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Abstract
Ising models describe the joint probability distribution of a vector of binary feature variables. Typ-
ically, not all the variables interact with each other and one is interested in learning the presumably
sparse network structure of the interacting variables. However, in the presence of latent variables,
the conventional method of learning a sparse model might fail. This is because the latent variables
induce indirect interactions of the observed variables. In the case of only a few latent conditional
Gaussian variables these spurious interactions contribute an additional low-rank component to the
interaction parameters of the observed Ising model. Therefore, we propose to learn a sparse +
low-rank decomposition of the parameters of an Ising model using a convex regularized likelihood
problem. We show that the same problem can be obtained as the dual of a maximum-entropy prob-
lem with a new type of relaxation, where the sample means collectively need to match the expected
values only up to a given tolerance. The solution to the convex optimization problem has consis-
tency properties in the high-dimensional setting, where the number of observed binary variables
and the number of latent conditional Gaussian variables are allowed to grow with the number of
training samples.
Keywords: Ising Models, Latent Variables, Sparse and Low-Rank Matrices, Maximum-Entropy
Principle, High-Dimensional Consistency

1. Introduction

The principle of maximum entropy was proposed by Jaynes (1957) for probability density estima-
tion. It states that from the probability densities that represent the current state of knowledge one
should choose the one with the largest entropy, that is, the one which does not introduce additional
biases. The state of knowledge is often given by sample points from a sample space and some fixed
functions (sufficient statistics) on the sample space. The knowledge is then encoded naturally in
form of constraints on the probability density by requiring that the expected values of the functions
equal their respective sample means. Here, we assume the particularly simple multivariate sample
space X = {0, 1}d and functions

ϕij : x 7→ xixj for i, j ∈ [d] = {1, . . . , d}.
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Suppose we are given sample points x(1), . . . , x(n) ∈ X . Then formally, for estimating the distribu-
tion from which the sample points are drawn, the principle of maximum entropy suggests solving
the following entropy maximization problem

max
p∈P

H(p) s.t. E[ϕij ] =
1

n

n∑
k=1

ϕij(x
(k)) for all i, j ∈ [d],

where P is the set of all probability distributions on X , the expectation is with respect to the
distribution p ∈ P , and H(p) = −E[log p(x)] is the entropy. We denote the (d × d)-matrix(

1
n

∑n
k=1 ϕij(x

(k))
)
i,j∈[d]

of sample means compactly by Φn and the matrix of functions
(
ϕij
)
i,j∈[d]

by Φ. Then, the entropy maximization problem becomes

max
p∈P

H(p) s.t. E[Φ]− Φn = 0.

Dudı́k et al. (2004) observed that invoking the principle of maximum entropy tends to overfit when
the number of features d is large. Requiring that the expected values of the functions equal their
respective sample means can be too restrictive. Consequently, they proposed to relax the constraint
using the maximum norm as

‖E[Φ]− Φn‖∞ ≤ c

for some c > 0. That is, for every function the expected value only needs to match the sample
mean up to a tolerance of c. The dual of the relaxed problem has a natural interpretation as a
feature-selective `1-regularized log-likelihood maximization problem

max
S ∈ Sym(d)

`(S)− c‖S‖1,

where Sym(d) is the set of symmetric (d× d)-matrices, S ∈ Sym(d) is the matrix of dual variables
for the constraint ‖E[Φ]− Φn‖∞ ≤ c, and

`(S) = 〈S,Φn〉 − a(S)

is the log-likelihood function for pairwise Ising models with the standard matrix dot product 〈S,Φn〉 =
tr
(
S>Φn

)
and normalizer (log-partition function)

a(S) = log
∑
x∈X
〈S,Φ(x)〉 .

In this paper, we are restricting the relaxation of the entropy maximization problem by also enforc-
ing the alternative constraint

‖E[Φ]− Φn‖ ≤ λ,

where λ > 0 and ‖ · ‖ denotes the spectral norm on Sym(d). A difference to the maximum norm
constraint is that now the expected values of the functions only need to collectively match the sample
means up to a tolerance of λ instead of individually. The dual of the more strictly relaxed entropy
maximization problem

max
p∈P

H(p) s.t. ‖E[Φ]− Φn‖∞ ≤ c and ‖E[Φ]− Φn‖ ≤ λ
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is the regularized log-likelihood maximization problem

max
S,L1, L2 ∈ Sym(d)

`(S + L1 − L2)− c‖S‖1 − λ tr(L1 + L2) s.t. L1, L2 � 0,

see Appendix A in the full version Nussbaum and Giesen (2019) of this paper. Here, the regular-
ization term tr(L1 + L2) promotes a low rank of the positive-semidefinite matrix L1 + L2. This
implies that the matrix L1 − L2 in the log-likelihood function also has low rank. Thus, a solution
of the dual problem is the sum of a sparse matrix S and a low-rank matrix L1 − L2. This can be
interpreted as follows: the variables interact indirectly through the low-rank matrix L1 − L2, while
some of the direct interactions through the matrix S are turned off by setting entries in S to zero.
We get a more intuitive interpretation of the dual problem if we consider a weakening of the spectral
norm constraint. The spectral norm constraint is equivalent to the two constraints

E[Φ]− Φn � λ Id and Φn − E[Φ] � λ Id

that bound the spectrum of the matrix E[Φ]− Φn from above and below. If we replace the spectral
norm constraint by only the second of these two constraints in the maximum-entropy problem, then
the dual problem becomes

max
S,L∈ Sym(d)

`(S + L)− c‖S‖1 − λ tr(L) s.t. L � 0.

