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Abstract
In this paper, we study a new notion of scaled minimaxity for sparse estimation in high-dimensional
linear regression model. We present more optimistic lower bounds than the one given by the classi-
cal minimax theory and hence improve on existing results. We recover sharp results for the global
minimaxity as a consequence of our study. Fixing the scale of the signal-to-noise ratio, we prove
that the estimation error can be much smaller than the global minimax error. We construct a new
optimal estimator for the scaled minimax sparse estimation. An optimal adaptive procedure is also
described.
Keywords: High-dimensional estimation under sparsity, SLOPE estimator, Hamming loss, exact
support recovery, non-asymptotic minimax risk, adaptive estimation.

1. Introduction

1.1. Statement of the problem

Assume that we observe the vector of measurements Y ∈ Rp satisfying

Y = β + σξ (1)

where β ∈ Rp is the unknown signal, σ > 0 and the noise ξ ∼ N (0, Ip) is a standard Gaussian
vector. Here, Ip denotes the p× p identity matrix. This model is a specific case of the more general
model where Y ∈ Rn satisfies

Y = Xβ + σξ (2)

where X ∈ Rn×p is a given design or sensing matrix, and the noise is independent of X . Model
(1) corresponds to the orthogonal design. In this paper, we mostly focus on model (1). We denote
by Pβ the distribution of Y in model (1) or of (Y,X) in model (2), and by Eβ the corresponding
expectation.

We consider the problem of estimating the vector β. We will also explore its relation to the
problem of recovering the support of β, that is the set Sβ of non-zero components of β. For an
integer s ≤ p, we assume that β is s-sparse, that is it has at most s non-zero components. We also
assume that these components cannot be arbitrarily small. This motivates us to define the following
set Ωp

s,a of s-sparse vectors:

Ωp
s,a = {β ∈ Rp : |β|0 ≤ s and |βi| ≥ a, ∀i ∈ Sβ} ,

c© 2019 M. Ndaoud.



INTERPLAY OF MINIMAX ESTIMATION AND MINIMAX SUPPORT RECOVERY UNDER SPARSITY

where a ≥ 0, βi are the components of β for i = 1, . . . , p, and |β|0 denotes the number of non-zero
components of β. The value a characterizes the scale of the signal. In the rest of the paper, we will
always denote by β the vector to estimate, while β̂ will denote the corresponding estimator. In our
setting, we do not constrain β̂ to be sparse. Let us denote by φ the scaled minimax risk

φ(s, a) = inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖2

)
,

where the infimum is taken over all possible estimators β̂. It is easy to check that φ is increasing
with respect to s and decreasing with respect to a. Note that, for Y following model (1), the global
minimax error over Rp is given by

inf
β̂

sup
β∈Rp

Eβ

(
‖β̂ − β‖2

)
= σ2p.

The previous equality is achieved for s = p and a = 0 through the naive estimator β̂ = Y . Under
the sparsity assumption, the previous result can be improved. In the seminal paper Donoho et al.
(1992), it is shown that the global sparse minimax estimation error has asymptotics:

inf
β̂

sup
|β|0≤s

Eβ

(
‖β̂ − β‖2

)
= 2σ2s log(p/s)(1 + o(1)) as

s

p
→ 0. (∗)

Inspecting the proof of the minimax lower bound, one can see that (∗) is achieved for

a = σ
√

2 log (p/s)(1 + o(1)).

We may also notice that the global sparse minimax estimation error is more optimistic than the
global over Rp. In this paper, we present an even more optimistic solution inspired by a notion of
scaled minimax sparse estimation given by φ. By doing so, we recover the global sparse estimation
by taking the supremum over all a. In the rest of the paper, we will always denote by SMSE the
quantity φ.

It is well known that minimax lower bounds are pessimistic. The worst case is usually specific to
a critical region. Hence, a minimax optimal estimator can be good globally but may not be optimal
outside of the critical region. By studying the quantity φ for fixed sparsity, we will emphasize this
phenomenon.

An optimistic lower bound for estimation of s-sparse vectors is given by σ2s and can be achieved
when the support of vector β is known. We say that an estimator β̂ achieves exact estimation in
model (1) if

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖2

)
= σ2s(1 + o(1)) as

s

p
→ 0.

We also say that estimator β achieves exact support recovery in model (1) if

lim
p→∞

sup
β∈Ωps,a

Pβ

(
Sβ̂ = Sβ

)
= 1,

where the asymptotics are considered as p→∞ when all other parameters of the problem (namely,
s, a, σ) depend on p. In this paper, we shed some light on the relation between exact support
recovery and exact estimation. Specifically, we give an answer to the following questions that
motivate the present work.
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• How pessimistic is the result (∗)? Can we do any better by fixing the scale value a?

• Is exact support recovery necessary to achieve exact estimation?

• Can we achieve minimax optimality with respect to SMSE adaptively to the scale value a?

In the dense regime where s � p, the minimax estimation error is of order σ2p independently of a.
Hence, in the rest of the paper, we focus on the regime where s

p = o(1). All the proofs are deferred
to Appendix.

Notation. In the rest of this paper we use the following notation. For given sequences an and
bn, we say that an = O(bn) (resp an = Ω(bn)) when an ≤ cbn (resp an ≥ cbn) for some absolute
constant c > 0. We write an � bn if an = O(bn) and an = Ω(bn). For x,y ∈ Rp, ‖x‖ is the
Euclidean norm of x, and x>y the corresponding inner product. For q ≥ 1, and x ∈ Rp, we denote
by ‖x‖q the lq norm of x. For a matrix X , we denote by Xj its jth column. For x, y ∈ R, we
denote by x ∨ y the maximum of x and y and we set x+ = x ∨ 0. For q ≥ 1 and ξ a centered
Gaussian random variable with variance σ2, we denote by σq the quantity E(|ξ|q)1/q. The notation
1(·) stands for the indicator function. We denote by C and Cq positive constants where the second
one depends on q for some q ≥ 1.

