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Abstract
How many bits of information are revealed by a learning algorithm for a concept class of VC-
dimension d? Previous works have shown that even for d = 1 the amount of information may
be unbounded (tend to ∞ with the universe size). Can it be that all concepts in the class require
leaking a large amount of information? We show that typically concepts do not require leakage.
There exists a proper learning algorithm that reveals O(d) bits of information for most concepts in
the class. This result is a special case of a more general phenomenon we explore. If there is a low
information learner when the algorithm knows the underlying distribution on inputs, then there is
a learner that reveals little information on an average concept without knowing the distribution on
inputs.
Keywords: Learning Theory, Information Theory.

1. Introduction

The high-level question that guides this paper is:

when is learning equivalent to compression?

Variants of this question were studied extensively throughout the years in many different contexts.
Recently, its importance grew even further due to the growing complexity of learning tasks. In
this work, we measure compression using information theory. Our main message is that, in the
framework we develop, learning implies compression.

It is well-known that in many contexts, the ability to compress implies learnability. Here is a
partial list of examples: sample compression schemes Littlestone and Warmuth (1986); Moran and
Yehudayoff (2016), Occam’s razor Blumer et al. (1987), minimum description length (Rissanen,
1978; Grünwald, 2007), and differential privacy Dwork et al. (2006, 2015b); Bassily et al. (2016);
Rogers et al. (2016); Bassily et al. (2014). We refer the interested reader to Xu and Raginsky (2017);
Bassily et al. (2018) for more details.

We use the setting of Xu and Raginsky (2017) and Bassily et al. (2018), where the value of
interest is the mutual information I(S;A(S)) between the input sample S and the output of the
learning algorithmA(S). The above authors suggested that studying this notion may shed additional
light on our understanding of the relations between compression and learning.

The rationale is that compression is, in many cases, an information theoretic notion, so it is nat-
ural to use information theory to quantify the amount of compression a learning algorithm performs.
The quantity I(S;A(S)) is a natural information theoretic measure for the amount of compression
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the algorithm performs. Additional motivation comes from the connections to privacy, which is
about leaking little information while maintaining functionality.

In the information theoretic setting, Xu and Raginsky (2017) and Bassily et al. (2018) showed
that for every learning algorithm for which the information I(S;A(S)) is much smaller than the
sample size m, the true error and the empirical error are typically close. This highlights the follow-
ing rule of thumb for designing learning algorithms: try to find an algorithm that has small empirical
error and at the same time reveals little information for a given input.

What about the other direction? Is it true that learning⇒ compression in this context? Bassily
et al. (2018) answered this question for the class of thresholds and Nachum et al. (2018) extended
the result for classes of VC-dimension d (see Section 2 for notations).

Theorem 1 (Bassily et al. (2018); Nachum et al. (2018)) For every d and every m ≥ 2d2, there
exists a class C ⊂ {0, 1}X of VC-dimension d such that for any proper and consistent (possibly
randomized) learning algorithm, there exists a hypothesis h ∈ C and a random variable X over X
such that I(S;A(S)) = Ω(d log log(|X |/d)) where S ∼ (X,h(X))m.

The theorem can be interpreted as saying that no, learning does not imply compression in this
context. In some cases, for any consistent and proper algorithm, there is always a scenario in which
a large amount of information is revealed.

In this work, we shift our attention from a worst-case analysis to an average-case analysis.
In the average-case setting, we show that every prior distribution P over C ⊂ {0, 1}X of VC-
dimension d admits an algorithm that typically reveals O(d)-bits of information on its input (there
is an unbounded difference between the worst-case and the average-case).

learning⇒ compression (on average) (Theorem 2)

This result is a special case of a more general phenomenon we explore. If there is a low in-
formation learner when the algorithm knows the underlying distribution on inputs, then there is a
learner that reveals little information on an average concept without knowing the distribution on
inputs (Lemma 4).

