or confidence level ).

The proof follows from a number of lemmas. The first was known already. A simple proof is
given in Appendix B for completeness.

Lemma 5 (Bartok et al. 2014) There exists a constant e > 0 depending only on G such that
for all pairs of actions a,a € A and u € Cj there exists an action b € N, N A such that
(b — La,u) < (bg — Uy, u)/cq.

Lemma 6 Let H be the set of functions ¢ : A — A with ¢(a) € N, for all a € A. Then for any
(Bt)1<t<n Sequence of actions in A,

n n

1
g, — Losug) < — Up, — Lypy, ) .
;< By — Loz, ) i t:1< Be — Loy Ut)

Proof Without loss of generality assume that a;, € A because A is a maximal duplicate-free subset
of Pareto optimal actions. Apply the previous lemma on subsequences of rounds where B; = a for
eacha € A. [ |

Lemma 7 Let o € (0,1). Then with probability at least 1 — 20 it holds that

1 s
Ry, <yn+ - Z max Z Py, Z Qtka (Yta — yu) + /8nlog(|H[/0) .
ke A t=1

b
eNNA - e

Proof Fort € [n], let B; ~ P;. Define the surrogate regret R, = >_1" | ({p, — Lox,us). By the
definition of A; and B, and part (b) of Lemma 12 we have E;_1[(¢£4, — {p,, u)] < 7. Furthermore,
[{(€q, — Cy,us)| < 1forall a,b. Hence, by Hoeffding-Azuma’s inequality it holds with probability at
least 1 — ¢ that

R, < R, +n++/2nlog(1/4). )



A FULL CLASSIFICATION FOR ADVERSARIAL PARTIAL MONITORING

By Lemma 6, the surrogate regret is bounded in terms of the local regret:

n

R, = Z<€Bt —Laz, w i Z Cp, — Ly, ut) - (6)

=1 £G ¢

We prepare to use Hoeffding-Azuma again. Fix ¢ € H arbitrarily. Then,

Ei1[(l, — Lo, ue)] Z Py Z Qtkalla — Lok Z Py Z Qtka(Yta — Yto(k))

ke A acA ke A acA
(7

where we used the fact that Pm =>4 f’thtka. Hoeffding-Azuma’s inequality now shows that
with probability at least 1 —

n

Z(gBt_gqﬁ Bi)s ug) ZZPththa (Yta — Yep( ))+ 2nlog(|H]/d) .

t=1 keA t=1 acA

The result is completed via a union bound over all ¢ € H and chaining with Egs. (5) and (6), and
noting that

max Z Z Ptk Z tha Yta — Ytp(k) Z max Z Ptk Z tha Yta — Yto(k ))

ke A t=1 acA ke A t=1 acA
= max P, t [ |
Z beNkmAZ tk Z tha Yta ytb)
ke A a€A
Rnk

Proof [of Theorem 4] The proof has two steps. First bounding the local regret R, for each k € A
and then merging the bounds using the previous lemma.

Step 1: Bounding the local regret For the remainder of this step we fix k£ € .4 and bound the local
regret I,,5. First, we need to massage the local regret into a form in which we can apply Theorem 15,
which is a generic version of the Exp3.P analysis by Auer et al. (2002). Let Z;, = Ptk(ym — Ytk )-
A simple rewriting shows that

= bg}\l/f:%(AZ Ptk Z tha Yta — ytb berjf\l/a%(A Z Z tha Zika — Ztkb)

acA t=1 acA

In order to apply the result in Theorem 15 we need to check the conditions. Recall that F; =
o(Ay,...,A;) and let F = (F;)7, be the associated filtration. Since (P;) and (P;) are F-
predictable, (53;) and (Z;) are also F-predictable. Similarly, (Z;) is F-adapted because (A;) and
(®,) are F-adapted. It remains to show that assumptions (a—d) are satisfied. For (a) let a € NN A.
By Lemma 12.(d) we have Py, > ~/K for all ¢t and b. Furthermore, [v™*(A;, ®;)] < V so
that 0| Zyra| = |nPuv™®(As, ®¢)/Pia,| < nVK/y = 1, where the equality follows from the

choice of 7. Assumption (b) is satisfied in a similar way with 98, = P°V? Y, Nk P2 /Py <
n?K?V?/y = nKV < 1, where in the last inequality we used the definition of i and assumed that
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n > K log(K/¢). To make sure that the regret bound holds even for smaller values of n, we require
Cg > K+/log(eK) so that when n < K?log(K/d), the regret bound is trivial. For assumption
(c), we have

- 2
5 Ptkvak(At, ‘I)t) 27 ]1/\/ At ) k Btka
E;_1 72 1= E;_1 - <V PiE 1 ak =V g t = —.
Zikal Pia, L P, t2At bEN o1 Py N

Finally, Assumption (d) is satisfied by the definition of v®* and the fact that P; € 1i(Px_1). The
result of Theorem 15 shows that with probability at least 1 — (K + 1),

Ry < Slog 3log(1/9) 52 > thaﬂtka-i-nz > QuaZia

t=1 acN;NA t=1 aeNNA

Step 2: Aggregating the local regret Using the result from the previous step in combination with
a union bound over k£ € A we have that with probability at least 1 — K (K + 1)4,

Z Rnk >~ 3K log 1/5 +5 Z Z Z thaﬁtka + n Z Z Z thaZtka : (8)

keA t=1 ke AaeNNA t=1 k€ A aeN,NA

For bounding the second term we use the definition of Sy, from (3) and write

9 ~
Z thaﬁtkazﬁv2 Z tha Z % :T]V2.l5tk Z tha Z %

aeNRNA acNLNA bEN & tb acNLNA bEN &b
The sum over b € N,y is split into two, separating duplicates of k and the rest:

S Qe @_ S Que P““+ S Qe Y 2k

P
aENLNA beEN Lk P aENRNA bzeb:ek aENENA bEN 1 by ALy, tb

= Z Ptk+ Z Z QukaLit

P,
b:ly =L, tb a€ENENABEN Ly ALy, th

<AK [>T 1+ Y 1| <4K?,

b:ly =V, aeNLNA bENaklfzﬁéek

where the first equality used that ) | Q4 = 1, the second to last inequality follows using parts (c)
and (e) of Lemma 12. Summing over all rounds and k € A yields

55T Y QuaBua <50V2Y. Y Pr(4K?) = 200KV,

t=1 ke A acNNA t=1 ke A
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For the last term in Eq. (8) we use the definition of nga and Lemma 12.(c) to show that

a Ay, By)?
WZZ Z Qtka ﬂm—nzz Z Quk tk;tQA(t t)

t=1 ke A aeNNA t=1 keAaeNkmA

ST]VQZ Zptk Z Quia P 1w, (Ar)

P,
=1 Fia, k€A  acNynA LA

Now, from Lemma 12.(d), v/K (1/P,,) < 1 for all a, and in particular, holds for a = A;.
Furthermore, E;_1[1/Pia,] = K and E; 1[1/P2 ] = > ,1/Pa < K?/v. By the result in
Lemma 17 it holds that with probability at least 1 — ¢ that > ;" | 1/P4, < 2nK + K log(1/8)/~.

Another union bound shows that with probability at least 1 — (1 + K (K + 1))J,

K log(1/8
Y Ru < 3K108(1/9) | o8, nV2K2 4 4V K log(1/6) .
ke A K

The result follows from the definition of 7, Lemma 7 and the definition of R,,. [ |

4. Algorithm for point-locally observable games

The weakened neighbor definition and pairwise observability makes the analysis of point-locally
observable games less delicate than locally observable games and the results are correspondingly
stronger. Perhaps the most striking improvement is that asymptotically the bound does not depend
on arbitrarily large game-dependent constants. Here we present a simple new algorithm based on
ExP3 called RELEXP3 (‘Relative Exp3’). The name is derived from the fact that the algorithm
does not estimate losses directly, but rather the loss differences relative to an ‘anchor’ arm that
varies over time and is the arm to which the algorithm assigns the largest probability. As we shall
see, this reduces the variance of the loss difference estimates.

Preprocessing The definition of pairwise observability means that degenerate and dominated
actions are not needed to estimate the loss differences. Since removing these actions can only
increase the minimax regret, for the remainder of this section we fix a point-locally observable
game G = (L, ®) for which there are no dominated or degenerate actions. A point-local game is a
largest subset of actions A C [K7] with [, 4 Ca # 0 (a maximal clique of the graph over actions
with edges representing weak neighbors). We let K, be the size of the largest point-local game.

Estimation functions For each pair of actions a, b let v*® be an estimation function satisfying
Eq. (2) and furthermore assume that v® = 0 and v®(c, f) = 0 if a, b are weak neighbors and ¢ ¢
{a,b}. The existence of these functions is guaranteed by the definition of a point-locally observable
game. Given pair of actions a, b let S® be the set of actions needed to estimate the loss difference
between a and b, which is S% = {a,b} U {c € [K] : exists f € [F] such that v®(c, f) # 0}. Our
assumptions ensure that S%° = {a,b} if a and b are weak neighbors. Define V* = ||v%||, and
V' = max, pe(k] V% and Vige = Max, p:C,NC, A0 V. We show in Lemma 16 in the appendix that

1% can be chosen so that Vioe < 1 + F and assume from now on that this has been done.

10
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Decreasing learning rates The algorithm makes use of a sequence of decreasing learning rates
(n:)72, and exploration parameters (a¢);2;. On top of this the algorithm also has a dynamic
exploration component that ensures the loss difference estimates are not too large. The decreasing
learning rate is one of the essential innovations that allows us to prove an asymptotic bound that is
independent of arbitrarily large game-dependent quantities. As an added bonus, it also means the
algorithm does not require advance knowledge of the horizon.

Algorithm 2 RELEXP3
Loa = O forall a € [K]

fort=1,...,ndo
exp(—neLi—1,0)
S exp(—mLi—1p)

_ : _J. .5 mVert\
Let By = argmax, P, and M; = qa: Py exp > )
Qi

For each a € [K] let P, =

a ~
Let S, = | J $* and 4 = 1, (a)n, max V& 4 = and Po= (1= |nl) P+
a€ My

Sample A; ~ P; and observe feedback ®;

’UaBt (At, (I)t)
Py,

For each a € [K] compute estimates Zha = and update Ly = IA/tfl,a + Zta

end

Theorem 8 Let G = (L, ®) be point-locally observable, then with appropriately tuned parameters
RELEXP3 satisfies

< 82K e (1 + F)(2 + F)log(K) .

lim sup
n—oo

E[Rn]
N
Remark 9 The linear dependence on F' is unavoidable in general, as we show in Appendix D.

Before the proof of Theeorem 8 we need a simple lemma showing that if actions a and b are not
weak neighbors, then the regret of either a or b grows linearly in £.

Lemma 10 There exists a game-dependent constant e > 0 such that:
(a) If a and b are not weak neighbors, then inf ,cp,_, (lq 4 €y — 20z ,u) > £q.
(b) Ifu € Pp_1and My, = {a : ({q — Lo, u) < eg}, then |My| < Kj,.

