Proceedings of Machine Learning Research vol 98:1-24, 2019 30th International Conference on Algorithmic Learning Theory

Online Influence Maximization with Local Observations

Gabor Lugosi GABOR.LUGOSI@ GMAIL.COM
ICREA & Universitat Pompeu Fabra
Barcelona, Spain

Gergely Neu GERGELY.NEU @ GMAIL.COM
Universitat Pompeu Fabra
Barcelona, Spain

Julia Olkhovskaya JULIA.OLKHOVSKAYA @ GMAIL.COM
Universitat Pompeu Fabra
Barcelona, Spain

Editors: Aurélien Garivier and Satyen Kale

Abstract

We consider an online influence maximization problem in which a decision maker selects a node
among a large number of possibilities and places a piece of information at the node. The information
then spreads in the network on a random set of edges. The goal of the decision maker is to reach
as many nodes as possible, with the added complication that feedback is only available about the
degree of the selected node. Our main result shows that such local observations can be sufficient for
maximizing global influence in two broadly studied families of random graph models: stochastic
block models and Chung—Lu models. With this insight, we propose a bandit algorithm that aims
at maximizing local (and thus global) influence, and provide its theoretical analysis in both the
subcritical and supercritical regimes of both considered models. Notably, our performance guarantees
show no explicit dependence on the total number of nodes in the network, making our approach
well-suited for large-scale applications.

Keywords: Influence maximization, sequential prediction, multi-armed bandits, stochastic block
models

1. Introduction

Finding most influential nodes in networks has a long history of study. The problem has been cast in
a variety of different ways according to the notion of influence and the information available to a
decision maker. We refer the reader to Kempe et al. (2003); Chen et al. (2010, 2013a); Vaswani et al.
(2015); Carpentier and Valko (2016); Wen et al. (2017); Wang and Chen (2017) and the references
therein for recent progress in various directions. The most studied influence maximization setup is an
offline discrete optimization problem of finding the most influential nodes in a network. This setup
assumes that the probability of influencing is known, or at least data is available that allows one to
estimate these probabilities. However, such information is often not available or is difficult to obtain.
To avoid this assumption, in the present paper we consider the problem of maximizing influence in a
sequential setup, where the learner has only partial information about the set of influenced nodes.
Specifically, we define and explore a sequential decision-making model in which the goal of
a decision maker is to find a node among a set V' of n possible nodes with maximal (expected)
influence. In our model, at every time instance ¢t = 1,...,T, the n nodes form the vertex set of
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a random graph G such that node ¢ and node j are connected in GG; by an (undirected) edge with
probability p; ;. All edges are present independently of each other and the graphs Gy, ..., Gr are
independent and identically distributed. If the decision maker selects a node v; € V' at time ¢, then
the information placed at the node spreads to the entire connected component of v; in the graph
G. The goal of the decision maker is to spread the information as much as possible, which can
be formulated as maximizing a notion of rewards corresponding to the number of vertices in the
connected component containing the selected node.

In this paper, we study a setting where the decision maker has no prior knowledge of the
distribution of (¢, so it has to learn about this distribution on the fly, while simultaneously attempting
to maximize the total rewards. This gives rise to a dilemma of exploration versus exploitation,
which is commonly studied within the framework of multi-armed bandits (Bubeck and Cesa-Bianchi,
2012). Indeed, if the decision maker could observe the set of all influenced nodes in every round,
the sequential influence maximization problem outlined above could be naturally formulated as a
stochastic multi-armed bandit problem (Lai and Robbins, 1985; Auer et al., 2002a). However, this
direct approach has multiple setbacks. First off, in most practical applications, the number n of nodes
is so large that one cannot even hope to maintain individual statistics about each of them, let alone
expect any algorithm to identify the most influential node in any reasonable time. More importantly,
in most cases of practical interest, tracking down the set of all influenced users may be difficult or
downright impossible due to privacy and computational considerations. This motivates the study of a
more restrictive setting where the decision maker has to manage with only partial observations of the
set of influenced nodes.

Formally, we address this latter challenge by considering a more realistic observation model,
where after selecting a node v, to be influenced, the learner only observes the number of immediate
neighbors of v, in the realized random graph G} (i.e., the degree of v; in GG;). This model brings
up the following important question: is it possible to maximize global influence while only having
access to such local measurements? Our key technical result is answering this question in the positive
for some broadly studied random graph models. Specifically, we show that, assuming that the graphs
G are generated from certain stochastic block models (Abbe, 2017) or a Chung—Lu model (Chung
and Lu, 2002), maximizing local influence is equivalent to maximizing global influence.

This observation motivates our algorithmic approach that applies ideas from the multi-armed
bandit literature to try and maximize the local influence of each selected node. In order to analyze
the performance of our algorithms, we adapt the standard notion of regret from said literature to fit
our needs. The traditional notion of regret measures the difference between the cumulative reward of
choosing a maximally influential node in each round and the cumulative reward the decision maker
achieves during the 7' rounds of the game. This definition, however, is rather problematic in our
problem setup: as mentioned above, the number n of all nodes is typically so large that finding a
maximally influential node is computationally infeasible, thus making the task of competing with
this benchmark unreasonably complicated. To resolve this issue, we consider the notion of quantile
regret that compares the learner’s performance to the top a-fraction of all nodes (Chaudhuri et al.,
2009; Chernov and Vovk, 2010; Luo and Schapire, 2014; Koolen and Van Erven, 2015). Our main
result is showing both instance-dependent bounds of order log T" and worst-case bounds of order
VT on the quantile regret of our algorithm. Notably, our bounds hold for both the subcritical and
supercritical regimes of the random-graph models considered, and show no explicit dependence on
the number of nodes n.
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Related online influence maximization algorithms consider more general classes of networks,
but make more restrictive assumptions about the interplay between rewards and feedback. One
line of work explored by Wen et al. (2017); Wang and Chen (2017) assumes that the algorithm
receives full feedback on where the information reached in the previous trials (i.e., not only the
number of influenced nodes, but their exact identities and influence paths, too). Clearly, such detailed
measurements are nearly impossible to obtain in practice, as opposed to the local observations that
our algorithm requires. Another related setup was considered by Carpentier and Valko (2016), whose
algorithm only receives feedback about the nodes that were directly influenced by the chosen node,
but the model does not assume that neighbors in the graph share the information to further neighbors
and counts the reward only by the nodes directly connected to the selected one. That is, in contrast
to our work, this work does not attempt to show any relation between local and global influence
maximization. One downside to all the above works is that they all provide rather conservative
performance guarantees: On one hand, Wen et al. (2017) and Carpentier and Valko (2016) are
concerned with worst-case regret bounds that uniformly hold for all problem instances for a fixed
time horizon T'. On the other hand, the bounds of Wang and Chen (2017) depend on topological
(rather than probabilistic) characteristics of the underlying graph structure, which inevitably leads
to conservative results. For example, their bounds instantiated in our graph model lead to a regret
bound of order n3log T', which is virtually void of meaning in our regime of interest where 7 is
very large (e.g, in the order of billions). In contrast, our bounds do not show explicit dependence on
n. In this light, our work can be seen as the first one that takes advantage of specific probabilistic
characteristics of the mechanism of information spreading to obtain strong instance-dependent global
performance guarantees, all while having access to only local observations.