The average-case framework is different from the standard worst-case PAC setting. In the stan-
dard model, the teacher (or nature) is thought of as being adversarial and is assumed to have perfect
knowledge of the learner’s strategy.

• From a practical point of view, it is not obvious that such strong assumptions about the en-
vironment should be made, since worst-case analysis seems to fail when trying to explain
real-life learning algorithms.

• From a biological perspective, to survive, a living organism must perform many tasks (concept
class). No human can perform well on all of them (worst case analysis). What matters for
survival, is to be able to perform well on most tasks (average case learning).

The average-case framework we study also provides a general mechanism for proving upper
bounds on the average sample complexity for classes of functions (not necessarily binary or with
0-1 loss). This framework (“The Information Game”) allows the user the freedom to apply his
prior knowledge when trying to solve a learning problem. For example, the user can pick only
distributions that make sense in his setting (see Discussion).
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Related Work

INFORMATION COMPLEXITY IN LEARNING

The mutual information bounds are implicit in the PAC-Bayes bounds (see a survey by McAllester
(2013)).

More recent interest comes from applications in adaptive data analysis. In this setting, a user
asks a series of queries over some data. Every new query the user decides to ask depends on
the answers to the previous queries. Dwork et al. (2015a) used max-information and Feldman
and Steinke (2018) used the information theoretic setting and proved generalization bounds for
performing adaptive data analysis.

Asadi et al. (2018) applied the information theoretic setting for achieving generalization bounds
that depend on the correlations between the functions in the class together with the dependence
between the input and the output of the learning algorithm. They mostly investigated Gaussian
processes.

AVERAGE-CASE LEARNING

Here is a brief survey of other works that deviate from the worst-case analysis of the PAC learning
setting.

Haussler et al. (1994) studied how the sample complexity depends on properties of a prior
distribution on the class C and over the sequence of examples the algorithm receives. Specifically,
they studied the probability of an incorrect prediction for an optimal learning algorithm using the
Shannon information gain. They also studied stability in the context they investigated.

Wan (2010) can be used as a survey of average-case learning of DNF-formulas. There, the
formulas are sampled from the uniform distribution and the distribution over the domain is uniform
as well.

Reischuk and Zeugmann (1999) considered the problem of learning monomials. They analyzed
the average-case behavior of the Wholist algorithm with respect to the class of binomial distribu-
tions.

Finally, we note that many of the lower bounds on the sample complexity of learning algorithms
can be casted in the “on average” language. In many cases, the lower bound is proved by choosing
an appropriate distribution on the concept class C.

CHANNEL CAPACITY

The information game is also relevant in the following information theoretic scenario. Player two
wants to transmit a message through a noisy channel that has several states S and player one wants
to prevent that by appropriately choosing S. In the game, player two chooses a distribution on X .
Player one chooses a state S that defines the channel; i.e., pS(Y |X = x) is the distribution on the
transmitted data Y conditioned on the input being x. By the minimax theorem this game also has
an equilibrium point.

max
X

min
S
I(X;Y ) = min

S
max
X

I(X;Y ).

Other variants of this scenario can be found in chapter 7 of El Gamal and Kim (2011).
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2. Preliminaries

Here we provide the basic definitions that are needed for this text, and provide references that
contain more details and background.

NOTATION

We identify random variables with the distributions they define. The notation S ∼ (X,h(X))m

means that S consists of m i.i.d. pairs of the form (xi, h(xi)) where xi is distributed as X .
Big O and Ω notations in this text hide absolute constants.

LEARNING THEORY

Part I of Shalev-Shwartz and Ben-David (2014) provides an excellent comprehensive introduction
to computational learning theory. Following are some basic definitions.