1.2. Related literature

The literature on minimax sparse estimation in high-dimensional linear regression (for both random
and orthogonal design) is very rich and its complete overview falls beyond the format of this paper.
We mention here only some recent results close to our work. All sharp results are considered in the
regime s

p → 0.

• In Bellec et al. (2018), the authors show that SLOPE estimator, which is defined in Bogdan
et al. (2015), is minimax optimal for estimation under sparsity constraint in model (2), as long
as X satisfies some general conditions. This result is non-asymptotic.

• Bellec (2018) proves that the minimax estimation rate of convex penalized destimators can-
not be improved for sparse vectors, even when the scale parameter a is large. This fact is
mainly due to the bias caused by convex penalization as it is the case for LASSO and SLOPE
estimators.

• In Su and Candes (2016), it is shown that SLOPE is asymptotically minimax optimal on
{|β|0 ≤ s} giving the asymptotic optimal estimation error 2σ2s log p

s in model (1). In model
(2), where X has i.i.d standard Gaussian entries and under the asymptotic condition s log p

n →
0, SLOPE gives the asymptotic optimal error 2σ

2

n s log p
s , cf. Su and Candes (2016). Both

results are asymptotically minimax optimal and adaptive to the sparsity level s.

• Wu and Zhou (2013) show that the penalized least squares estimator with a penalty that grows
like 2σ2s log p

s , is asymptotically minimax optimal on {|β|0 ≤ s} under additional assump-
tions on s and p.

1.3. Main contribution

Inspired by the related literature, the present work is also motivated by the following questions.
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• In model (1), the proof of lower bounds uses a worst case vector with non-zero components
that scale as σ

√
2 log p

s in order to get the best lower bound. In other words, the worst case
happens for a specific vector β. Can we do better far from this vector?

• One of the popular approaches is to recover the support of a sparse vector and then estimate
this vector on the obtained support. In this case the error of estimation is of order sσ2 and is
the best one can hope to achieve. Is it necessary to recover the true support in order to get this
error? This is an important question that we address in this paper.

• If the answer to the previous question is negative, can we propose an algorithm that would be
optimal in the sense of SMSE, practical and adaptive?

The main contribution in this paper is a sharp study of the minimax risk φ. What is more, we
study a more general quantity given by

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
, (3)

for any q ≥ 1. We give lower bounds and corresponding upper bounds for (3). We show that in the
interesting regime s

p = o(1), our lower and upper bounds match not only in the rate but also in the
constant up to a factor 4 under a mild condition on sparsity. As a result of our study, we recover two
interesting phase transitions when s

p = o(1).

The first one is that there are basically two regimes in estimation. For a ≤ σ
√

2 log(p/s)(1−ε)
and ε > 0, the asymptotic SMSE is 2sσ2 log(p/s). This regime is called the hard recovery regime,
where we prove that the error is due to misspecification in recovering the support. Alternatively, for
a ≥ (1 + ε)σ

√
2 log(p/s), the error is of order sσ2. This regime is presented as the hard estimation

regime. In this regime, we can recover a good fraction of the support but still have to pay for the
estimation on the support. Hence, and surprisingly, the SMSE is almost piece-wise constant as a
function of a. This shows that the sparse minimax risk can be made much smaller once we get far
from some critical region.

Another contribution of this paper is a new phase transition related to sparsity. In Butucea et al.
(2018), it is shown that a necessary condition to achieve exact recovery is given by

a ≥ σ
√

2 log(p− s) + σ
√

2 log(s).

To achieve exact estimation, a necessary condition is

a ≥ σ
√

2 log(p/s− 1) + 2 log log(p/s− 1) + σ
√

2 log log(p/s− 1).

Hence exact recovery is not necessary for exact estimation. In fact, when s � log(p) then exact
estimation is easier and when s� log(p) exact recovery becomes easier. This shows that there is no
direct implication of exact recovery on exact estimation, hence the latter task should be considered
as a separate problem.

Finally, one more contribution of this paper is adaptivity. We give an optimal adaptive variant
of our procedure, that achieves the sparse minimax optimal rate and whenever exact estimation is
possible achieves it as well. By doing so, our procedure improves on the existing literature. In fact,
Lasso is known to have an unavoidable bias of order σ2s log(p/s) even on the class Ωp

s,a, cf. Bellec
(2018). We show that our procedure is better in the sense that it gets rid of the bias whenever it is
possible.
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2. Towards more optimistic lower bounds for estimation

In several papers, lower bounds for minimax risk are derived using the Fano lemma. These lower
bounds are usually far from being sharp in the non-asymptotic setting. We establish, in this section,
non-asymptotic lower bounds on the minimax risk based on some revisited two-hypothesis testing
techniques.

We derive two lower bounds for the SMSE. The scaled error of estimation of sparse vectors can
be decomposed into two types of error. A first one based on the error of estimation when the true
support Sβ is known and a second one is given by the error of recovery of the true support when the
vector components are known but not the support. For this purpose, we prove first a general lower
bound for constrained minimax sparse estimation.

In the next theorem, we reduce the constrained minimax risk over all estimators to a Bayes risk
with arbitrary prior measure π on Rp and give a bound on the difference between the two risks. This
result is true in a general setup, non necessarily for Gaussian models. For a particular choice of
measure π, we provide an explicit bound of the remainder term.

Consider the set of vectors Θs,a ⊆ Rp, and assume that we are given a family {Pβ, β ∈ Θs,a}
where each Pβ is a probability distribution on a measurable space (X ,U). We observe Y drawn
from Pβ with some unknown β ∈ Θs,a and we consider the risk of an estimator β̂ = β̂(Y ):

sup
β∈Θs,a

Eβ‖β̂ − β‖qq

where Eβ is the expectation with respect to Pβ . Let π be a probability measure on Rp (a prior on
β). We denote by Eπ the expectation with respect to π.