Proof For (a) let ¢ € [K] be arbitrary. Since C, N Cy = () it follows that (¢, + &5 — 20.,u) > 0
for all v € (.. By compactness of C. and the continuity of the inner product in u we
conclude that inf,cc, (¢q + €y — 20.,u) > 0. Taking the minimum over all ¢ shows that
2eq = infyuep, | (ba + €y — 204, u) > 0. For (b), leta,b € M,. Then ({, + £ — 2{gx,u) < 2eg,
which by (a) means that @ and b are weak neighbors. Therefore all actions in M,, are weak neighbors
of each other so |M,,| < Kj. |

11
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The next lemma uses the concentration of the loss estimators to show that with high probability
the distribution P; calculated by RELEXP3 assigns negligible probability to actions that are either
not neighbors of B; or for which the loss is large relative to the optimal action.

Lemma 11 Let Zy, = (b, — {p,,us) and Ly, = Zizl Zq. Then there exists an event FAIL with
P (FAIL) < 1/n and function g : N — [0, 00) such that if FAIL does not hold, then

(a) ]5ta < exp(—ng(t)) for all a that are not neighbors of By.
(b) Py < exp(—neg(t)) for all a with (L, — Loz, Uur) > eg-

(c) There exist constants cy, ca > 0 depending on G = (L, ®) and the choice of € in the definition
of ay (see Eq. (9)) such that for all t > ¢ 1og®(n) it holds that g(t) > %5075.

Proof Define random variable ¢; = max, | Zizl(zsb — T+ o — 7. sa)|- Given an arbitrary
pair of arms (a, b), from the triangle inequality we have

5 (Zoa— 24 S (o~ Za)
1

s=1 S=

>

t
Z <Zsa - Zsa + Zsb - ZSb)

s=1

‘Lta - Ltb‘ =

= |Li, — Lp| — > |Lig — Lip| — ¢

t
Z (Zsa - Zsa + Zsb - Zsb)
s=1

The quantity ¢; is bounded with high probability via a union bound over all pairs of arms and
a martingale version of Bernstein’s bound (Freedman, 1975), which shows there exists a game-
dependent constant C > 0 such that

P(exists t € [n] : ¢y > Ct?/4+e/? log%(n)) <

FAIL

S|

Choose g(t) = max{0, (t — 1)ec — Cit3/4+€/210g2 (n)}, which clearly satisfies the condition in
(c). First suppose that a is not a weak neighbor of By, 1, which by the definition of Byy1, ¢ and
Lemma 10 ensures that
Lia — fztBtH > Ly + f/tBt+1 — Qi/taf > Ltq + Lip,, — 2Lta; — 2¢1 > teg — 2¢¢ -
On the other hand if (¢, — Lay, u) > g, then
ﬁta - EtBt+1 > j—/ta - itaf > Lta - Lta;‘ - Q(bt >teg — 2¢t .

The result follows from the fact that P, < exp(nt(f)t_l, B — IA/t_La)) for any action. [ ]

Proof [of Theorem 8] Choose ¢ € (0,1/2) and

1 1 log(K)
AKV 2Vipe \| 2tKjoc

7y = min

and oy = min { t_l/Q_a} . 9)

12
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First note that the choices of 7; and a; ensures that 17¢ll; < 1/2 and so P, is indeed a probability
distribution and P,, > P,,/2 for all ¢ and a. Let IV, be the set of weak neighbors of B;. Since
E¢1[Zta] = Zia we have for p = e, that

n n n
ER) =E Y Zia, — Zuay | =B |D>_(Pi=p, Z0) | +E | > (v — |l P, Z)
t=1 t=1 t=1
n _ n
<E|> (Pi—p,Zi) | +2E ZH%\M] :
t=1 t=1

Ry,
where in the inequality we used Cauchy-Schwartz and the fact that || Z;|| ., < 1. The analysis of
exponential weights given in Theorem 2.3 of the book by Cesa-Bianchi and Lugosi (2006) yields

K . K
Z PioZq + P log (Z Piq exp <_77tZta>)
t a=1

a=1

E[f2,] < log(K) (772 4 ni) Yy
n t=1

(A

Note that we have stopped the proof before the application of Hoeffding’s lemma, which is not
appropriate for bandits due to the large range of the loss estimates. Suppose that a € My, then for
any b € S*Bt C S, we have Py, > vy > 1, VP, which means that

o Zaa| = nevB (Ay, ) < neV P 1 gas, (Ay)
a| — —_

<1.
PtAt PtAt

Then using exp(z) < 1+ x + 22 for x < 1 leads to
ﬁ)ta exp <_nt2ta) < Pta - ntptazta + nff)tazfa .

On the other hand, if a ¢ M, then by the definitions of M, Z4o and P,

- . - . - VaBt
Py €Xp <_77tZta) < P, exXp (nt‘ZtaD < P exp (nt o ) < % >
t

which by the fact that x < 1 + = < exp(z) for all x also implies that PuZia < 1 /t. Using
log(1+ ) < =,

K K
~ A 1 ~ ~
(A)t = Z Py Ziq + — IOg (Z Py, exp <_77tZta)>
a=1 Nt a=1
S 1 K - -
S ZPtaZta + a IOg (tt + 1-— Tt Z PtaZta + 77152 Z PtaZt2a>
a=1 a€ My a€ My

2K A
< T‘F??t Z PtaZtQ,l-
aEMt

13
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Next we bound the conditional second moment of Zm. If a and B, are weak neighbors, then

van, (At; CI)t)Q

2
tA:

1 {At S {CL, Bt}}

2
PtAt

PyEy 1[Z2] = PuEi < P V2 E; < 2Vi2, + o(1),

where in the last line we used the fact that Ppa, > P, whenever Ay € {a,B;} and
Ei1[1{A € {a,B}}] =2and Pia, > (1 — ||%elly)Pra, = Pea, (1 — o(1)). On the other hand, if
a and By are not weak neighbors, then E;_; [Z ] < K 2V2 /oy and so

Z PtCL ta

a€MiNN¢

+ Z ntE Z ptaZtQQ

aeMNN{

SEA] <2 Y e
t=1 t=1 t=1

< 2VIOCZntE (M) +K2v22 Tg | S P +o(vn). (10)
t= 1 a€ENf

The second sum is bounded using parts (a) and (c) of Lemma 11, which shows that
n
Yo 5 Nt UG
DB |2 Pl SP(Fan) Z;ﬁzat > exp(=mg(t) =o(vn). (1)
t=1 a€N{ a€Ny

Suppose that FAIL does not hold and define ¢y by

Vv
to = min {t : forall s > t, exp <778 — nsg(8)> < 778} )
(o S

which by part (c) of Lemma 11 and rearrangement satisfies ¢ty = O(polylog(n)). The definition of
to ensures that if ¢ > ¢ and «a is an action with (¢, — bar_ s Ui—1) > €g, then

_ VaBt vaBt Vv
Pyqexp (nt > < exp <m - mg(t)) < exp (m — ntg(t)> <M
«o Qi B ¢

t

and so a ¢ M;. Therefore when FAIL does not hold and ¢ > t,
M, C {CL : <£a - ea;‘_la'at—1> < EG} .

But by Lemma 10 the number of arms in this set is at most Kjo. and so in this case |M;| < Kjoc.
Since |M;| < K regardless of ¢ or the failure event,

n
Znt]E ’Mt < P (FAIL) Z’I’}tK-i- ZntK+ Kioe Z m = Klocznt +0(\/ﬁ)-

t=to+1 t=1

Combining the above display with Egs. (10) and (11) shows that

Z E[(A)t - 2ViocKloc Z Nt + 0(\/5) .
t=1 t=1

14
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Next we bound the sum of the expectations of ||v||;. To begin notice that if A/; contains only
neighbors of By, then S; = M; and max,e s, VP < V.. The definitions of 7 and ay = o(+/1/1)
means that [|y;||;, = 7¢|S¢| maxsenr, VPt + o(y/1/t) and so the same argument as above shows
that

2E

n
> lelly
t=1

Putting the pieces together and using the fact that > )" | \/1/t < 2y/n,

E(R,] 1 (2 log(K)

n
= 2Vioc Kioc Z M+ O(\/ﬁ) .
t=1

lim sup < limsup —
n—00 \/ﬁ n—00 n

= 8v/2Vioe (1 + Vioe) Kioent log(K) .

+ 2Kloc‘/loc(‘/ioc + 1) Z 7715)

"In t=1

The result is completed by recalling that v®(-) were chosen so that Vige < 1+ F. |

5. Summary and open problems

We completed the classification of all finite partial monitoring games. Along the way we greatly
simplified existing algorithms and analysis and proved that for a large class of games the asymptotic
regret does not depend on arbitrarily large game-dependent constants, which is the first time this
has been demonstrated in the adversarial setting. There are many fascinating open problems.
One of the most interesting is to understand to what extent it is possible to adapt to ‘easy data’.
For example, globally observable games may have locally observable subgames and one might
hope for an algorithm with O(y/n) regret if the adversary is playing in this subgame and O(n?/3)
regret otherwise. Another question is to refine the definition of the regret to differentiate between
algorithms in hopeless games where linear regret is unavoidable, but the coefficient can depend
on the algorithm (Rustichini, 1999). Yet another question is to understand to what extent V' is a
fundamental quantity in the regret for easy games and whether or not the arbitrarily large game-
dependent constants are real for large n as we have shown they are not for point-locally observable
games.
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Appendix A. Redistribution properties

Here we collect a number of properties of the REDISTRIBUTE function in Algorithm 1.

Lemma 12 Assume v € [0,1/2] and let w € Pg_1, and k,a € A arbitrary neighbors. Then
P, € Px_1 is a probability vector and the following hold:

K
(a) P> Praf4; (0) Y (P — Pia){la,u)| <

a=1

P,
(c) Py > % for any non-duplicate b € Ny, ; (d) P >7v/K;

P,
(e) P> ﬁ forany d € [K] such that Lg = {y, .

Proof First we show that P, is indeed a probability vector. By assumption P; is the stationary
distribution, which is a probability distribution. Let P, = REDISTRIBUTE(F;) so that

5

P = (1—7)Pt+E1,
which means we need to show that P; is a probability distribution. Since P; is obtained by the
iterative procedure given in the REDISTRIBUTE function it is sufficient to show that the vector ¢
tracked by this algorithm is indeed a distribution. The claim is that each loop of the REDISTRIBUTE
function does not break this property. The first observation is that the algorithm always moves mass
from actions in A to actions in D. All that must be shown is that P,, > 0 for all a € A. To see this
note first that if @ € A is one of the choices of the algorithm in Line 7, then pc,q, < po/(2K) and
o)

Pu > Py/2  forallae A>0. (12)

Part (a): Since v < 1/2 this follows from Eq. (12).
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Part (b): First we show that Zae[ K] (P — Pta)éa = 0. It suffices to show that the redistribution in
each inner loop of the algorithm does not change this value, which is true because

(cada + cbqb)la = (Caga + cvqp)(aly + (1 — a)lp)
daqb
_ o+ (1— )l
ag, + (1 — a)qa (a (1= a)b)

= pCaGala + pcuqvly -

Then using the definition of P; we have

Z(Pta_ﬁ)ta)<eaau> = Z(Pta_pta)<€aau> =7 Z (Il{_Pta> <€a7u> <7,

a€[K] a€[K] a€[K]

where we used the assumption that £, € [0, 1]¥ for all actions and u € Pg_1 so that (¢4, u) € [0, 1].
Part (c): There are three cases: Either b = k or b = a or b is degenerate. If b = k, then
the result is immediate from Part (a). If b = a, then, Part (a) combined with (4) implies that
Py = Py > Piu/4 > PuQura/4 > PuQure/(AK). Finally, if b is degenerate, then by the
definition of the rebalancing algorithm we have

5 > min(Py, Piq) S min( Py, P Qika) _ Pu.Qira
= 9K = 2K 2K

and the result follows from Eq. (12).