Let X and Y be sets. A set C ⊆ YX is called a class of hypotheses. S = X × Y is called the
sample space. A realizable sample for C of size m is

S =
(
(x1, y1), . . . , (xm, ym)

)
∈ Sm

such that there exists h ∈ C satisfying yi = h(xi) for all i ∈ [m].
A learning algorithmA for C with sample sizem is a (possibly randomized) algorithm that takes

a realizable sample S = ((x1, y1), . . . , (xm, ym)) for C as input, and returns a function h : X → Y
as output. We say that the learning algorithm is consistent if the output h always satisfies yi = h(xi)
for all i ∈ [m]. We say the algorithm is proper if it outputs members of C.

The empirical error of A with respect to S and a function h ∈ C is

error(A;S) =
1

m

m∑
i=1

Lh(xi, A(S)(xi)),

where Lh : X × Y → R is the loss function. The true error of A with respect to a random variable
X over X and a function h ∈ C is defined to be

errorh(A;X) = Ex∼XLh(x,A(S)(x)).

The class C shatters some finite set S ⊆ X if the cardinality of C|S = {h|S : h ∈ C} is |Y||S|.
The VC-dimension of C denoted VC(C) is the maximal size of a set S ⊆ X such that C shatters S.

INFORMATION THEORY

Let X be a finite set, and let X be a random variable over X with probability mass function p such
that p(x) = Pr(X = x). The entropy of X is1

H(X) =
∑
x∈X

p(x) log
1

p(x)
.

The mutual information between two random variables X and Y is

I(X;Y ) = H(X) +H(Y )−H(X,Y ).

See the textbook Cover and Thomas (2006) for additional basic definitions and results from infor-
mation theory which are used throughout this paper.

1. log(x) is a shorthand for log2(x), and we use the convention that 0 log 1
0
= 0.
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AVERAGE COMPLEXITY

LetA be a learning algorithm for C with sample sizem, and let P be a probability distribution on C.
We say that A has at most average information complexity of d bits with respect to P , if all random
variables X over X satisfy

Eh∼PI(Sh;A(Sh)) ≤ d.

We say that A has error ε, confidence 1− δ, and at most average sample complexity M with respect
to P , if for all random variables X over X and all m ≥M ,

Eh∼P Pr(errorh(A(Sh);X) > ε) < δ.

3. Information Games

It is helpful to think about the learning framework as a two-player game.

THE INFORMATION GAME

• The two players decide in advance on a class of functions C ⊂ {0, 1}X and a sample size m.

• Player one (“Learner”) picks a consistent and proper learning algorithm A (possibly random-
ized).

• Player two (“Nature”) picks a function h ∈ C and a random variable X over X .

• Learner pays Nature I(S;A(S)) coins where S ∼ (X,h(X))m.

In the setting of Theorem 1, Nature knows in advance what the learning algorithm A of Learner
is. In that case, Nature’s optimal strategy leads to a gain of

min
A

max
(h,X)

I(S,A(S)) = Ω(d log log(|X |/d)).

In other words, when Nature knows what the learner is going to do, Nature’s gain can be quite large
even in very simple cases.

In Bassily et al. (2018), the other extreme was studied as well. Theorem 13 in Bassily et al.
(2018) states that when Learner knows in advance the random variable X of Nature (but not the
concept h), the gain of Nature is always much smaller; for all h ∈ C,

max
X

min
A
I(S,A(S)) = O(d logm).

In particular, in this case, Nature’s gain does not tend to infinity with the size of the universe.
We see that this information game does not have, in general, a game theoretic equilibrium point.

To remedy this, we suggest the following average case information game. We shall see the benefits
of considering this game below.

5



AVERAGE-CASE INFORMATION COMPLEXITY OF LEARNING

THE AVERAGE INFORMATION GAME

• The two players decide in advance on C ⊂ {0, 1}X and m.

• Learner picks a consistent and proper learning algorithm A (possibly randomized).

• Nature picks a random variable X over X .

• Learner pays Nature 1
|C|
∑

h∈C I(Sh;A(Sh)) coins where Sh ∼ (X,h(X))m.