Theorem 1 For any s < p, q ≥ 1 and any probability measure π on Rp, there exists Cq > 0 such
that

inf
β̂

sup
β∈Θs,a

Eβ‖β̂ − β‖qq ≥ inf
T̂∈Rp

EπEβ
p∑
j=1

|T̂j(Y )− βj |q

− Cq Eπ
[(
E(‖βA‖qq|Y ) + ‖β‖qq

)
1(β 6∈ Θs,a)

]
, (4)

where βA := β.1(β ∈ Θs,a) = (β11(β ∈ Θs,a), . . . , βp1(β ∈ Θs,a)), inf β̂ is the infimum over all

estimators and inf T̂∈Rp is the infimum over all estimators T̂ (Y ) = (T̂1(Y ), . . . , T̂p(Y )) with values
in Rp.

Theorem 1 is valid in a very general setting. We present now specific lower bounds in the general
model of linear regression. Assume that Y ∈ Rn follows model (2), where X is a deterministic
design. The following lemma is useful to get more precise lower bounds in model (2). It is based
on the simple observation that under independent prior distributions of the entries of β the oracle
estimator of a given component does not depend on the rest of the components.

Lemma 2 Assume that Y satisfies model (2) with a deterministic design X . Then

inf
T̂∈Rp

EπEβ
p∑
j=1

|T̂j(X,Y )− βj |q ≥
p∑
j=1

inf
T̂j∈R

EπjEβj |T̂j(Xj , Ỹj)− βj |q,

where Ỹj = Y −
∑

i 6=j Xiβi = βjXj + σξ.
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Using the previous lemma, we are now ready to give two sharp lower bounds for the SMSE. A first
one supposed to capture the error of estimation when the support is known, while the second one
handles the case where the support is not known.

Theorem 3 Assume that Y follows model (2) with a deterministic design X . For any a > 0, q ≥ 1
and s < p we have

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥ σqqmax

|S|=s

∑
i∈S

1

‖Xi‖q2
.

In order to derive the next lower bound, we define the quantity Ψ introduced in Ndaoud and Tsy-
bakov (2018) in the context of support recovery:

Ψ(p, s, a, σ,X) :=

p∑
j=1

(
s

p
P(σε ≥ (a− tj(a))‖Xj‖) + (1− s

p
)P(σε ≥ tj(a)‖Xj‖)

)
,

where ε is standard Gaussian random variable and

tj (a) :=
a

2
+
σ2 log

(p
s − 1

)
a‖Xj‖2

, ∀j = 1, . . . , p.

Theorem 4 Assume that Y follows model (2) with deterministic design X . For any a > 0, q ≥ 1
and s < p we have

∀s′ ∈ (0, s), inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥ aq s

′

s

(
1

2q
Ψ(p, s, a, σ,X)− 2se−

(s−s′)2
2s

)
.

The proof is based on arguments similar to Butucea et al. (2018). Assume now that we are under
model (1) and set

ψ (p, s, a, σ) := (p− s)P (σε > t (a)) + sP (σε > a− t(a)) ,

where ε is a standard Gaussian random variable and

t (a) :=
a

2
+
σ2 log

(p
s − 1

)
a

. (5)

The minimax Hamming loss for model (1) was studied in Butucea et al. (2018), where it was shown
that it is very linked to ψ. One may notice that, under model (1), Ψ(p, s, a, σ, Ip) = ψ(p, s, a, σ).
We define now the following estimation rate

Φ(a) :=

{
aqψ(s, p, a, σ) ∨ σqqs if a ≥ t∗,
sσq

(
2 log(ps − 1)

) q
2 else,

where

t∗ = σ

√
2 log

p

s
− 1. (6)

The next proposition is a consequence of previous theorems and shows the link between the mini-
max Hamming loss and the minimax estimation risk.
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Proposition 5 Assume that Y follows model (1). For any a > 0, q ≥ 1, s < p/2 and s ≥
8q log log(p), we have

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥ CqΦ(a),

where Cq > 0.

Remark 6 The mild condition s = Ω(log log p) is an artifact of the proof of the lower bound. We
believe that this condition can be removed or further relaxed.

A more careful proof of the previous result can lead us to Cq = (1 + o(1)) as s
p → 0. We omit the

proof of this, since we give a more accurate result in the next section. Analyzing the lower bound of
Proposition 5, it turns out that the minimax rate σ2s log (p/s), for q = 2, cannot be improved when
a ≤ t∗. We will see later that this is not the case for large values of a. The next section is devoted
to closing this gap by deriving matching upper bounds.

3. Optimal scaled minimax estimators

In this section, we consider upper bounds for the scaled minimax risk under model (1). For a > 0
define the following estimator:

β̂aj := Yj1{|Yj |≥t(a∨t∗)}, ∀j ∈ 1, . . . , p, (7)

where t(.) and t∗ are defined respectively in (5) and (6). The following result gives a matching
upper bound for the scaled minimax risk. Set

Φ+(a) :=

{
aqψ+(p, s, a, σ) ∨ σqqs if a ≥ t∗,
sσq

(
2 log(ps − 1)

) q
2 else,

where ψ+ is given by

ψ+ (p, s, a, σ) := (p− s)P (σε > t (a)) + sP (σε > (a− t(a)+)) ,

and ε is a standard Gaussian random variable. Notice that Φ+(a) ≤ Φ(a). This remark, combined
with the next theorem, shows minimax optimality of the estimator (7).

Theorem 7 Assume that Y follows model (1). For all a > 0, let β̂a be the estimator (7). For all
q ≥ 1 and s < p/2 we have

sup
β∈Ωps,a

Eβ

(
‖β̂a − β‖qq

)
≤ CqΦ+(a),

where Cq is a universal constant depending only in q.

Combining this result with Proposition 5, we deduce the next corollary.