The rest of the paper is organized as follows. In Section 2 we formally introduce the regret
minimization problem and the notation. In Section 3, we introduce our key technical results that
show the connection between local and global influence maximization. We describe our algorithm
and state its performance guarantees in Section 4. We describe the main structure of the analysis in
Section 5 and discuss our results in Section 6.

2. Preliminaries

We now describe our problem and model assumptions more formally. We consider the problem
of sequential influence maximization on a complete graph K,, on the set of nodes V, formalized
as a repeated interaction scheme between a learner and its environment. We assume that node ¢
influences node j with (unknown) probability p;;(= p;i), independently of all other nodes. At each
iteration, a new subgraph G; of K, is generated by independent draws of the edges such that edge
(4, 7) is present with probability p;;. Then, the set of nodes influenced by node 1 is represented by the
connected component of G that contains 4. In this setup, the following steps are repeated for each
roundt =1,2,...:

1. the learner picks a vertex A; € V,
2. the environment generates a subgraph G; of K,

3. the learner observes the degree of the node A;, denoted as X; 4,,
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4. the learner earns the reward r; 4, = |C} 4,
associated with vertex a:

, where the set C , is the connected component

Ct,q = {v € V : vis connected to a by a path in G;} .

We stress that the learner does not observe the reward, only the number of its immediate neighbors.
Define ¢, as the expected size of the connected component associated with the node a: ¢, = E|C} 4.
Ideally, we would be interested in designing algorithms that minimize the expected regret defined as

T
RT—rglea&<tz:;(ca—cAt). (1)
We would ideally aspire to design algorithms guaranteeing that the regret grows sublinearly in 7.
However, as we are interested in settings where the total number of nodes n is very large, this goal
can be seen as far too ambitious: even with a fully known random graph model, finding the optimal
node maximizing c, is computationally infeasible. Such computational issues have lead to alternative
definitions of the regret such as the approximation regret Kakade et al. (2009); Chen et al. (2013b);
Streeter and Golovin (2009) or the quantile regret (Chaudhuri et al., 2009; Chernov and Vovk, 2010;
Luo and Schapire, 2014; Koolen and Van Erven, 2015).

In the present paper, we consider the a-quantile regret as our performance measure, which, instead
of measuring the learner’s performance against the single best decision, uses a near-optimal action as
a baseline. For a more technical definition, let ay, as, . . . , a, be an ordering of the nodes satisfying
Ca; < Cay < -+ < Cq,,, and denote the a-quantile over the mean rewards as ¢, = ¢q((;_,,;- Then,
also defining the set VJ = {a[(l,a)M ,...,an} as the set of a-near-optimal nodes, we define the

a-quantile regret as
T T

o : _ *
RT - anel%/% v (Ca - CAt) - ; (Ca - CAt) . (2)

We will make the assumption that each G, is drawn from a fixed (and unknown) distribution of
inhomogeneous random graphs (IRG, see, e.g.,Bollobas et al. (2007)). In this model, we assume
that (V, E) is the complete graph over n vertices and each edge (i, j) is present with probability
pij (= pji), independently of all other edges. The inhomogeneous random graph can be parametrized
by the symmetric positive matrix A, such that the probability of i and j being connected is given by
Pij = Zij /n. We will assume that each element Zij of the matrix is O(1) as n grows large. This
assumption corresponds to assuming that the graphs G, are sparse, meaning that the expected degree
of each vertex remains bounded as n grows. This assumption makes the problem both more realistic
and challenging: denser graphs are connected with high probability, making the problem essentially
vacuous. We will also use the notation A = A/n. The random graph from the above distribution is
denoted as G(n, A).

We consider two fundamentally different regimes of the parameters G(n, A): the subcritical case
in which the size of the largest connected component is sublinear in n (with high probability), and
the supercritical case where the largest connected component is at least of size cn for some ¢ > 0
with high probability. (We say that an event holds with high probability if its probability converges
to one as n — o0.) Such a connected component of linear size is called a giant component. These
regimes can be formally characterized with the help of the matrix A. Letting A be the the largest
eigenvalue of A, we call G(n, A) subcritical if A < 1 and supercritical if A > 1. It follows from
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(Bollobas et al., 2007, Theorem 3.1) that, with high probability, G(n, A) has a giant component if it
is supercritical, while the number of vertices in the largest component is o(n) with high probability
if it is subcritical.

Within the class of inhomogeneous random graphs, we will focus on two families of random
graphs: stochastic block models and Chung—Lu models, as discussed below.

2.1. Stochastic block models

First, we make the assumption that each G is drawn from a stochastic block model (SBM). In this
random-graph model, the probabilities p;; are defined through the notion of communities, defined
as elements of a partition Hy, ..., Hg of the set of vertices V. We will refer to the index m of
community H,, as the type of vertices belonging to H,,. Each community H,, contains o,,n nodes
(assuming without loss of generality that a,,n is an integer). With the help of the community
structure, the probabilities p;; are constructed as follows: if ¢ € H, and j € H,,, the probability of 4
and j being connected is given by p;; = Kf{"‘, where K is a symmetric matrix of size .S x S, with
positive elements. The random graph from the above distribution is denoted as G (n, a, K).

In an SBM, identifying a node with maximal reward amounts to finding a node from the most
influential community. Consequently, it is easy to see that choosing « such that & > min,, o, the
near-optimal set V; will exactly correspond to the set of optimal nodes, and thus the quantile regret
(2) will coincide with the regret (1). Throughout the paper, we will consider SBM’s satisfying the
following assumption:

Assumption1 K;; =k > 0foralli # j.

Intuitively, this assumption requires that nodes %, j belonging to different communities are connected
with the same probability, regardless of the exact identity of (i) or m(j). Additionally, our analysis
in the supercritical case will make the following natural assumption:

Assumption 2 Foralli, K;; > k.

In plain words, this assumption requires that the density of edges within communities is larger than
the density of edges between communities.