In the average game, Nature’s gain is for an average concept h in the class. Nature can not
choose a particular h that would lead to a high payoff. As opposed to the first game, the average
information game has an equilibrium point (see the proof of Theorem 2 below):

max
X

min
A

1

|C|
∑
h∈C

I(Sh;A(Sh)) = min
A

max
X

1

|C|
∑
h∈C

I(Sh;A(Sh)).

By the results mentioned above, if the VC-dimension of C is d, then Nature’s gain in the game is
at most O(d logm), like in the case that Learner knows the underlying distribution. For VC classes,
although I(S;A(S)) may be extremely large for all algorithms under some distribution on inputs,
the average 1

|C|
∑

h∈C I(Sh;A(Sh)) is small for some algorithms under all distributions on inputs.
An even more general statement holds. If one allows an empirical error of at most ε, instead of

a consistent algorithm, the dependence on m can be omitted. This is indeed more general as if the
empirical error is less than 1/m then the algorithm is consistent.

Theorem 2 For every class C ⊂ {0, 1}X of VC-dimension d, every m ≥ 2, and every ε > 0,
there is a proper learning algorithm A with empirical error bounded by ε such that for all random
variables X on X ,

1

|C|
∑
h∈C

I(Sh;A(Sh)) = O(d log(2/ε))

where Sh ∼ (X,h(X))m.

The above result means that there is a learning algorithm such that for any distribution on inputs,
the algorithm reveals little information about its input for at least half of the functions in C, by
Markov’s inequality. If d logm is smaller than the entropy of the sampleH(Xm), then the algorithm
can be thought of as compressing its input.

Remark 3 The upper bound for the average information complexity that appears on Theorem 2 is
tight (up to a multiplicative factor). The average information complexity for the class Cd = {0, 1}X
is Ω(d), where the sample size is d/4 and |X | = d.

Assume by contradiction that the average information complexity of Cd is r = o(d). By
Markov’s inequality, atleast half of the functions of Cd satisfy I(Sh;A(Sh)) < 2r. Denote this
set of functions Ĉd. Since |Ĉd| > 2d−1, by the Sauer-Shelah lemma the VC dimension of Ĉd is
atleast d/2. Let X̂ ⊂ X be the set shattered by Ĉd. On one hand, the generalization error on Ĉd is
small by the compression bound (Theorem 8 on (Bassily et al., 2018)). On the other hand, by the no
free lunch theorem, the generalization error on Ĉd should be large. Hence the average information
complexity of Cd is Ω(d).
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Theorem 2 is a consequence of a more general phenomenon that holds even outside the scope of
VC classes. To state it, we need to consider a convex spaceD of random variables (or distributions),
since the mechanism that underlies its proof is von Neumann’s minimax theorem (see Von Neumann
(1928); Von Neumann and Morgenstern (1944)).

Lemma 4 Let C ⊂ YX be a class of of hypotheses (not necessarily binary valued) with a loss
function that is bounded from above by one. Let D be a convex set of random variables over the
space Xm. Assume that for everyX ∈ D, there exists an algorithmAX whose output has empirical
error ≤ ε and I(Sh;AX(Sh)) ≤ K for all h ∈ C where Sh ∼ (X,h(X))m. Then there exists a
learning algorithm A such that for all X ∈ D, the algorithm outputs a hypothesis with empirical
error ≤ ε and

1

|C|
∑
h∈C

I(Sh;A(Sh)) ≤ K.

The lemma is proved in Section 4.

Remark 5 Some natural collections of random variables are not convex. For example, if one starts
with a set of i.i.d. random variables over Xm, the relevant convex hull does not consist only of
i.i.d. random variables. This point needs to be addressed in the proof of Theorem 2. In the proof of
Theorem 2, we apply the lemma with D being the space of all symmetric distributions on Xm; see
Definition 12.