Part (d): This is trivial from the definition of P;.

Part (e): Let b € A be the Pareto optimal action chosen by the rebalancing algorithm when d is
given weight. Since ¢; = /¢, it follows that « = 1 and so ¢, = 1 and ¢, = 1, which means that
Py = Pta /2 and using Eq. (12) again yields the result. |

Appendix B. Proof of Lemma 5

Since u € C, 0 < (¢, — £z, u). The result is trivial if a, a are neighbors or (¢, — ¢z, u) = 0. From
now on assume that (¢, — £z, u) > 0 and that a, @ are not neighbors. Let v be the centroid of C,, and
consider the line segment connecting v and u. Then let w be the first point on this line segment for
where there exists ab € M, N A, b # a with w € C}, (see Figure 2). Note that w is well-defined by
the Jordan-Brouwer separation theorem and b is well-defined because .4 is a maximal duplicate-free
subset of the Pareto optimal actions. Using twice that (¢, — ¢;, w) = 0, we calculate

(o= o) = (o — bpyu—w) = W=l g gy ezl S0,

13)

o —wlly o —wlly

where the second equality used that w # v is a point of the line segment connecting v and u, hence
w — v and © — w are parallel and share the same direction and ||v — w||, > 0. The last inequality

18
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follows because v is the centroid of C, and a, b are distinct Pareto optimal actions. Let v, be the
centroid of C., for any ¢ € A. Then,

(g —lg,u) by — g, w+u—w) (i) (g — Ly, w) + by — La,u — w)

(ga - £b> u) <€a - Kb, U> N <£a - £b> u)
() by — Lg,u —w) © v —w||y (be — Ca, u — w)
P T — wlly G — £ar0)
@ o — wlly o — tally © V2 1
- (ly — Lq,v) = minee g mingen, o, 20, (ba — Le,ve)  €G

where (a) follows since by (13), (¢, — fp,u) > 0 and also because w € Cj implies that
(g — la,w) < (lg — €y, w), (b) follows since (¢, — ¢, w) = 0 (which is used in other steps,
t00), (c) uses (13), (d) is by Cauchy-Schwartz and in (e) we bounded ||w — v||, < v/2 and used that
||€a — 55”2 < v F and <£b — 4, v> = <£b — Ly, va> > Mmingc 4 mindechd?ggc <fd — L., UC> > 0. The
final equality serves as the definition of 1/e¢.

el W
Cb C& VI‘JO
Figure 2

Appendix C. Lower Bounds for Hard Games

In this section we prove a Q(n2/ 3) lower bound on the minimax regret in hard partial monitoring
games. Like for bandits, by Yao’s minimax principle (Yao, 1977), the lower bounds are most easily
proven using a stochastic adversary. In stochastic partial monitoring we assume that uy, ..., uy,
are chosen independently at random from the same distribution. To emphasise the randomness we
switch to capital letters. Given a partial monitoring problem G = (£, ®) and a probability vector
u € Pg_1 the stochastic partial monitoring environment associated with u samples a sequence of
independently and identically distribution random variables Uy, ..., U, with U; € {ei,...,er}
with P(U; =¢;) = wu;. In each round ¢ a policy chooses action A; and receives feedback
O, = ®(Ay, Uy). The regret is

= max E

Ry (u,m,G) = max E !Z“At — Ly, Uy) ax
ac

a€[K] =1

Z<£At — la, u>
t=1

The mentioned minimax principle implies that R} (G) > inf; sup, R,(u, 7, G). Hence, in what
follows, we lower bound sup,, Ry, (u, 7, G) for fixed .
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Given u,v € Pg_1, let KL(u, v) be the relative entropy between categorical distributions with
parameters u and v respectively:

2

K
KL(u,v) = Zul log (Z’) < Z (u’;vl) , (14)
i—1 i ; ‘

=1

where the second inequality follows from the fact that for measures P < @ we have KL(P, Q) <
x2(P, Q). We need one more simple result that is frequently used in lower bound proofs. Given
measures P and () on the same probability space, Lemma 2.6 in the book by Tsybakov (2008) says
that for any event A,

P(A) +Q(A%) 2 S exp (- KL(P,Q)) (1s)

Theorem 13 Let G = (L, @) be a globally observable partial monitoring problem with that is not
locally observable. Then there exists a constant cg > 0 such that R},(G) > can?/3,

Proof The proof involves several steps. Roughly, we need to define two alternative stochastic partial
monitoring problems. We then show these environments are hard to distinguish without playing an
action associated with a large loss. Finally we balance the cost of distinguishing the environments
against the linear cost of playing randomly.

Fix a policy 7 and a partial monitoring game G with the required properties. For v € Pr_; let
[P,, denote the measure on sequences of outcomes (A1, ®1, ..., A,, ®,,) induced by the interaction
of a fixed policy and the stochastic partial monitoring problem determined by « and G and denote
by E, the corresponding expectation. Note that R,, (7, u, G) = maxg Eqy [> 1 (€a, — Lo, u)].