2.2. Chung-Lu models

We will also consider another natural IRG model that is closely related to many random graph models.
This is the so-called Chung—Lu model (sometimes referred to as rank-1 model) as first defined by
Chung and Lu (2002) (see also (Chung et al.; Bollobas et al., 2007)), where the edge probabilities
are defined through the positive vector w € R™, with elements of the matrix given by 4;; = w;w;.
In other words, the Chung—Lu model considers rank-1 matrices of the form A = ww . The random
graph from the induced IRG distribution is denoted as G(n, w). Such models can be shown to exhibit
several interesting properties. For instance, if w is a sequence satisfying a power law, then G(n, w)
is a power law model, which allows one to model various real world networks including social
networks (Chung et al.).
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3. From local to global influence maximization

Having described the setting, we can finally ask the question: is it possible to maximize global
influence using only local observations? Our main technical results show that, perhaps surprisingly,
the most influential nodes are actually identifiable from such feedback in the models discussed in
Sections 2.1 and 2.2.

To be specific, we recall that X; , stands for the degree of node a in the realized graph Gy,
and define ;, = EX;, as the expected degree of node a. We also define ¢* = max, ¢, and
p* = maxg, . Our main technical result is proving that nodes with the largest expected degrees u*
are exactly the ones with the largest influence c¢*, in both the SBM and the Chung—Lu models, across
both the subcritical and supercritical regimes. We formally state these results below.

Proposition 1 Suppose that
1. G is generated from a subcritical G(n, a, K) satisfying Assumption 1, or
2. G is generated from a subcritical G(n, w).

Then, for any a satisfying j1, < p*, we have ¢* — cq < 2¢* (W* — pg) + O(1/n). In particular, for
n sufficiently large, we have argmax, c, = argmax, [i,.

Proposition 2 Suppose that
1. G is generated from a supercritical G(n, o, K) satisfying Assumptions 1 and 2, or
2. G is generated from a supercritical G(n,w).

Then, for any a satisfying i, < p*, we have ¢* — ¢, < * (u* — pq) + o(n). In particular, for n
sufficiently large, we have argmax, c, = argmax, [,

These propositions are proved in Appendix B and C, respectively. To the best of our knowledge, these
results are novel and can be of independent interest. The proofs rely on the concept of multi-type
Galton—Watson branching processes, which are briefly introduced alongside some of their main
properties in Appendix A.

4. Algorithm and main results

We now present our learning algorithm, and provide its performance guarantees for the two regimes.
Inspired by the observation that in the models that we consider, it is sufficient to identify nodes
with maximal degree in order to maximize influence, we design a bandit algorithm that attempts
to maximize the degrees of the influenced nodes. We propose to achieve this goal by employing a
variant of the kl-UCB algorithm proposed and analyzed by Garivier and Cappé (2011); Maillard et al.
(2011); Cappé et al. (2013); Lai (1987). More precisely, we propose to use the observed degrees
as rewards, and feed them to an instance of kl-UCB originally designed for Poisson-distributed
rewards. A key technical challenge arising in the analysis is that the degree distributions do not
actually belong to the Poisson family for finite n. We overcome this difficulty by showing that the
degree distributions have a moment generating function bounded by those of Poisson distributions,
and that this fact is sufficient for most of the kl-UCB analysis to carry through without changes.
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Algorithm 1 d-UCB(V})

Parameters: A set of nodes V) C V.

Initialization: Select each node in 1 once. Observe the degree X, , of vertex a in the graph G, for
a=1,...,|V|. Foreach a € Vp, set No(|Vo|) = 1 and 11,(|Vo]) = Xqa-

Fort = |Vy|,...T, repeat

1. For each node, compute

Ua(t) = sup {u D — Ha(t) + Ha(t) log <ﬁ“(t)> < 3logl) }

po) = Na(t)
2. Select any node Ay € arg max, Uy, (t).
3. Observe degree X; ;1 4,,, of node A;;1 in Gy and update

NAt+1 (t)ﬁAt+1 (t + 1) + Xt+17At+1
NAt+1 (t) +1

//’ZAH—I(t + 1) =

Update Ny, (t +1) = Na,,, () + L.

A minor challenge is that, since we are interested in very large values of n, it is computationally
infeasible to use all nodes as separate actions in our bandit algorithm. To address this challenge, we
propose to subsample a set of representative nodes for kI-UCB to play on. The size of the subsampled
nodes depends on the quantile « targeted in the regret definition (2) and the time horizon 7". For
clarity of presentation, we first propose a simple algorithm that assumes prior knowledge of 7',
and then move on to construct a more involved variant that adds new actions on the fly. We first
present our kI-UCB variant for a fixed set of nodes 1} as Algorithm 1. We refer to this algorithm as
d-UCB(V)) (short for “degree-UCB on 1},”). Our two algorithms mentioned above use d-UCB (1))
as a subroutine: they are both based on uniformly sampling a large enough set Vj of nodes so that
the subsample includes at least one node from the top a-quantile.

To simplify the presentation of our main results, let us introduce some more notation. Analogously
to the a-optimal reward c,, we define the -optimal degree p;, = mingey» fiq, and the corresponding
gap parameters A, ; = (¢; — c,), and 6o, = (i — p,) . Finally, define Ay max = max; Aqy
We first present a performance guarantee of our simpler algorithm that assumes knowledge of T'.
This method uniformly samples a subset of size

3)

logT
rvo\{ 8 ]

log(1/(1 — av))

and plays d-UCB(Vp) on the resulting set. This algorithm satisfies the following performance
guarantee:

Theorem 3 Let Vjy be a uniform subsample of V with size given in Equation (3) and define the event
E ={Vo NV} # 0}. If the number of vertices n is sufficiently large, then the expected a-quantile
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Algorithm 2 d-UCB-DOUBLE(f3)
Parameters: 5 > 2.
Initialization: V; = 0.