Corollary 8 Assume that Y follows model (1). For all a > 0, let β̂a be the estimator (7). For all
q ≥ 1, s < p/2 and s ≥ 8q log log(p), there exists Cq > 0 such that

sup
β∈Ωps,a

Eβ

(
‖β̂a − β‖qq

)
≤ Cqinf

β̂
sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
.

7



INTERPLAY OF MINIMAX ESTIMATION AND MINIMAX SUPPORT RECOVERY UNDER SPARSITY

We give now a more accurate upper bound in the regime s
p → 0. Assume that s ≤ p/4. For q ≥ 1,

and ε ∈ [0, 1] define

aq(ε) = σ
√

2 log(p/s− 1) + qε log log(p/s− 1) + σ
√
qε log log(p/s− 1).

Set

Φo(a) :=


sσq

(
2 log(ps − 1)

) q
2 if a ≤ aq(0),

sσq(2 log( p
s
−1))

q
2 (1−ε)

1+σ
√

π
2
εq log log( p

s
−1)
∨ σqqs if a = aq(ε), ε ∈ (0, 1),

sσqq if a ≥ aq(1).

The next theorem gives sharp upper bounds in the regime s
p → 0.

Theorem 9 Assume that Y follows model (1). For all a > 0, let β̂a be the estimator (7). In the
regime where s

p → 0, for all q ≥ 1, we have

sup
β∈Ωps,a

Eβ

(
‖β̂a − β‖qq

)
≤ Φo(a)(1 + o(1)).

As a consequence of previous results, we derive the next corollary that gives an almost sharp bound
for SMSE when s

p → 0.

Corollary 10 Assume that Y follows model (1). For all a > 0, q ≥ 1 and s ≥ 8q log log(p), in the
regime s

p → 0, we have

1

4
+ o(1) ≤ inf

β̂
sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
Φo(a)

≤ 1 + o(1),

and

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
sσqq

= 1 + o(1) if a ≥ aq(1).

Inspecting the proof of Corollary 10, we may notice that the discrepancy between the bounding
constants is mainly caused by values of the scale a = aq(ε) such that ε ∈ (0, 1). Corollary 10
shows that we can construct an almost sharp optimal minimax estimator provided a and s. The next
section is devoted to the question of adaptivity.

4. Adaptative scaled minimax estimators

In Section 3 we have shown that the minimax rate is given by the quantity Φo(a) in a sharp way if
s
p → 0. Note that Φo(a) is almost piece-wise constant as a function of a. In fact the study of Φo(a)
gives rise to three different regimes that we describe below.

1. Hard recovery regime:

Let a ≤ σ
√

2 log
(p
s − 1

)
. We call this the hard recovery regime. In this regime, Φo(a) is

constant and has a value of order σqs
(
2 log

(p
s − 1

))q/2. It turns out that the worst case of

estimation happens for a = σ
√

2 log
(p
s − 1

)
. This error is mainly due to the fact the we

cannot achieve almost full recovery as defined in Butucea et al. (2018).
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2. Hard estimation regime:

This regime corresponds to values of a such that

a ≥ σ
√

2 log (p/s− 1)

√
1 + 4

q log log(p/s− 1)

log(p/s− 1)
.

In this regime Φo(a) is of order σqqs. In this region, the error of estimation on a known support
dominates the error of recovering the support.

3. Transition regime:

This regime concerns the remaining values of a falling between the two previous regimes.
In this regime Φo(a) is not constant any more. It represents a monotonous and continuous
transition from one regime to another.

After analyzing the SMSE, we give a couple of remarks.

Remark 11

• If s = o(p) there are basically two regimes around the threshold σ
√

2 log
(p
s − 1

)
. Notice

also that the hard estimation error is very small compared to the hard recovery error. We may
notice that the SMSE is very small compared to the minimax sparse estimation error in the
hard estimation regime. This proves how pessimistic the general minimax lower bounds are
and that we can do much better for the scaled minimax risk.

• The case s ∼ p is of small interest. There is no phase transition in this case, since the SMSE
is of order σqp for every a.

• In the Hard estimation regime, the minimax error rate is the same as if the support were
exactly known. It is interesting to notice that we need a weaker condition to get this rate when
s � log(p), while a stronger necessary condition is needed for exact recovery, cf. Butucea
et al. (2018). Hence exact support recovery is not necessary to achieve exact estimation.

Notice also that the transition regime happens in a very small neighborhood around the universal
threshold σ

√
2 log (p/s). Thus, it is very difficult to be adaptive to a in the transition regime. For

s ≤ p/4, define the following estimator:

β̂sj := Yj1{|Yj |≥t∗s}, ∀j ∈ 1, . . . , p, (8)

where
t∗s := σ

√
2 log(p/s− 1) + q log log(p/s− 1).

We define a more convenient adaptive estimation error. Set

Φad(a) :=

{
σqqs if a ≥ aq(1),

sσq
(
2 log(ps − 1)

) q
2 else.

The following result gives a matching upper bound for the adaptive scaled minimax risk.
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Theorem 12 Assume that Y follows model (1). Let β̂s be the estimator (8). For all q ≥ 1, a > 0
and s < p/4 we have

sup
β∈Ωps,a

Eβ

(
‖β̂s − β‖qq

)
≤ CqΨad(a),

where Cq is a universal constant depending only in q.

Since the two main regimes are hard estimation and hard recovery, we restricted the notion of adap-
tivity to these regimes. By doing so, we constructed an almost optimal estimator adaptively to the
parameter a. This estimator is minimax optimal over the set of s-sparse vectors and achieves exact
estimation when necessary conditions are satisfied. Our estimator has a phase transition around the
universal threshold. Based on a procedure similar to Butucea et al. (2018), we can also construct an
optimal estimator adaptive to sparsity. We do not give further details here for the sake of brevity.