We call the learning algorithm A that is constructed in the proof of the theorem a minimax
algorithm for (C,D) with information K and empirical error ε. Such algorithms reveal a small
amount of information on most of the hypotheses in C. So, together with the “compression yields
generalization” results from Xu and Raginsky (2017) and Bassily et al. (2018) we get that the
minimax algorithm has small true error for every X ∈ D for most hypotheses in C, as long as
m� K.

Corollary 6 Let D0 be a convex set of random variables on X . Let D be the convex hull of
distributions of the formXm forX ∈ D0. LetA be a minimax algorithm for (C,D) with information
K and empirical error ε > 0. Let X ∈ D0. If m ≥ K

ε2δ
, then

Pr[errorh(A(S);X) > 2ε] < O(δ) (h is uniform)

where S ∼ (X,h(X))m and h is uniform in C and independent of X .
In particular, by Markov’s inequality, for at least half of the functions h in C,

Pr[errorh(A(Sh);X) > 2ε] < O(δ) (h is fixed)

where Sh ∼ (X,h(X))m.

Remark 7 There is nothing special about the uniform distribution on C. Any other prior distri-
bution P on C works just as well. It is important, however, to keep in mind that the algorithm A
depends on the choice of the prior P .

Remark 8 The convex set of distributions D0 may be chosen by the algorithm designer. One gen-
eral choice is to take the space of all distribution on X . Another example is the space of all sub-
gaussian probability distributions.
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To complete the proof of Theorem 2, we apply Lemma 4. For the lemma to apply, we need
to design an algorithm that reveals little information for VC classes when the distribution of X
is known in advance (as mentioned in the remark following Lemma 4 we need to handle even a
more general scenario). To do so, we need to extend a result from Bassily et al. (2018). The main
ingredient is metric properties of VC classes (see Haussler (1995)). This appears in Section 5.

4. The Minimax Learner

Naturally, the proof requires von Neumann’s minimax theorem.

Theorem 9 (Von Neumann (1928); Von Neumann and Morgenstern (1944)) Let U ⊆ Rn and
V ⊆ Rk be compact convex sets. Let f : U × V → R be a continuous function that is convex-
concave, i.e.,

– f(·, v) : U → R is convex for every v ∈ V and

– f(u, ·) : V → R is concave for every u ∈ U .

Then
min
u∈U

max
v∈V

f(u, v) = max
v∈V

min
u∈U

f(u, v).

Proof [Proof of Lemma 4] We need to verify that the minimax theorem applies. First, as stated in the
preliminaries, we deal with a finite space X so the set of all algorithms (randomized included) with
empirical error≤ ε and the set of random variablesD overXm can be treated as convex compact sets
in high dimensional euclidean space. Specifically, let U be the collection of randomized learning
algorithms with empirical error at most ε, and let V be the set D of distributions.

Second, mutual information is a continuous function of both strategies.
Third, the following lemma about mutual information.

Lemma 10 (Theorem 2.7.4 in Cover and Thomas (2006)) Let (X,Y ) ∼ p(x, y) = p(x)p(y|x).
The mutual information I (X;Y ) is a concave function of p(x) for fixed p(y|x) and a convex function
of p(y|x) for fixed p(x).

We apply the lemma with p(x) being the distribution on S and p(y|x) being the distribution
of h conditioned on S = s that the learning algorithm defines. Since a convex combination of
convex/concave functions is convex/concave, we see that the map

(u, v) 7→ 1

|C|
∑
h∈C

I(Sh;AX(Sh))

is convex-concave, where u defines the distribution of A(Sh) conditioned on the value of Sh, and v
defines the distribution of Sh.

By assumption,

max
X∈V

min
AX∈U

1

|C|
∑
h∈C

I(Sh;AX(Sh)) ≤ K.

By the minimax theorem,

min
A∈U

max
X∈V

1

|C|
∑
h∈C

I(Sh;A(Sh)) ≤ K.
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In other words, there is a randomized algorithm A as needed (points in U are randomized algo-
rithms).