For k =1,2..., repeat

1. Sample subset of nodes Uy, uniformly such that |Uy| = [%]

2. Update action set Vi, = Vi1 U U.

3. Forrounds t = g¢=1, 8F=1 4+ 1 ..., B¥ — 1, run a new instance of d-UCB (V},).

regret of d-UCB(Vp) simultaneously satisfies

R} <E | Aay

i€Vp

ph (18 +271logT)
O

+3> & +Aa,maxa

where the expectation is taken over the random choice of Vy, and

Tp* (2 + 3logT)? < 3log T )
Ra S 186* + + 4 Aa max-
g \/ log(1/(1 — o)) log(1/(1 — a)) ’

For unknown values of 7', we propose the d-UCB-DOUBLE(3) algorithm (presented as Algorithm 2)
that uses a doubling trick to estimate I". The following theorem gives a performance guarantee for
this algorithm:

Theorem 4 Fix T, let kyax be the value of k on which d-UCB-DOUBLE(f3) terminates, and define
the event £ = {Vy,, .. NV = 0}. If the number of vertices n is sufficiently large, then the a-quantile
regret of d-UCB-DOUBLE([) simultaneously satisfies

18u* 271og B(logs T + 1)2
R’% <E Z B ((52 + 3) (1Ogg T+ 1) + 252ﬁ El + Aa,max 1Ogﬁ T,
ievkmax @t L

where the expectation is taken over the random choice of the sets V1, Vs, ..., and

Tog(1/(1 — o) /1) +4> Bemas:

We discuss the key features of the above regret bounds in Section 6.

. [T (u* +1og (BT))log® T 3logT
RT < 36¢ \/ o

5. Analysis

This section outlines the main ideas of the proofs of our main results, Theorems 3 and 4. Having
established that, in order to minimize regret in our setting, it is sufficient to design an algorithm
that quickly identifies the nodes with the highest degree, it remains to show that our algorithms
indeed achieve this goal. We do this below by providing a bound on the expected number of times
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ENT, = E[Zle [{ 4,—q}] that our algorithm picks suboptimal node a such that ¢, < c*, and then
using this guarantee to bound the regret.

Without loss of generality, we assume that Vy = {1,2,...,|Vp|}. The key to our regret bounds
is the following guarantee on the number of suboptimal actions taken by d-UCB(V)).

Theorem 5 (Number of suboptimal node plays in d-UCB) Define n; = (maxjey;, ftj — (i) /3.
The number of times that any node i € {a : p, < maxjcy, pj} is chosen by d-UCB(Vy) satisfies

(24 6logT)

ENp,; < 3
M;

+3. 4)
The proof is largely based on the analysis of the kl-UCB algorithm due to Cappé et al. (2013), with
some additional tools borrowed from Ménard and Garivier (2017), crucially using that the degree
distribution of each node is stochastically dominated by an appropriately chosen Poisson distribution.
Specifically, letting Z; be a Poisson random variable with mean EX; ;, we have EesXti < Ees%
for all s. Turns out that this property is sufficient for the kI-UCB analysis to go through in our case,
which is an observation that may be of independent interest. Due to space constraints, the proof of
Theorem 5 is deferred to Appendix D. The remainder of the section uses Theorem 5 to prove our
first main result, Theorem 3. The proof of Theorem 4 follows from similar ideas and some additional
technical arguments, and is presented in Appendix E.

Proof [Proof of Theorem 3] We first note that, with high probability, the size of V{j guarantees that
the subset holds at least one node from the set V: P [£] > 1 —1/T'. Then, the regret can be bounded
as

T
E[R7] < P[E]TAgmax + E ZZ [Ar = i]Aag| | PLE)
t=1i€Vp

< Aa,max +E Z Aa,iE [NT,i] &
1€Vo

Now, observing that d,; < 37; holds under event £, we appeal to Theorem 5 to obtain

*(18 +271og T
R% < Acz,rnax +E Z Aa,i ('u ( _gQ 0og ) + 3) E , (5)
i€V o

thus proving the first statement.

Next, we turn to proving the second statement regarding worst-case guarantees. To do this, we
appeal to Propositions 1 and 2 that respectively show A; < 2¢*§; + O(1/n) and A; < ¢*0; + o(n)
for the sub- and supercritical settings, and we use our assumption that n is large enough so that
we have A; < 3c¢*; in both settings. Specifically, we observe that §; = ©,,(1) by our sparsity
assumption and ¢* is ©,,(1) in the subcritical and ©,,(n) supercritical settings, so, for large enough
n, the superfluous O(1/n) and o(n) terms can be respectively bounded by ¢*d;. To proceed, let
us fix an arbitrary ¢ > 0 and split the set 1} into two subsets: U(e) = {a € Vp : 6o < €} and
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W (e) = Vo \ U(e). Then, under event £, we have

D AwENp] = > AuE[Npl+ Y AaE[Ngl
1€V UG €W (e)

<3c'e Y E[Npi+3c" Y bai
i€U(¢e) €W (e)

(18 4+ 271logT')
52,

) + 3|W(e)| Aq,max
(by Theorem 5)

18 +271ogT')
604,1'

. \ w (
< 3c*eT + 3¢ Z
€W (e)
(18 + 27log T))
€

+ 3|%|Aa,max

< 3¢ (5T+ Vol 431Vl A e

< 6¢*/T|Volp* (18 + 271og T)) + 3|Vo| Aw.max;

where the last step uses the choice ¢ = /|Vp|u* (18 + 271log T) /T'. Plugging in the choice of |Vp|
concludes the proof. |

6. Discussion
We conclude by highlighting some features of our results and discuss directions for future work.

Instance-dependent and worst-case regret bounds. Both of our main theorems establish two
types of regret bounds. The first set of these bounds are polylogarithmic' in the time horizon 7", but
show strong dependence on the parameters of the distribution of the graphs G;. Such bounds are
usually called instance-dependent, and they are typically interesting in the regime where 1" grows
large. However, these bounds become vacuous for finite 7" as the gap parameters d,,; approach zero.
This issue is addressed by our second set of guarantees, which offers a bound of 6(0* \/ |U|M*T)
for some set U C V that holds simultaneously for all problem instances without becoming vacuous
in any regime. Such bounds are commonly called worst-case, and they are typically more valuable
when optimizing performance over a fixed horizon 7T'.

Dependence on graph parameters. A notable feature of all our bounds is that they show no
explicit dependence on the number of nodes n. This is enabled by our notion of a-quantile regret,
which allows us to work with a small subset of the total nodes as our action set. Instead of n,
our bounds depend on the size of some suitably chosen set of nodes U, which is of the order
polylog T/ log(1/(1 — «)). Notice that this gives rise to an interesting tradeoff: choosing smaller
values of « inflates the regret bounds, but, in exchange, makes the baseline of the regret definition
stronger (thus strengthening the regret notion itself). While the exact tradeoff seems very complicated
to quantify in general, it is clear that setting « as the proportion of the smallest community in SBMs
strengthens the regret baseline as much as possible.

Of course, having no explicit dependence on n does not mean that our bounds are completely
independent of the size of the graph. In fact, it is natural to expect that the regret scales with the

1. Upon first glance, the bound of Theorem 3 may appear to be logarithmic, however, notice that the sum involved in the
bound has log T' elements, thus technically resulting in a bound of order log® T'.