5. Conclusion:

In this paper, we define and study a new notion that we call scaled minimax sparse estimation. We
assess how pessimistic are minimax lower bounds for the problem of sparse estimation. We also
show that exact recovery is not necessary for exact estimation in general. As a result, we construct
a new estimator optimal for the SMSE and present its adaptive version, improving on existing
procedures for the problem of estimation.
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Appendix A. Sharp Gaussian tail bounds

The following bounds for the tails of Gaussian distribution will be useful:

e−y
2/2

√
2πy + 4

≤ 1√
2π

∫ ∞
y

e−u
2/2du ≤ e−y

2/2

√
2πy ∨ 2

.

for all y ≥ 0. These bounds are an immediate consequence of formula 7.1.13 in Abramowitz and
Stegun (1965) with x = y/

√
2.

Appendix B. Proof of Theorem 1

Throughout the proof, we write for brevity A = Θs,a. Set βA = β.1(β ∈ A) and denote by πA the
probability measure π conditioned by the event {β ∈ A}, that is, for any C ⊆ Rd,

πA(C) =
π(C ∩ {β ∈ A})

π(β ∈ A)
.

The measure πA is supported on A and we have

inf
β̂

sup
β∈A

Eβ|β̂ − β|qq ≥ inf
β̂

EπAEβ|β̂ − β|
q
q = inf

β̂
EπAEβ|β̂ − β

A|qq

≥
p∑
j=1

inf
T̂j

EπAEβ|T̂j − β
A
j |q

where inf T̂j is the infimum over all estimators T̂j = T̂j(Y ) with values in R. According to The-
orem 1.1 and Corollary 1.2 on page 228 in Lehmann and Casella (2006), there exists a Bayes
estimator BA

j = BA
j (Y ) such that

inf
T̂j

EπAEβ|T̂j − β
A
j |q = EπAEβ|B

A
j − βAj |q.

In particular, for any estimator T̂j(Y ) we have

EA
(
|BA

j (Y )− βAj |q
∣∣Y ) ≤ EA

(
|T̂j(Y )− βAj |q

∣∣Y ) (9)

almost surely. Here, the superscript A indicates that the conditional expectation EA(·|Y ) is taken
when β is distributed according to πA. Therefore,

inf
β̂

sup
β∈A

Eβ|β̂ − β|qq ≥ EπAEβ
p∑
j=1

|BA
j − βAj |q. (10)

11
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Using this, we obtain

inf
T̂∈Rp

EπEβ|T̂ − β|qq ≤ EπEβ
p∑
j=1

|BA
j − βj |q

= EπEβ
( p∑
j=1

|BA
j − βj |q1(β ∈ A)

)
+ EπEβ

( p∑
j=1

|BA
j − βj |q1(β 6∈ A)

)
≤ EπAEβ

p∑
j=1

|BA
j − βAj |q + EπEβ

( p∑
j=1

|BA
j − βj |q1(β 6∈ A)

)
≤ EπAEβ

p∑
j=1

|BA
j − βAj |q + EπEβ

p∑
j=1

2q−1(|BA
j |q + |βj |q)1(β 6∈ A).

(11)

Our next step is to bound the term

EπEβ
p∑
j=1

|BA
j |q1(β 6∈ A).

For this purpose, we first note that inequality (9) with T̂j(Y ) = 0 implies that

|BA
j (Y )|q = EA(|BA

j (Y )|q|Y ) ≤ 2qEA(|βAj |q|Y ).

Thus

EπEβ
p∑
j=1

|BA
j |q1(β 6∈ A) ≤ 2qEπEA(‖βA‖qq|Y )1(β 6∈ A).

Combining this inequality with (10) and (11) yields (4).

Appendix C. Proof of Lemma 2

We begin by noticing that

inf
T̂∈Rp

EπEβ
p∑
j=1

|T̂j(X,Y )− βj |q =

p∑
j=1

inf
T̂j∈R

EπEβ|T̂j(X,Y )− βj |q.

It is easy to check that

∀a ∈ Rp,∀j = 1, . . . , p inf
T̂j∈R

EπEβ|T̂j(X,Y )− βj |q = inf
T̂j∈R

EπEβ|T̂j(X,Y − a)− βj |q. (12)

Using conditioning, one may also notice that

inf
T̂j∈R

EπEβ|T̂j(X,Y )− βj |q ≥ Eπ−j

(
inf
T̂j∈R

EπjEβ|T̂j(X,Y )− βj |q
∣∣∣β−j) , (13)

12
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where β−j represents the vector β deprived of βj and π−j the corresponding prior. Hence, we get
from (12) and (13) that

inf
T̂j∈R

EπEβ|T̂j(X,Y )− βj |q ≥ Eπ−j

(
inf
T̂j∈R

EπjEβ|T̂j(X, Ỹj)− βj |q
∣∣∣β−j) ,

where Ỹj = Y −
∑

i 6=j Xiβi = βjXj +σξ. We remove the last conditional expectation and replace
the dependence on X by Xj , since the observable Ỹj depends only on βj and Xj .

Appendix D. Proof of Theorem 3

We apply Theorem 1 with Θs,a = Ωs,a. Let S a support of size s, and consider the prior β such that
βSc = 0 and βS = Z, where Z ∈ Rs is a Gaussian random vector distributed followingN (µ, ν2Is)
where µ, ν > 0 are defined later. We have

inf
β̂

sup
β∈βs,a

Eβ|β̂ − β|q ≥ inf
T̂∈Rp

EπEβ
p∑
j=1

|T̂j(X,Y )− βj |q

− Cq Eπ
[(
E(‖βA‖qq|Y ) + ‖β‖qq

)
1(β 6∈ Ωs,a)

]
.

We first upper-bound the second term

Eπ
[(
EA(‖βA‖qq|Y ) + ‖β‖qq

)
1(β 6∈ Θs,a)

]
≤ 2

√
Eπ‖β‖2qq

√
P(β 6∈ Θs, a),

since ‖βA‖qq ≤ ‖β‖qq. It is easy to check that for some C > 0 we have

P(β 6∈ Θs,a) ≤ sP(|β1| ≤ a) ≤ Cse−
(µ1−a)

2
+

2ν2 .