Step 1: Defining the alternatives Let a,b be a pair neighbouring actions that are not locally
observable. Then by definition C, N Cj, is a polytope of dimension £ — 2. Let u be the centroid of
C,NCyand
€= min (£, — {g,u). 16
CgNab< ¢ — oy u) (16)
The value of ¢ is well-defined, since by global observability of G, but nonlocal observability of
(a, b) there must exist some action ¢ ¢ Ny. Furthermore, since ¢ ¢ Ny it follows that e > 0. We

also have u € ri(Pr_1). We now define two stochastic partial monitoring problems. Since (a, b)
are not locally observable, there is no function v : [K] x [F'] — R such that for all i € [E],

> (e, Ber) = lai — Loi - (17)
CENab

To facilitate the next step we rewrite this using a linear structure. For action ¢ € [K] let
S. € {0,1}7%F be the matrix with (S.)¢; = 1 {®(c, i) = f}, which is chosen so that S.e; = eg,,.
Define the linear map S : RE — RWarlF py

Sa
S,

S = .b ’
Se
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which is the matrix formed by stacking the matrices {.S; : ¢ € N }. Then there exists a v satisfying
Eq. (17) if and only if there exists a vector w € RWaslF such that

bo—ly=w'S.

In other words, actions (a, b) are locally observable if and only if £, — ¢}, € img(S"). Since we have
assumed that (a, b) are not locally observable, it follows that £, — £, ¢ img(ST). Let z € img(S ")
and w € ker(S) be such that £, — ¢, = z + w, which is possible since img(ST) @ ker(S) = RF.
Since £, — £, ¢ img(S ") it holds that w # 0 and (w, £, — ) = (w, z +w) = (w,w) # 0. Finally
let v = w/{(w,l, — £). It follows that Sv = 0 and (v, £, — ) = 1.! Let A > 0 be some small
constant to be tuned subsequently and define u, = v — Av and u, = u + Aw so that

by — Ly, uq) = A and (by — Uy up) = A

We note that if A is sufficiently small, then u, € C,Nri(Pg—1) and up € CpNri(Pr—_1). This means
that action a is optimal if the environment plays u, on average and b is optimal if the environment
plays u;, on average and that u, and uy, are in the relative interior of the (E — 1)-simplex (see Fig. 3).

Step 2: Calculating the relative entropy Given action ¢ and w € Pg_1 let P, be the
distribution on the feedback observed by the learner when playing action c in stochastic partial
monitoring environment determined by w. That is Pey,(f) = Pu(®: = f|A: = ¢) = (Scw)y.
Let T,.(n) be the number of times action c is played over all n rounds. The chain rule for relative
entropy shows that

KL(Py,,Py,) = Y Ey, [T.(n)] KL(Peu,, Peu, ) - (18)
c€[K]
By definition of u, and u, we have Scu, = Scup for all ¢ € Ny, Therefore Pey,, = Py,

and so KL(P¢y,,Pey,) = 0 for all ¢ € Ng. On the other hand, if ¢ ¢ N, then thanks to
Ug, Up, u € Ti(Pr_1) and Eq. (14),

E K 2
KL(Pew,, Pewy) < KL(ug,up) < Y et 2000 (i —uni)® _ 4\ - 7A < C,A2,
Uy
=1 =1

where (), is a suitably large constant and we assume that A is chosen sufficiently small that
— Awv; > u; /2. Therefore

KL(P,,,P,,) < CuE,, [T(n)]A?, (19)

where T(n) is the number of times an arm not in Ny, is played:

C¢Nab

1. The minor error in Bartdk et al. (2014) appears in their definition of v, which is in the kernel of a different S
constructed by stacking just S, and S, and not the degenerate/duplicate actions in between.

21



A FULL CLASSIFICATION FOR ADVERSARIAL PARTIAL MONITORING

Step 3: Comparing the regret By Eq. (16) and the Cauchy-Schwartz inequality for ¢ ¢ N, we
have (€. — £y, uq) = € + (bc — Lo, Av) > € = 2A |||, and (€c — by, up) > € — 2A |jv]| . By
Theorem 1, for each action ¢ € Ny, there exists an « € [0,1] such that £, = al, + (1 — )b
Therefore

<€c - gaa“a) + <£c - Eb,U(,> = (1 - O‘)<£b - Eaa ua> + 04<£a - gbvub> = Aa (20)

which means that max((€, — Lo, ua), (€c — lp,up)) > A/2. Define T'(n) as the number of times
some arm in Ny, is played that is at least A /2 suboptimal in wu:

Tn)= 3 n{wc—ea,w > ﬁ}mn).

CGNab

Assume that A is chosen sufficiently small so that 2A ||v|| , < /2. Then

Rn(ﬂ'; Uq, G) + Rn(ﬂ'y Up, G) = Eua Z Tc(n) <€c - gaa ua) + Eub Z Tc(n) <€c - eba ub>

cE[K] celK]
€ =, ] nA = —

> 5Eu, |T(n)| + == (Pu,(T(n) = 1/2) + Py, (T(n) < n/2))

> CE,, [T(n)] + "2 exp (- KL(P.,, By,)
€ =, 1 . nA 9 ~

> iEu“ T(n) + 5 oXP (—C’uA E., [T(n)D ,

In the above display we used (20) and
S T {(le — Lo, up) > AJ2} = To(n)L{(Le — Lo, ua) < AJ2} =n—T(n),

where the second inequality follows from the high probability version of Pinsker’s inequality
Eq. (15) and the third from Eq. (19). The bound is completed by a simple case analysis. If
E.,[T(n)] > n?/3, the result holds for any value of A. Otherwise choosing A = (¢/n)'/? for
appropriate positive game-dependent constant ¢ establishes the bound. |

Appendix D. Lower Bound for Theorem 8
We consider the following game with K = 2 and £ = 2F — 2 and G = (£, ®) given by

£_1010-~10 @_122334---F—1F—1F
Vw101 01/ "~ \112233 . F-2 F-1 F-1)"

Theorem 14 For n sufficiently large the minimax regret of G is at least R}, (G) > F4—_51 n.