10
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general magnitude of the rewards. Our bounds precisely achieve such a natural dependence: all our
bounds scale linearly with the maximal expected reward ¢*, which is of ©,,(1) in the subcritical case,
but is ©,,(n) in the supercritical case.

Tightness of our bounds. In terms of dependence on 7', both our instance-dependent and worst-
case bounds are near-optimal in their respective settings: even in the simpler stochastic multi-armed
bandit problem, the best possible regret bounds are Q7 (log T') and Q7-(v/T) in the respective settings
(Auer et al., 2002a,b; Bubeck and Cesa-Bianchi, 2012). The optimality of our bounds with respect
to other parameters such as ¢*, u* and n is less clear, but we believe that these factors cannot
be improved substantially for the models that we studied in this paper. As for the subproblem of
identifying nodes with the highest degrees, we believe that our bounds on the number of suboptimal
draws is essentially tight, closely matching the classic lower bounds by Lai and Robbins (1985).

Our assumptions. One may wonder how far our argument connecting local and global influence
maximization can be stretched. Clearly, not every random graph model enables establishing such a
strong connection. In fact, even within the class of stochastic block models, one can construct an
instance (not satisfying Assumption 1) that does not have the property we desire. It is a challenging
problem to characterize the class of inhomogeneous random graphs in which maximizing local and
global influences are equivalent. Nevertheless, we believe that our techniques can be generalized
to maximize global influence with more informative local feedback structures (e.g., working with
observations from a slightly broader neighborhood of the chosen nodes).

Finally, let us comment on our condition that the number of vertices n needs to be “sufficiently
large”. We regard this condition as a technical artifact due to our proofs relying on asymptotic
analysis. We expect that the required monotonicity property holds for small values of n under mild
conditions. Whenever this is the case, the regret bounds of Theorems 3 and 4 remain valid.
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Appendix A. Multi-type branching processes

One of the most important technical tools for analyzing the component structure of random graphs
is the theory of branching processes, see van der Hofstad (2016). Indeed, while the connected
components C, of an inhomogenous random graphs G(n, A) have a complicated structure, many
of their key properties may be analyzed through the concept of multi-type Galton—Watson pro-
cesses. Specifically, we use Poisson multi-type Galton—Watson branching processes with n types,
parametrized by an n x n matrix A with strictly posive elements. The branching process tracks the
evolution of a set of individuals of various types. Starting in round n = 0 from a single individual of
type i, each further generation in the Galton—Watson process W (7) is generated by each individual
of each type i producing X}, ; ~ Poi(4; ;) new individuals of each type j. Therefore, the size of
the offspring of the individual of type i is Y 7_; X; ; ~ Poi(3_7_, A; ;). We also define the vector

b € R™ with coordinates b = E |27, Xij| = S0y Aigoi = 1o,
Our analysis below makes use of the following quantities associated with the multi-type branching
process:

1. Z,(i) is the number of individuals in generation n of W4 (i) (where Zy(i) = 1);

2. B(i) is the fotal progeny, that is, the total number of individuals generated by W (7) and its
expectation is denoted by z; = E [B(i)];

13
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3. pi is the probability of survival, that is, the probability that B(z) is infinite.

We finally define a non-linear operator ® 4 : R™ — R" that plays a central role in our analysis: for a
vector f € R", define each coordinate of ® 4( f) as

(@a(f); =1—e Wi =1, n, (©6)

where (Af) j denotes the j-th coordinate of Af. Abusing notation, we use the shorthand form
D 4(f) =1 — e . Clearly, if f has nonnegative components, then (® 4(f)) ; €10,1] forall 5.

Bollobas, Janson, and Riordan Bollobas et al. (2007) establish a connection between the sizes of
connected components of IRG, the survival probability of a branching process W4 (i), and the norm
of the matrix A.

As shown in Bollobds et al. (2007), the operator ® 4 can be directly used for characterizing
the probability p; of survival of the process W (i) for all i. By their Theorem 6.2, the vector p =
(p1,- ., pn) is one of the solutions of the non-linear fixed-point equation ® 4(f) = f. Furthermore,
if the largest eigenvalue of the matrix A satisfies Apax(A) < 1, then p; = 0 forall: = 1,...,n.
On the other hand, A\, > 1 implies that the vector p is the maximal fixed point of the operator
® 4 (Bollobas et al., 2007, Lemma 5.8.) also implies that when A4, > 1, all components of p are
positive.

Appendix B. The proof of Proposition 1

The proof consists of the following steps:
e proving that ¢; — ¢; = x; — x; + O(1/n) (Lemmas 8, 9),
e proving that z; > x; implies b; > b; (Lemma 6, 7),
e observing that b, = p; + O(1/n).

These facts together lead to Proposition 1, given that n is large enough to suppress the effects of the
residual terms. Before stating and proving the lemmas, we state some useful technical tools. Since
we suppose that G(n, A) is subcritical, we have P [B(i) = co] = 0 and x; = EB(1) is finite. First
observe that the vector x of expected total progenies satisfies the system of linear equations

r=e+ Az,

where e is the vector with e; = 1 for all <. Notice that, by its definition, the vector b can be succinctly
written as b = Ae.

Armed with this notation, we can analyze the relation between b; and z; in a straightforward
way:

Lemma 6 (Coordinate order for mean of the total progeny in the SBM) Assume that G(n, o, K)
is subcritical and that K,y = k > 0 holds for all m # {. If two coordinates of b are such that
b; > bj, then we have x; > x;, and x; — x; < 2x* (b; — bj).

Proof For a SBM with S blocks, the system of equations x = e + Ax can be equivalently written as
2’ = e+ Mz, for M = Kdiag(a) € R5*S, and 2’ € R¥, with 2/, now standing for the expected
total progeny associated with any node of type m. Similarly, we define o/, as the expected degree
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of any node of type m. Notice that the system of equations ' = e + Mz’ satisfied by 2’ can be
rewritten as (I — M)z’ = e, where [ is the S x S identity matrix. By exploiting our assumption on
the matrix K and defining v,,, = K, », — k, this can be further rewritten as

al a2 “ .. aS
l—«
171 o g - Qg /
— k‘ . . . . xr = e’
1—a ’
SYS a1 as - Qg

which means that for any m, a, satisfies
, 14k
me 1- OmYm .