By choosing µ1 = a+ ν2, we get for some Cq > 0

Eπ
[(
EA(‖βA‖qq|Y ) + ‖β‖qq

)
1(β 6∈ Θs,a)

]
≤ Cq

√
sp
√
a2q + ν4q + ν2qe−

ν2

2 .

Using lemma 2 combined with Anderson lemma for Gaussian priors we get

inf
T̂j∈R

EπjEβ|T̂j(X, Ỹj)− βj |q = E

((
νσ

ν‖Xj‖+ σ

)q
|ξ1|q

)
.

We conclude that ∀ν > 0, we have

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥
∑
j∈S

(
νσ

ν‖Xj‖+ σ

)q
E (|ξ1|q)− Cq

√
sp
√
a2q + ν4q + ν2qe−

ν2

2 .

The result follows by taking the limit ν →∞.

13
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Appendix E. Proof of Theorem 4

We are going to mimic the previous proof using a different prior. We apply Theorem 1 with Θs,a =
Ωs,a. Consider the prior β such that β = aη, where η ∈ {0, 1}p be a Bernoulli random vector with
i.i.d entries and E(ηi) = s′

p , s′ ∈ (0, s). We have

inf
β̂

sup
β∈Θs,a

Eβ|β̂ − β|q ≥ inf
T̂∈Rd

EπEβ
p∑
j=1

|T̂j(X,Y )− βj |q

− Cq Eπ
[(
E(‖βA‖qq|Y ) + ‖β‖qq

)
1(β 6∈ Θs, a)

]
.

First notice that in this case

β ∈ Θs, a if and only if |η|0 ≤ s.

Hence ‖βA‖qq ≤ aq|η|0 ≤ saq. We first upper-bound the second term

Eπ
[(
EA(‖βA‖qq|Y ) + ‖β‖qq

)
1(β 6∈ Θs,a)

]
≤ aqEπ [2|η|01(|η|0 ≥ s+ 1)] ,

since |η|0 > s. Using same arguments as in Butucea et al. (2018), we conclude that

Eπ
[(
EA(‖βA‖qq|Y ) + ‖β‖qq

)
1(β 6∈ Θs,a)

]
≤ 2aqs′e−

(s−s′)2
2s .

Going back to the first term, we get the following lower bound using Lemma 2

inf
T̂j∈R

EπjEβ|T̂j(X, Ỹj)− βj |q = aq inf
T̂j∈R

(
s′

p
Ea|T̂j(X, Ỹj)− 1|q + (1− s′

p
)E0|T̂j(X, Ỹj)|q

)
Minimizing the posterior risk, the Bayes rule gives

∀q > 1, T ∗j (X, Ỹj) =
1

1 + e
a
q−1

(tj(a)‖Xj‖2−〈Ỹj ,Xj〉)
,

and for q = 1 we get
T ∗j (X, Ỹj) = 1(〈Ỹj , Xj〉 ≥ tj(a)‖Xj‖2).

Hence we deduce that
inf
T̂j∈R

EπjEβ|T̂j(X, Ỹj)− βj |q ≥
aq

2q
Ψ,

where

Ψ =

(
s′

p
Pa(〈Ỹj , Xj〉 ≤ tj(a)‖Xj‖2) + (1− s′

p
)P0(〈Ỹj , Xj〉 ≥ tj(a)‖Xj‖2)

)
.

Notice that for q = 1 the term 2q is not needed. Replacing Ỹj by its expression, we recover the
lower bound

Ψ(p, s′, a, σ,X) =

p∑
j=1

(
s′

p
P(ε ≥ (a− tj(a))‖Xj‖) + (1− s′

p
)P(ε ≥ tj(a)‖Xj‖)

)
.

Following the proof of Ndaoud and Tsybakov (2018), we may use the fact that s→ Ψ(s)
s is decreas-

ing to conclude the proof.

14
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Appendix F. Proof of Proposition 5

Combining Theorem 3 and Theorem 4 with s′ = s/2, we get

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥ sσqq ∨

(
aq

2q+1
ψ(p, s, a, σ)− saqe−s/8

)
.

We remind the reader the notation t∗ := σ
√

2 log (p/s− 1). In order to prove the result, we handle
several cases.

• case a ≥ 10t∗:
It is easy to check that a− t(a) ≥ a/4 and that t(a) ≥ a/4 + t∗. Hence

aqψ(p, s, a, σ) ≤ Csaqe−a2/32σ2 ≤ Cqs.

This shows that the term σqqs is dominating. As a result

sσqq ∨
(

aq

2q+1
ψ(p, s, a, σ)− saqe−s/8

)
� s,

and
sσqq ∨ aqψ(p, s, a, σ) � s.

This suffises to prove the lower bound.

• case t∗ ≤ a ≤ 10t∗:
Since s ≥ 8q log log p, then

aqe−s/8 ≤ Cqa−q/2 ≤ Cq′ .

This leads to

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥ sσqq ∨

(
aq

2q+1
ψ(p, s, a, σ)− sCq′

)
.

We conclude by noticing that a ∨ b � a ∨ (b− a) for a, b ≥ 0.

• case a ≤ t∗:
We observe that t(t∗) = t∗. In this case

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥inf

β̂
sup

β∈Ωp
s,t∗

Eβ

(
‖β̂ − β‖qq

)
≥ 1

2q+1
st∗qP (σε ≥ 0)− Cq′s ≥ Cq′′st∗q.

Hence

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥ Cq′′σqs log

(p
s
− 1
)q/2

.

15
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Appendix G. Proof of Theorem 7

Let β be a vector in Ωp
s,a, we have

‖βa − β‖qq =
∑
i∈S

E
∣∣∣β̂ai − βi∣∣∣q +

∑
i∈Sc

E
∣∣∣β̂ai − βi∣∣∣q .

On Sc, we have
β̂ai − βi = ξi1{|ξi|>t(a∨t∗)}.