Remark 11 In the proof above, we used the special fact that the mutual information is convex-
concave. We are not aware of any other measure of dependence between random variables that
satisfy this.

5. Learning Using Nets

Theorem 13 from Bassily et al. (2018) states the following. For an i.i.d. random variable X over
Xm and C ⊂ {0, 1}X with VC-dimension d, there exists a consistent, proper, and deterministic
learner that leaks at most O(d log(m + 1))-bits of information, where m is the input sample size
(for C-realizable samples).

For the minimax theorem to apply, we need to generalize the above statement to work for any
convex combination of i.i.d. random variables over Xm. To analyze this collection of random
variables, we need to identify some property that we can leverage. We use the fact that such random
variables are invariant under permutation of the coordinates.

Definition 12 A random variableX overXm is called symmetric if for any permutation σ : [m]→
[m],

Pr (X = (x1, ..., xm)) = Pr
(
X =

(
xσ(1), ..., xσ(m)

))
.

The following theorem holds for all symmetric random variables. In this space, we can not
assume any kind of independence between the coordinates. This should make the proof more com-
plicated than in Bassily et al. (2018), but in fact it helps to guide the proof and make it quite simple.

Theorem 13 Let ε > 0. For a symmetric random variable X over Xm and C ⊂ {0, 1}X with
VC-dimension d, there exists a proper and deterministic learner A with empirical error ≤ ε so that

I(S;A(S)) ≤ O(d log(2/ε))

for all m ≥ 2.

A key component in the proof is Haussler’s theorem (see Haussler (1995)) on the size of covers
of VC classes. The theorem states that for a given probability distribution µ on X , there are small
covers to the metric space whose elements are concepts in C and the distance between c1, c2 ∈ C is
µ({x : c1(x) 6= c2(x)}). The starting point of this theorem is a distribution on X . In the general
setting we consider, we start with a non-product distribution on Xm. To apply Haussler’s theorem,
we need to find the relevant µ (the solution is eventually quite simple).

Proof SinceX is symmetric, the marginal distribution is the same on each of the coordinates ofXm
and denote it D. For every integer j > 0, pick a minimal εj-net Nj with respect to the distribution
D over X for εj = ε/2j .

The learning algorithm is simple – it outputs the first function that has empirical error of at most
ε it sees along the sequence of nets. The algorithm stops because C is finite. It remains to calculate
the entropy of its output.
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For every j > 0 and h ∈ C, there is a function fj,h in Nj so that

D({x : h(x) 6= fj,h(x)}) ≤ εj .

By the linearity of the expectation,

E
(x1,...,xm)

∑m
i=1 1fj,h(xi) 6=h(xi)

m
≤ εj . (expected empirical error)

So, by Markov’s inequality,

Pr(fj,h has empirical error > ε) <
εj
ε

= 2−j .

In total, for all j > 0,

Pr(∃f ∈ Nj with empirical error ≤ ε) ≥ Pr(fj,h has empirical error ≤ ε) ≥ 1− 2−j .

Now take J to be the index of the net where the algorithm stops. For j ≥ 2 it holds that P (J =
j) ≤ 2−(j−1). Thus,

H(J) ≤ O(1),

.
By Haussler’s theorem (see Haussler (1995)), the size of Nj is at most

(4e2/εj)
d = (4e22j/ε)d.

Therefore,

H(A(S)|J) ≤
∞∑
j=1

P (J = j) log |Nj | = O(d log(2/ε)).

Finally,
I(S;A(S)) = H(A(S)) ≤ H(A(S), J) = H(J) +H(A(S)|J).

The first equality follows from A being a deterministic algorithm and the second equality follows
from the chain rule.

More Generally

The proof of Theorem 13 together with Lemma 4 suggest a general recipe for controlling the
average information complexity (and hence the average sample complexity) for pairs of the form
(C,D) (not necessarily binary class or with 0-1 loss).