Also observe that
v, = k(aTl) + QnYm,

so, for any pair of types m and ¢, we have

e g = (1 + k(aTx/))(am'Ym - 05[76)
¢ (1 - Oém'Ym)(l - aZW)

which proves the first statement.
To prove the second statement, observe that for any pair £ and m of communities, we have either

Q< % or oy < % (otherwise we would have «,,, + ay > 1). To proceed, let £ and m be such that

x, > xy, and let us study the case ap < % first. Here, we get

o — )= (1 4 k(a"2") (mym — ary) _ (mYm — OMW)x/
(1 — am¥m) (1 — cuye) (1 — aeye)
(mym — eve)
(1 —¢/2)

In the other case where o, < %, we can similarly obtain

Ty < 2, (b, — bY)-

xh, — xy < 2ay(b, — by) < 2z, (b, — by).

m m
This concludes the proof. |
Lemma 7 (Coordinate order for mean of the total progeny in the Chung-Lu model) Assume that
G(n,w) is subcritical. If two coordinates of b are such that b; > bj, then we have x; > x; and
i — l‘j § I‘*(bz — bj).
Proof From the system of equations z = e + Az, the coordinates x; have the form
1 n
xizl—f—g-wi ijxj ,

Jj=1
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which implies that w; > wj; holds if and only if z; > x;. This observation implies for * = max; z;

1

n
Xy —.Tj § E . (wi —wj) ij :L’* = (bz —bj)l’*,
j=1

thus concluding the proof. |

The next two lemmas establish the relationship between the expected component size ¢; of vertex ¢
and the expected total progeny x; of the multi-type branching process seeded at vertex .

Lemma 8 For any i, the mean of the connected component associated with type 1 is bounded by the
mean of the total progeny: c¢; < x;.

Proof The proof of the lemma uses the concept of stochastic dominance between random variables.
We say that the random variable X is stochastically dominated by the random variable Y when, for
every « € R, the inequality P[X < z] > P[Y < z] holds. We denote this by X < Y.

Now fix an arbitrary ¢ € [n]andletY; ;,Y; 2, ..., Y, be independent Bernoulli random variables
with respective parameters (A; 1/n, A;2/n, ..., Aii/n, ..., A;n/n). Consider a multitype binomial
branching process where the individual of type ¢ produce Y; ; individuals of type j, and let B (%)
denote its total progeny when started from an individual of type ¢. Recalling the Poisson branching
process defined in Section A with offspring-distributions X; ;, we can show Bge(i) < B(i) using
the relation Y; ; < Xj ;.

Considering a node a of type i, we can use Theorem 4.2 of van der Hofstad (2016) to bound the
size of the the connected component C,, as |C,| < Bge(7), which implies by transitivity of < that
|Ca,| < B(). The proof is concluded by appealing to Theorem 2.15 of van der Hofstad (2016) that
shows that stochastic domination implies an ordering of the means. |

Next we upper bound the excess that appears in the domination by the branching process:
Lemma9 z; —¢; = O(1).

Proof Asin Lemma 8, Bpe(7) denotes the total progeny of a Bernoulli branching process whose set
of parameters corresponds to G(n, A). Then we may decompose the difference as

T, — ¢ =x;—E [BBer(i)] +E [BBer(i)] — C;.

Denote the set of edges in the connected component C,, as E(C,) and the set of edges containing
a vertex v as E(v). We call |S| the surplus, which is the number of edges to be deleted from E(C,)
such that the graph C, becomes a tree. Then, we have E [Bp.,(i)] — ¢; < E[|S|]. The expectation
of the surplus may be written as

EISI=E| 3 HeeS} =S PlCI=H 3 E[leeS}|Cl =4
k=1

e€E(Cy) e€E(Ca)

:% S N E[ee S} I(Ca =H].

vEC, e€E(v)
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Define Aoy = max; ; Zi, ; as the maximal element of the matrix A. Then for an arbitrary vertex,
the probability of an edge e € E(v) being in the surplus can be upper bounded as

Y E[I{e € S} |Cul =k < Amach .

n
e€E(v)
Then we may upper bound the sum as
1 Amaxk?
52 Z E[l{e € S}||Cal = k] < ; .

vely eEE(v)

Using our expression for E|S|, we get

Amaxk2 . ZIna)(H'-‘:’C’a’2
n n '

E(IS[| < P[ICal = 4]
k=1

Now we notice that, by Le Cam’s theorem, the total variation distance between the sum of
independent Bernoulli random variables with parameters (A;1/n,..., A;,/,) and the Poisson

distribution Poi(}_"_, A, j/n) is at most 2037 Zi ;)/n. Using this fact and that the moments of
the total progeny of a subcritical branching process do not scale with n (cf. Theorem 1 of Huaming,
2012), we have x; — E [Bpe,(i)] = O (%), thus proving the lemma. |

Appendix C. The proof of Proposition 2

The proof relies on some known properties of the largest connected component in G(n, A) in the
supercritical regime. We denote the largest and second-largest connected components of G; by
C1(Gy) and Ca(Gy), respectively. Recall that the survival probability of the branching process W4 (7)
is denoted as p;. The following properties are proved by Bollobas et al. (2007):

e If G(n, A) is supercritical, then, with high probability, C; = O(n);
o C1(Gn)/n — > ,cq ip; in probability;
e (3(G,) = o(n) with high probability.
The expected size of the connected component of a vertex 7 is
¢i = piE[C1(G)] + o(n) . (N
Proposition 2 follows from the following lemmas for the SBM and the Chung—Lu models.

Lemma 10 (Coordinate order preserving in the SBM) Assume the conditions of Proposition 2
and leti, = argmax;b;. Leta = (ay,...,as) be suchthata; € (0,a;,] forall j. Then (P 4(a)); >

(®4(a),
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Proof Let us fix two arbitrary indices 7 and i’. By the definition of ®;;, we have
((I)A(a))i =1- 6_((2j¢i ajaj)k+aikiia;) ,

(@a(@)y = 1 — e~ (Eapr astasky vas)

Notice that if 7 and ¢’ satisfy

Z Q;aj k+ aiki,iai > Z a;a; k+ ai/ki/’i/ai/,
ji i

we have (®4(a));, > (Pa(a)),. Now, using the facts that
© D i A — Dy Q) = Qi — Qidy,
o a;k;; > aik,
o a;k;; +ayk > ayky y + aik and
o a;, —ay >0,
we can verify that

aiki7iai + ai/kai/ — aikai — O(i/ki/i/ai/

= (Ozikz‘,i + ai/k)ai/ + (ai — ai/)aikm‘ — (Ozi/ki/ﬂ'/ + aik)ai/ — (ai — ai/)aik 2 O,

thus proving the lemma.