Hence we get that
E
∣∣∣β̂ai − βi∣∣∣q = E

(
|ξi|q1{|ξi|>t(a∨t∗)}

)
.

Using integration by parts and induction we get

∀q ≥ 0, E
(
|ξi|q1{|ξi|>t(a∨t∗)}

)
≤ Cq(t(a ∨ t∗)q + σq)P (|ξi| ≥ t(a ∨ t∗)) ,

where Cq is a universal constant depending only in q. Applying this we get

E
∣∣∣β̂ai − βi∣∣∣q = E

(
|ξi|q1{|ξi|>t(a∨t∗)}

)
≤ Cq(t(a ∨ t∗)q + σq)P (|ξi| ≥ t(a ∨ t∗)) .

Hence
E
∑
i∈Sc

∣∣∣β̂i − βi∣∣∣q ≤ 2Cq|Sc|t(a ∨ t∗)qP (σε ≥ t (a ∨ t∗)) .

The last inequality holds since t(a ∨ t∗) ≥ cσ for s ≤ p/4.
On S, we have

β̂ai − βi = Yi1{|Yi|>t(a)} − βi = −ξi − Yi1{|Yi|≤t(a)}.

Hence and since |x+ y|q ≤ 2q−1(|x|q + |y|q) we get

E
∣∣∣β̂ai − βi∣∣∣q ≤ 2q−1σqq + 2q−1E

(
|Yi|q1{|Yi|≤t(a∨t∗)}

)
≤ 2q−1σqq + 2q−1t(a ∨ t∗)qP (|Yi| ≤ t(a ∨ t∗))
≤ 2q−1σqq + 2q−1t(a ∨ t∗)qP (|ξi| ≥ (a− t(a ∨ t∗))+) .

We get that on S we have

E
∑
i∈S
|β̂ai − βi|q ≤ Cq

(
sσqq + t(a)q|S|P (σε > (a− t(a ∨ t∗)+))

)
. (14)

Since (a− t(a ∨ t∗)+) ≤ (a ∨ t∗ − t(a ∨ t∗)+), we get

E
∑
i∈S
|β̂ai − βi|q ≤ Cqsσqq + Cqt(a ∨ t∗)q|S|P (σε > (a ∨ t∗ − t(a ∨ t∗)+)) .

We conclude that

E
(
‖β̂a − β‖qq

)
≤ Cqσqqs+ Cqt(a ∨ t∗)qψ+(p, s, t∗ ∨ a, σ).

16
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Hence for a ≥ t∗, the result is immediate, since t(a ∨ t∗) ≤ t(a) ≤ a. For a < t∗ we have

E
(
‖β̂a − β‖qq

)
≤ Cqσqqs+ Cqσ

q log(
p

s
− 1)q/2ψ+(p, s, t∗, σ).

It is easy to verify
ψ+(p, s, t∗, σ) ≤ s+ (p− s) s

p− s
≤ 2s,

and hence

E
(
‖β̂a − β‖qq

)
≤ Cq

(
σqs log(p/s− 1)q/2 + σqqs

)
≤ Cq′σqs log(p/s− 1)q/2,

since s ≤ p
4 and log(p/s− 1) ≥ 1.

Appendix H. Proof of Theorem 9

Let us first notice that for ε ∈ [0, 1] we have

t(aq(ε)) = σ
√

2 log(p/s− 1) + qε log log(p/s− 1),

and
aq(ε)− t(aq(ε)) =

√
qεσ2 log log(p/s− 1).

Following the previous proof we have

E
∑
i∈Sc

∣∣∣β̂i − βi∣∣∣q ≤ 2Cqpt(a)qP (σε > t (a)) .

Since ε ∈ [0, 1] we have that t(aq(ε)) ≤ σ
√

2 log(p/s− 1)(1 + o(1)). Moreover

P (σε > t (a)) ≤ Cσe
−t(a)2/2σ2

t(a)
≤ Cσ

t(a)

s

p− s
1

log(p/s− 1)qε/2
.

Hence

E
∑
i∈Sc

∣∣∣β̂i − βi∣∣∣q ≤ Cq s log(p/s− 1)
q
2

(1−ε)√
log(p/s− 1)

.

We can now notice that on Sc we have

E
∑
i∈Sc

∣∣∣β̂i − βi∣∣∣q = o
s
p
→0

(Φo) .

In order to prove the Theorem we focus on the error in the support. Remember that on S we have

β̂ai − βi = Yi1{|Yi|>t(a)} − βi = −ξi − Yi1{|Yi|≤t(a)}.

• case a ≤ a(0):
In this case a(0) = t(a(0)) = σ

√
2 log(p/s− 1). We use the following inequality

∀a, b ∈ R, q ≥ 1, |a+ b|q ≤ |a|q + q|a+ b|q−1|b|.

17
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Hence

|ξi − Yi1{|Yi|≤t(a)}|q ≤ |Yi1{|Yi|≤t(a)}|q + q|ξi||ξi − Yi1{|Yi|≤t(a)}|q−1

≤ |Yi1{|Yi|≤t(a)}|q + q|ξi|2q
(
|ξi|q−1 + |Yi1{|Yi|≤t(a)}|q−1

)
≤ t(a)q + q2q

(
|ξi|q + |ξi|t(a)q−1

)
.

As a consequence

E|β̂ai − βi|q ≤ t(a)q + q2q(σqq + σ1t(a)q−1) ≤ t(a)q(1 + o(1)).

The last inequality holds since t(a)→∞ as s/p→ 0. We conclude that∑
i∈S

E|β̂ai − βi|q ≤ Φo(1 + o(1)).

• case a = a(ε) for ε ∈ (0, 1):
In this case and following same steps in previous case

|ξi − Yi1{|Yi|≤t(a)}|q ≤ t(a)q1{|Yi|≤t(a)} + q2q
(
|ξi|q + |ξi|t(a)q−11{|Yi|≤t(a)}

)
.