• For every marginal distribution D over X from D, find a sequence of small ε-nets. This
sequence induces an algorithm that leaks little information, for every symmetric random vari-
able X ∈ D whose marginal distribution is D (even though it is not necessarily i.i.d.).

• Use the minimax theorem to find an algorithm that leaks little information over all of D.
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It will be interesting to see if this setting can be extended to the non-realizable case. It is not
immediate to apply the principles seen in the proof of Theorem 2 to this case. In theory, some
samples may require large empirical losses (for proper learners). Since the minimax algorithm is
a convex combination of those algorithms, it is hard to say what the empirical error of such an
algorithm will be, or how far will the empirical error be from the hypothesis in C with an optimal
empirical error.

6. Stability

To describe the minimax algorithm we need to come up with some prior distribution P on C. In
practice, we do not necessarily know the actual prior but we may have some approximation of it. It
is natural to ask how does the performance of the minimax algorithm change when our prior P is
wrong, and the true prior is Q.

As an example, if we have a bound suphQ(h)/P(h) ≤ C, then we immediately get

Eh∼QI(Sh;A(Sh)) ≤ C · Eh∼PI(Sh;A(Sh)).

As another example, consider the case that the statistical distance ‖P −Q‖1 is small. If we assume
nothing on how I(Sh;A(Sh)) distributes, we can get

Eh∼QI(Sh;A(Sh))

Eh∼PI(Sh;A(Sh))
= Θ(‖P −Q‖1 log |C|), (1)

which seems too costly to be useful. This can happen when one hypothesis satisfies I(Sh;A(Sh)) =
Θ(log |C|), and we move all the allowed weight from one hypothesis with small mutual information
to h. If, however, the second moment is bounded, we can get better estimates:

|Eh∼PI(Sh;A(Sh))− Eh∼QI(Sh;A(Sh))|

≤
∑
h∈C

I(Sh;A(Sh))|P(h)−Q(h)|

=
∑
h∈C

(
I(Sh;A(Sh))

√
P(h) +Q(h)

)( |P(h)−Q(h)|√
P(h) +Q(h)

)
≤
√
Eh∼P [(I(Sh;A(Sh)))2] + Eh∼Q[(I(Sh;A(Sh)))2] ·

√
‖P −Q‖1.

The last inequality is Cauchy-Schwartz. Roughly speaking, this means that if P is close to Q then
the average information that is leaked is similar, when the map h 7→ I(Sh;A(Sh)) has bounded
second moment under both distributions. It is possible to replace the second moment by the p-
moment for p > 1 using Hölder’s inequality.

Remark 14 We saw that with no assumptions, information cost can grow considerably under small
perturbations of P (see equation 1). The average sample complexity, however, does not. If A has
error ε, confidence 1− δ, and average sample complexity M with respect to P , it also has error ε,
confidence 1− δ − ‖P −Q‖1, and average sample complexity M with respect to Q.
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7. Discussion

This work leaves the traditional setting of PAC learning and assumes a less hostile environment
for learning. We introduce game-theoretic perspectives of the compression learning algorithms
perform. In the standard setting, Nature is assumed all powerful and can make the Learner leak
quite a lot of information. In the average-case scenario, Nature needs to commit ahead of time
on some probability distribution from which the eventual concept is generated. In this case, the
minimax theorem allows to lower the amount of information that is leaked.

The average-case framework captures some amount of prior knowledge on the world that the
learner can use. It therefore allows to avoid singular or pathological cases.

This work suggests an idea that may be useful in other contexts. Given a class C ⊂ YX , perform
the following four steps.

1. Define a set of reasonable distributions D over X .

2. Find a collection of ε-nets for distributions in D.

3. Look for a distribution over those nets that works well for most distributions in D.

4. Given a sample S, sample a random ε-net until finding an hypothesis with small empirical
error.

It seems plausible that this will yield acceptable results for samples that come from the real world.
All steps above, however, may be quite challenging to implement.
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