Lemma 11 (Order of coordinates of eigenvector in the SBM) Ler a be the eigenvector corre-
sponding to the largest eigenvalue X of the matrix M = Kdiag(«). Then if i, = arg max,, by, we

have a;, > a; for j # i.
Proof If a is an eigenvector of M, then for coordinates i, 4':

Zj;ﬁz‘ ajaj) k+ aik;ia; = Aag,
2]7&2/ aj(lj) k =+ aiki/7i/ai/ = )\ai,

By the Perron-Frobenius theorem and our conditions on matrix M, A is a real number larger than one.
Denote C = k Ej#j#, aja;, x = a;, Yy = ay, a = ok, b= ok, ¢ = ik, d = ayky . Then,

C+azx+by =Xz,
CHex+dy=2Xy

Letr = 1+ e be such that y = rz = (1 + €)z. Then

Cta+b+be=\,
Ctctdtde= N+ e
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and therefore o o
—4+c+d+de=—+a-+b+be+ Xe.
X X

Rearranging the terms and using the fact that a + b > ¢ + d, we have
0<(a+b)—(c+d)=(d—-b—Ne.

Since k; ; > k, we have a;k; ; > ok and a > c.

We consider two cases separately: First, if b > d, we have d — b — A < 0, which implies € < 0
and y < =z, therefore proving a; > a; for this case. In the case when b < d, we havea +b > c+d
and % < 1. Subtracting the two equalities of the linear system 8, we get

Ml=r)=(a—rc) <1—db7~> .

a—cC

Now, since % <1, we have A > a — ¢, which implies A > d —band d — b — \ < 0, thus leading
to e < 0 and y < x, therefore proving a; > a, for this case. |

Lemma 12 (Order of coordinates of eigenvector in the Chung—Lu model) Let a be the eigen-
vector corresponding to the largest eigenvalue )\ of the matrix A. Then if i, = argmax,, by, we
have a;, > a; for j # i.

Proof It is easy to see that the only eigenvector of A corresponding to a non-zero eigenvalue is

a = w with A\pez = w ' w/n:

1
Aw = — - (ww
n n

The proof is concluded by observing that the maximum coordinate of the vector b corresponds to the
maximum coordinate of w, due to the equality

n
1
bz‘ = — W E wy.
n :
J=1
|

Lemma 13 (Coordinate order preserving in the Chung—Lu model) Assume the conditions of
Proposition 2 and let i, = argmax;b;. Let a = (a,...,a,) be such that a; € [0,a;,] for all
J- Then (®a(a));, > (Pa(a));.

Proof Let us fix two arbitrary indices 4 and . By the definition of ® 4, we have
(@a(a)); =1 — e Wilimwi)
Then, using the fact that w = a, we have (®4(a)); > (®a(a));, thus proving the lemma. [ |

We finally study the maximal fixed point of the operator ® 4, keeping in mind this fixed point is
exactly the survival-probability vector p of the multi-type Galton—Watson branching process Bollobds
et al. (2007). By Lemma 5.9 of Bollobés et al. (2007), this is the unique fixed point satisfying p; > 0
for all 4. The following lemma shows that p; takes its maximum at ¢, = arg max, b;, concluding the
proof of Proposition 2.

19



ONLINE INFLUENCE MAXIMIZATION WITH LOCAL OBSERVATIONS

Lemma 14 (Fixed point coordinate domination) Let p be the unique non-zero fixed point of ® 4,
and let i, = arg max; b;. Then, p;, > pj and p;, — p;j < p* (b;, — bj) holds for all j # i..

Proof Letting a be the eigenvector of A that corresponds to the largest eigenvalue A\, Lemma 12 and
11 guarantee a;, > a; for j # ¢*. Let € > 0 be such that € < 1- l/A , where a® = max;—1,.. g a;.
Then by Lemma 5.13 of Bollobds et al. (2007), ®;(ea) > ea holds elementw1se for the two vectors.

Since the coordinates of the vector ea are positive, we can appeal to Lemma 5.12 of Bollobas
et al. (2007) to show that iterative application of ® 4 converges to the fixed point p: letting @} be the
operator obtained by iterative application of ® 4 for m times, we have lim,,, .. ®'}'(ea) = p, where
p satisfies p > ea > 0 and ® 4(p) = p > 0. By Lemmas 12 and 11 we have p;, > pj, for i, # j for
both the SBM and the Chung—Lu models, proving the first statement.

The second statement can now be proven directly as

pi. — pi = e~ AP _ o= (An)in = o= 27 Aiirs _ o= 25 Aighs

n
— ] Ai*jpj(l e 2y Aijpj—Ai*jpj) < e 2 Ainip Z(Ai*j — Aij)pi.
J

where the first inequality uses the relation 1 — e™? < z that holds for all z € R, and the last step
uses the fact that Ap has positive elements. |

Appendix D. The proof of Theorem 5

Before delving into the proof, we introduce some useful notation. We start by defining Y, 1,...,Y,
as independent Bernoulli random variables with respective parameters B = (A 1, Aq2,- .., Aan),
and noticing that the degree X; , can be written as a sum X, = EZ £a Y,;. The following lemma,
used several times in our proofs, relates this quantity to a Poisson distribution with the same mean.

Lemma 15 Leti € [S]andletY;1,Y;2,...,Y; , be independent Bernoulli random variables with
respective parameters ki 1/n,k;2/n, ..., kin/n, and let Z; be a Poisson random variable with
parameter i; =3, . ki j/n. Defining X; =3, ;Y j, we have E [esXi] <E [e5%] forall s € R.
Proof Fix an arbitrary s € R and ¢ € [n]. By direct calculations, we obtain

n n

EeSXi:H(EeSYZJ H(l—i—k’]e—l)SH ((kij/n)- (e =1)),

7=1 =1

where the last step follows from the elementary inequality 1 4+ = < e® that holds for all x € R. The
proof is concluded by observing that Ee®%: = exp (i (e® — 1)) and using the definition of . [ |

For simplicity, we also introduce the notation 1 (s) = log Ee*X and ¢ (s) = log Ee®% = \(e®—1).
The proof below repeatedly refers to the Fenchel conjugate of ¢ defined as

x(z) = SUP{SZ — ¢(s)} = zlog (;) +A—z

seR
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for all z € R. Finally, we define d(u, ') = p/ — p + plog (“,) for all u, /> 0, noting that

W
63(2) = d(z.0).
As for the actual proof of the theorem, the statement is proven in four steps. Within this proof,
we refer to nodes as arms and use K to denote the size of V. We use the notation f(¢) = 3logt.