Remember that

∀q ≥ 0, E
(
|ξi|q1{|ξi|>t(a)}

)
≤ Cq(t(a)q + σq2)P (|ξi| ≥ t(a)) .

Hence

E(|ξi|1{|Yi|≤t(a)}) ≤ E(|ξi|1{|ξi|≥a−t(a)})

≤ ((a− t) + σ)P(|ξi| ≥ a− t) ≤ log(t)P(|Yi| ≤ t).

We get that
E|β̂ai − βi|q ≤ t∗q(1 + o(1))P(|Yi| ≤ t(a)) + Cqσ

q
q .

One may notice that
P(|Yi| ≤ t(a)) ≤ 2P(σε ≥ (a− t(a))+).

Using the Gaussian tail inequality and the fact that ε > 0, we get

P(|Yi| ≤ t(a)) ≤ t∗−qε

1 +
√

π
2 qε log log(p/s− 1)

(1 + o(1)).

Since t∗q(1−ε)/ log(t)→∞ we conclude that

∑
i∈S

E|β̂ai − βi|q ≤
st∗q(1−ε)

1 +
√

π
2 qε log log(p/s− 1)

(1 + o(1)).
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• case a ≥ a(1):
In this case it suffices to prove the result for a = a(1) since the minimax risk in increasing
with respect to a.

|ξi − Yi1{|Yi|≤t(a)}|q ≤ |ξi|q + q|Yi1{|Yi|≤t(a)}||ξi − Yi1{|Yi|≤t(a)}|q−1

≤ |ξi|q + Cq
(
t∗|ξi|q−11{|Yi|≤t(a)} + t∗q1{|Yi|≤t(a)}

)
.

In the previous case we proved that

E(|ξi|q−11{|Yi|≤t(a)}) ≤ log(t∗)q−1P(|Yi| ≤ t(a)),

and that

P(|Yi| ≤ t(a)) ≤ C t∗−q

log log(p/s) + 1
.

Hence
E
(
t∗|ξi|q−11{|Yi|≤t(a)} + t∗q1{|Yi|≤t(a)}

)
≤ C

log log(p/s)
= o(σqq).

It follows that ∑
i∈S

E|β̂ai − βi|q ≤ sσqq(1 + o(1)).

This concludes the proof of this theorem.

Appendix I. Proof of Corollary 10

Based on the fact that
inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥ sσqq ,

we observe that the second result is a direct consequence of Theorem 9. In order to conclude, we
need to show that for a < aq(1) we have

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
Φo(a)

≥ 1

4
+ o(1).

In what follows, we assume that a < aq(1). Going back to the initial lower bound with s′ = s/2,
and using the fact that s ≥ 8q log log p, we have

inf
β̂

sup
β∈Ωps,a

Eβ

(
‖β̂ − β‖qq

)
≥ 1

2
saqE (T q1 )− Cq′′sa(1)qa(0)−2q,

where
∀q > 1, T1 =

1

1 + e
− a
q−1

(t(a)−a+ξ1)
,

and for q = 1
T1 = 1(ξ1 ≥ a− t(a)).

Since
sa(1)qa(0)−2q = o(s),
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we get immediately that
sa(1)qa(0)−2q = o(Φo(a)).

It is sufficient to prove that

saqE (T q1 ) ≥ 1

2
Φo(a)(1 + o(1)).

For q = 1, we have E(T1) = P(ξ1 ≥ a − t(a)) ≥ P(|ξ1| ≥ (a − t(a))+)/2. Using the fact that
the Gaussian tail bounds presented in Appendix are sharp combined with the proof of the previous
upper bound we can verify that for q = 1

saE (T1) ≥ 1

2
Φo(a)(1 + o(1)).

For q > 1 it is enough to prove that

E(T q1 ) ≥ P(ξ1 ≥ a− t(a))(1 + o(1)).

For a = aq(0) we have that t(a) = a, hence

E(T q1 ) = E

((
1

1 + e
a
q−1

ξ1

)q)
→ P(ξ1 ≥ 0).

The limit is a consequence of the dominated convergence theorem and proves the result. The last
case is when a = aq(ε) with ε ∈ (0, 1). Let us just recall that a �

√
log(p/s) and a − t(a) �√

log log(p/s). Let αs > 0 be a sequence satisfying

αs.a→∞ and αs.(a− t)→ 0.

We have

E(T q1 ) ≥ E

((
1

1 + e
−aαs
q−1

)q
1(ξ1 ≥ a− t(a) + αs)

)
≥

(
1

1 + e
−aαs
q−1

)q
P(ξ1 ≥ a− t(a) +αs).

Using the monotony of cumulative distribution functions, we get that

E(T q1 ) ≥ (1 + o(1))
(
P(ξ1 ≥ a− t(a))− Ce−(a−t(a)+αs)2/2σ2

αs

)
.

Using the limiting behaviour of αs we get

E(T q1 ) ≥ P(ξ1 ≥ a− t(a))(1 + o(1)).

This concludes the proof.

Appendix J. Proof of Theorem 12

First notice that t∗s = t(a(1)) and that β̂s = β̂a(1). Hence and using Theorem 9 we get for all
a ≥ a(1)

sup
β∈Ωps,a

Eβ

(
‖β̂s − β‖qq

)
≤ sup

β∈Ωp
s,a(1)

Eβ

(
‖β̂s − β‖qq

)
≤ Cqsσqq .
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On S, we have
β̂si − βi = Yi1{|Yi|>t∗s} − βi = −ξi − Yi1{|Yi|≤t∗s}.

Hence

Eβ

(∑
i∈S
|β̂si − βi|q

)
≤ Cq(sσqq + st∗qs ).

On Sc, and since ts > t∗, it is easy to check using previous proofs that

Eβ

(∑
i∈Sc
|β̂si − βi|q

)
≤ C ′qst∗qs .

This concludes the proof.
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