Proof Let A = /1/(17n) and u € Pg_1 be constants to be tuned subsequently and v’ € Pg_1 by
u; = u; + 2(—1)*A. Using the notation of the previous section we have

1 1
KL(P1y, Pror) < X2(Pru, Poy) = 4A2 <u, + u,) and KL(Pyy, Poy) = 0.
1 FE
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C

U1

U2

Cs

Figure 3: Lower bound construction for hard partial monitoring problems

Letp=1/2—(E—2)A/4and choose u; = p+Aandug =p—Aandfori € {2,...,FE—1}let
u; = A(1—(—1)%). For sufficiently large horizon, A is small enough so that KL(PPy,,, P1,/) < 17A2
and

KL(Py,Py) = Ey[T1(n)] KL(Pyy, Pry) < 17nA2.

Using the fact that R,,(u) = 2A(F — 1)E,[T1(n)] and R, (u') = 2A(F — 1)E/[T2(n)] leads to

F—-1)A F-1)/&
Ry (u) + Ry (u) > n(2) exp (—nl7A?) = (2)17 .
e
The result follows since max(a, b) > (a + b)/2 and by naive simplification. [

Appendix E. Generic Bound for Exponential Weights

The proof of Theorem 4 depends on a generic regret analysis for a variant of the EXP3.P bandit
algorithm by Auer et al. (1995). The main difference is that loss estimators are assumed to be
god-given and satisfy certain properties, rather than being explicitly defined as biased importance-
weighted estimators. Nothing here would startle an expert, but we do not know where an equivalent
result is written in the literature. Let (€2, F, (F¢)}_, P) be a filtered probability space and abbreviate
E.[-] = E[-|F¢]. To reduce clutter we assume for the remainder that ¢ ranges in [n] and @ € [K].
Recall that a sequence of random elements (X;) is called adapted if X, is F;-measurable for all ¢,
while (X;) is called predictable if X, is F;_;-measurable for all ¢. Let (Z;) and (Z;) be sequences
of random elements in R” . Given nonempty A C [K] and positive constant 1) define the probability
vector QQ; € Px_1 by

La(@)exp (—n 317 Zua

Qta = —1 A .
EbEA exXp (_77 Es:l ZSb)

Theorem 15 Assume that the RE -valued process (Z;); is predictable, the R -valued process
(Zi)¢ is adapted and that Z; = Z, — B, where (Z); is adapted and (0;); is predictable. Assume
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the following hold for all a € A:
(@) 1|2l <1, (b) B <1,
(c) nEt_l[Zfa] < Biq almost surely , (d) Et_l[Zm] = Zyq almost surely .

Let A* = argmingc 4 > 1| Ziq. Then, for any 0 < § < 1/(K + 1), with probability at least
1— (K +1)6,

n K n
Z Z Qta(Zta - ZtA*) M Z Z Qta + 5 Z Z Qm/@ta .

t=1 a=1 t=1 acA t=1 acA
Proof We proceed in five steps.
Step 1: Decomposition

Y>> QualZia— Ziar)

t=1 ac A

- Z Z Qta Zta - ZtA* + Z Z Qta Zta - Zta) Z(ZtA* - ZtA*) .

t=1 acA t=1 a€A t=1

(A) (B) ©

Step 2: Boundlng (A) By assumption (¢) we have 5, > 0, which by assumption (@) means
that nZ, < T]Zta < 7]|Zm| < 1 for all a € A. Then the standard mirror descent analysis with
negentropy regularisation (Hazan, 2016) shows that (A) is bounded by

log(K " .
(A) < ng? )03 S @zt

t=1 acA
log(K - .
== g( ) + n Z Z Qta(zza + Bta, - 7 _ Z Z QtaZtaﬁta
N t=1 acA t lacA
log(K) =
S + ZZQM +3ZZQtaﬁm>
n t=1 acA t=1acA

where in the last two line we used the assumptions that 73, < 1 and n\Zta] <1.

Step 3: Bounding (B) For (B) we have

(B) - Z Z Qta(Zta - Zta) = Z Z Qta(Zta - Zta + ﬁta) .

t=1 ac A t=1 acA

We prepare to use Lemma 17. By assumptions (c) and (d) respectively we have nE;_; [Zfa] < Bta
and E;_1[Z;4] = Zia. By Jensen’s inequality,

2
nE¢—1 (Z Qta(Zta — Zta)) <n Z QtalEr_1] ta Z Qtabta -

acA acA acA
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Therefore by Lemma 17, with probability at least 1 — §

®) <253 Qb + M

t=1 acA

Step 4: Bounding (C) For (C) we have

n

©) = Z(ZtA* — Ziar) = Z (ZtA* — Ziar — 5tA*) :
t=1

t=1

Because A* is random we cannot directly apply Lemma 17, but need a union bound over all actions.
Let a € A be fixed. Then by Lemma 17 and the assumption that | Z;,| < 1 and E;_1[Z;,] = Z44
and NE;_1[Z2,] < Bia, with probability at least 1 — §.

n
. log(1/6
Z (Zta - Zta - ﬁta) < M .
t=1 N
Therefore by a union bound we have with probability at most 1 — K4,

©) < log(;/5) .