Step 1. We begin by rewriting the expected number of draws EN, for any suboptimal arm « as

EN, = E

T-1 T-1
> Ay = a}] =) P{A =al}.

t=K t=K

By definition of our algorithm, at rounds ¢ > K, we have A¢y1 = a only if Uy(y) > Uy (). This
leads to the decomposition:

{Ai1 = a} CT{u* > Up(t)} U {u* < Uy+(t) and Ay41 = a}
C{u* > Up ()} U{p" < Ugy(t) and Apy1 = a}

Steps 2 and 3 are devoted to bounding the probability of the two events above.

Step 2. Here we aim to upper bound

T-1
STPEt > U (t)]. )
t=K
Note, that {Ug=(t) < p*} = {fia(t) < Ug=(t) < p*}. Since d(p, ') = p/ — p+ ulog(ﬁ) is non-
decreasing in its second argument on [u, +00), and by definition of Uy« = sup{p : d(fig=(t), 1) <
%} we have
* A~ * ~ * f(t)
" > Up(t)} C 3 fra(t) < Uas(t) < p* and d(fiq=(t), p1*) > No- (1) )
a/*
Taking a union bound over the possible values of N, () yields
t—K+1 (1) t—K+1
v e U {2 it i) = 204 = 0,0,
n=1 n=1

where the event D,,(t) is defined through the last step. Since d(pu, 1*) is decreasing and continuous
f@)

in its first argument on [0, 11*), either d(jlq* n, pt*) < +,* on this interval and Dy, (t) is the empty set,

_ f@®

or there exists a unique z, € [0, *) such that d(z,, u*) = +.>. Thus, we have

t—K+1 t—K+1

U Dn(t) g U {ﬂa*,n S zn} .
n=1 n=1

For A < 0, let us define /() as the cumulant-generating function of the sum of binomials with
parameters B, and let ¢(\) be the cumulant-generating function of a Poisson random variable with
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parameter p*. With this notation, we have for any A < 0 that

P [/la*,n < Zn] =P [eXp()\Ma n) > eXp /\Zn

=P [eXp (AZXCL K 7“/} ) n)\zn - n¢( ))

=1

EGAX‘I*J
—n(Azn—1(N)) —n(Azn— w(/\))
§< ey > =¢

where the last step uses the definition of i(\). Now fixing \* = argmax,{\z, — ¢(N\)} =
log(z,/p*) < 0, we get by Lemma 15 that

etV z=p(\)) < gV —d(N)) — o7 (2n) _ o—nd(zn.n)
In view of the definition of z,, and f(t), this gives the bound

=) _ —10) — 1

3’
which leads to
T-1 T—1t—K+1 1
LRI S SIE P
t=K t=K n=1

thus concluding this step.

Step 3. In this step, we borrow some ideas by Ménard and Garivier (2017, Proof of Theorem 2,
step 2) to upper-bound the sum

T—1
B = Pu* < Uy(t) and A¢y1 = aj. (10)
—-K

~+

Writing n = n, = {u* — ua}/3 for ease of notation, we have

{n* < Uy(t)and Ayp1 = a} C {pu* —n < Uy(t) and A1 = a}
C {d(f1a(t), " —n) < f(t)/Na(t) and A¢q = a}.

Thus, we have

~

-1
P [d(ia(t), 1" — ) < F(£)/Na(t) and Apsy = d]

®
IN
i
=

M=

< Pld(fian, 1* —n) < £(T)/n)

1

S
I

Defining the integer n(7) as

) = | 10—

d(pra + 1, p* —n)
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we have f(T')/n < d(pq + 1, u* —n) for all n > n(n). Thus, we may further upper-bound B as

T
B<n(n) =1+ Y Pld(jian,p* —n) < f(T)/n]
n=n(n)
F(T) 4 .
P a,ny M —d a ’ - .
< i +nzn:n (fu —n) < d(pta +n, 1" —n)]

By definition of 1, we have

{fan, 1" —n) < d(pa + 0, 0" =)} € {ftan = pa +n},
which implies
T T
> Pld(iam p* =) < d(pa+ 00" = < D Plitan > pa+1) -
n=n(n) n=n(n)
By an argument analogous to the one used in the previous step, we get for a well-chosen A that
T
> Plian > pra+1) < Plexp(Mian) > exp(Apa +n))]
n=n(n)

P [eXp(A > Xai — nth(N) > exp(nA(ta + 1) — nep(A))
)

i=1

< [eAX“”'}> e atm)—p(N)

e?v(M)

IN

3
Il Il Il
M gM’ﬂ s I

T
e~ A (patn)— Z e~ nd(patnpa)

) n=n(n)

e~ (e tMa) < 1 1

< <
< — ed(ua+77uu«a) -1 d(ﬂa + 7, :u(l)’

n=n(n)
where the last step uses the elementary inequality 1 4+ x < e” that holds for all z € R.
Step 4. Putting together the results from the first three steps, we get
" 3logT
d(pta + 15 ta) — d(pta +m, 0% — 1)

We conclude by taking a second-order Taylor-expansion of d(uq 4 7, pig) in 7 to obtain for some
n' € [0,n)] that

EN, <3+

2 2
/N

20pa+1') T 2(ta+m)
Taking into account the definition of 7, we get
1 2u*
1w
d(pa + 1, 1a) ~ 1

An identical argument can be used to bound (d(q + 1, * — 1))~ < 2u* /n2. O

d(pta + 1, pa) =
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Appendix E. The proof of Theorem 4

We start by assuming that a« < 1/2. Also notice that for a uniformly sampled set of nodes U, the
probability of U not containing a vertex from VJ is bounded as

PUNVE=0] < (1—a)Vl

By the definition of Vj, this gives that the probability of not having sampled a node from V in
period k of the algorithm is bounded as

PViN Vi =0] < (1—a) <ph

For each period k, the expected regret can bounded as the weighted sum of two terms: the
expected regret of d-UCB (V},) in period k whenever Vi, N V' is not empty, and the trivial bound
A max /¥ in the complementary case. Using the above bound on the probability of this event and
appealing to Theorem 5 to bound the regret of d-UCB (V}), we can bound the expected regret as

a,t

k'max * k!
2 1
ERY <Y [ B 2 A + 3 A (“ 2+ 3108 ') +3)

ak 52
k=1 5 1€V

k
N *(2 1
< kmaonz,max + Z Z Aa,i (M ( 3k o8 6) + 3)

62
k=1 1€Vy, Q,?

< K Bomax + 3 Do <<3+”> (b + 1) + 208D 1) ) .

— 202 .
i€V Rk

The proof of the first statement is concluded by upper-bounding the number of restarts up to time 7’
as kmax < 125

log B *
The second statement is proven by an argument analogous to the one used in the proof of
Theorem 3, and straightforward calculations. ([l
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