Step 5: Putting it together Combining the bounds on (A), (B) and (C) in the last three steps with
the decomposition in the first step shows that with probability at least 1 — (K + 1)J,

Rn 5 log 1/5 Z Z Qta + 5 Z Z Qm/@ta .

t=1 acA t=1 acA

where we used the assumption that § < 1/K. |

Appendix F. Bounding the Norm of the Estimators

Lemma 16 Let a and b be pairwise observable and A = {, — {, € [—1,1]F, then there exists a
function v : {a,b} x [F] — R such that:

(a) ||v)l <1+ F.
(b) v(a,Pg;i) + v(b, Pp;) = A forall i € [E).

Proof By the definition of pairwise observable there exists a function v : {a, b} x [F] — R such that
v(a, ®gi) + v(b, Pp;) = A, for all i € [E]. Define bipartite graph with vertices V = {a, b} x [F]
and edges £ = {((a, Pa;), (b, Py;)) : @ € [E]}. Assume without loss of generality this graph is
fully connected. If not then apply the following procedure to each connected component. For any

f> f/ S [F] let (a7f1)> (b7 f2)7 (a7f3)> SRR (CL, fk) be aloop free path with fl = f and fk = f/ and
for j € [k — 1] let i; € [E] correspond to the edge connecting (-, f;) and (-, fj4+1). Then

Ea

~1
v(a, f) = v(a, )] = D (-177'A; | < 2F.
1

J
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We may assume that max ez [v(a, f)| < %maxf,f/e[p] lv(a, f) — v(a, f')|, which is always
possible by translating v(a,-) by a constant o and v(b,-) by —«. Finally for each f € [F]
there exists an f' € [F] and i € [E] such that v(b, f) + v(a, f’) = A;, which ensures that
v, /)] < |vla, f)] +[Ail < F +1. =

Appendix G. Concentration

Lemma 17 Let X1, Xo, ..., X, be a sequence of random variables adapted to filtration (F;); and
let Bi[-] = E[-|Fi] and py = Ey—1[X¢]. Suppose that n > 0 satisfies n.Xy < 1 almost surely. Then

n n
1 1
2
P (Z(Xt — ) =0y B[ XP] + S log (5)> <.
t=1 t=1
Proof Let 07 = E;_1[X?]. By Chernoff’s method we have

P <zn: (Xt — pe — nop) > bg(m) =P (eXp (77

t=1 g

3

Sl

(Xt - Mt — 770t2)> 2

)

The result is completed by showing the term inside the expectation is a supermartingale. For this,
we have

t=1

- (nigt_m _nag)” |

t=1

< JE

Ei—1 [exp (n (Xe — e — 107))] = exp (—npe — n*07) Er_1 [exp (nXy)]
< exp (—nu —n’07) (L+nu +n’o7) < 1,

where we used the inequalities exp(z) < 1+ x + 2% forz < 1and 1 + x < exp(z) forall z € R.
Chaining the above inequality completes the proof. |

Appendix H. Gallery

Exhibit 1 In the following game the learner cannot estimate the actual losses, but the loss
differences can be calculated from the feedback directly.

1 1/2 1/2 0 12 1 2
L= , o = )
12 1 0 1/2 121 2
Exhibit 2 A useful way to think about the cell decomposition is to assume that L has positive
entries and consider the intersection of the hypograph of concave function f(u) = ming({,u)

with domain uw = Pg_1 and the epigraph of Pr_1. To illustrate the idea let G = (L, ®) be the
variant of the spam game where ¢ = 1/3, which is defined by

10 11
1 1
35 3 1 2
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In this case Pp_1 = Py is 1-dimensional, which means the intersection of the epigraph of Pr_1
and the hypograph of f is 2-dimensional and is shown in the left figure below. The intersection is
itself a polytope and the faces (1-dimensional in this case) pointing upwards correspond to cells of
nondegenerate actions. If ¢ is increased to 1/2, then the third action becomes degenerate, which is
observable from the right-hand figure below by noting that the dimension of its intersection with the
polytope is now zero. Increasing c any further would make this action dominated.

<€2> U’> <£27 u>
(01, u) g (1, u)
<£37 u>
<€37 U>
U1 ul
c=1/3 c=1/2

Figure 4: Alternative view of cell decomposition for spam game with ¢ = 1/3 and ¢ = 1/2.

Exhibit 3 The following game demonstrates that not all locally observable games are point-locally

observable.
u
0 1 1 1 1 1 o
L= 1 0 1 , =111 1
1/2 1/2 1/2 1 2 3
/2 12 1 e |

u1

The cell decomposition for this game is shown on above-right. Notice that (1, 2) are not neighbours,
but are weak neighbours. And yet (1,2) are not pairwise observable. Therefore the game is not
point-locally observable. On the other hand, both sets of neighbours (1,2) and (1, 3) are locally
observable.

Exhibit 4 This game produces the cell decomposition depicted at the start of Section 3. The
only neighbours are (2,3) and (1, 3), which are locally observable. Therefore the game is locally
observable. Actions 4,5 and 6 are degenerate. NEIGHBOURHOODWATCH?2 will only play actions
1, 2, 3 and 4 with actions 5 and 6 ruled out because their cells are not equal to the intersection of
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any neighbours cells. Notice that {4 = l3/2 + l3/2 is a convex combination of {3 and (3.
u9

0 1

1 0
|12 12
~13/4 1/4
1 1/2
1 1/4

1 1

1 1
1/2 B
gaal 27 i
1/2 .
3/4

— N

— W

28
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