This problem also arises as the log-likelihood maximization problem for a conditional Gaussian
model (see Lauritzen (1996)) that exhibits observed binary variables and unobserved, latent condi-
tional Gaussian variables. The sample space of the full mixed model is X × Y = {0, 1}d × Rl,
where Y = Rl is the sample space for the unobserved variables. We want to write down the den-
sity of the conditional Gaussian model on this sample space. For that we respectively denote the
interaction parameters between the observed binary variables by S ∈ Sym(d), the ones between the
observed binary and latent conditional Gaussian variables by R ∈ Rl×d, and the ones between the
latent conditional Gaussian variables by Λ ∈ Sym(l), where Λ � 0. Then, for (x, y) ∈ X × Y and
up to normalization, the density of the conditional Gaussian model is given as

p(x, y) ∝ exp

(
x>Sx+ y>Rx− 1

2
y>Λy

)
.

One can check, see also Lauritzen (1996), that the conditional densities p(y | x) are l-variate Gaus-
sians on Y . Here, we are interested in the marginal distribution

p(x) ∝ exp

(〈
S +

1

2
R>Λ−1R,Φ(x)

〉)
on X that is obtained by integrating over the unobserved variables in Y , see Appendix B in the
full version Nussbaum and Giesen (2019). The matrix L = 1

2R
>Λ−1R is symmetric and positive

semidefinite. The log-likelihood function for the marginal model and the given data is thus given as

`(S + L) = 〈S + L,Φn〉 − a(S + L),

where S,L ∈ Sym(d), L � 0 and a(S + L) is once again the normalizer of the density.
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If only a few of the binary variables interact directly, then S is sparse, and if the number of unob-
served variables l is small compared to d, then L is of low rank. Hence, one could attempt to recover
S and L from the data using the regularized log-likelihood maximization problem

max
S,L∈ Sym(d)

`(S + L)− c‖S‖1 − λ tr(L) s.t. L � 0 (ML)

that we encountered before.

We are now in a similar situation as has been discussed by Chandrasekaran et al. (2012) who studied
Gaussian graphical models with latent Gaussian variables. They were able to consistently estimate
both the number of latent components, in our case l, and the conditional graphical model structure
among the observed variables, in our case the zeroes in S. Their result holds in the high-dimensional
setting, where the number of variables (latent and observed) may grow with the number of observed
sample points. Here, we show a similar result for the Ising model with latent conditional Gaussian
variables, that is, the one that we have introduced above.

2. Related Work

Graphical Models. The introduction of decomposed sparse + low-rank models followed a period
of quite extensive research on sparse graphical models in various settings, for example Gaussians
(Meinshausen and Bühlmann (2006), Ravikumar et al. (2011)), Ising models (Ravikumar et al.
(2010)), discrete models (Jalali et al. (2011)), and more general conditional Gaussian and exponen-
tial family models (Lee and Hastie (2015), Lee et al. (2015), Cheng et al. (2017)). All estimators of
sparse graphical models maximize some likelihood including a `1-penalty that induces sparsity.

Most of the referenced works contain high-dimensional consistency analyses that particularly aim
at the recovery of the true graph structure, that is, the information which variables are not condi-
tionally independent and thus interact. A prominent proof technique used throughout is the primal-
dual-witness method originally introduced in Wainwright (2009) for the LASSO, that is, sparse
regression. Generally, the assumptions necessary in order to be able to successfully identify the true
interactions for graphical models (or rather the active predictors for the LASSO) are very similar.
For example, one of the conditions that occurs repeatedly is irrepresentability, sometimes also re-
ferred to as incoherence. Intuitively, this condition limits the influence the active terms (edges) can
have on the inactive terms (non-edges), see Ravikumar et al. (2011).

Sparse + low-rank models. The seminal work of Chandrasekaran et al. (2012) is the first to pro-
pose learning sparse + low-rank decompositions as an extension of classical graphical models. As
such it has received a lot of attention since then, putting forth various commentators, for example
Candès and Soltanolkotabi (2012), Lauritzen and Meinshausen (2012), and Wainwright (2012). No-
tably, Chandrasekaran et al. (2012)’s high-dimensional consistency analysis generalizes the proof-
technique previously employed in graphical models. Hence, unsurprisingly, one of their central
assumptions is a generalization of the irrepresentability condition.

Astoundingly, not so much effort has been undertaken in generalizing sparse + low-rank models to
broader domains of variables. The particular case of multivariate binary models featuring a sparse +
low-rank decomposition is related to Item Response Theory (IRT, see for example Hambleton et al.
(1991)). In IRT the observed binary variables (test items) are usually assumed to be conditionally
independent given some continuous latent variable (trait of the test taker). Chen et al. (2018) argued
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that measuring conditional dependence by means of sparse + low-rank models might improve results
from classical IRT. They estimate their models using pseudo-likelihood, a strategy that they also
proposed in an earlier work, see Chen et al. (2016).

Chen et al. (2016) show that their estimator recovers the algebraic structure, that is, the conditional
graph structure and the number of latent variables, with probability tending to one. However, their
analysis only allows a growing number of sample points whereas they keep the number of variables
fixed. Their result thus severs from the tradition to analyze the more challenging high-dimensional
setting, where the number of variables is also explicitly tracked.

Placement of our work. Our main contribution is a high-dimensional consistency analysis of a
likelihood estimator for multivariate binary sparse + low-rank models. Furthermore, our analysis
is the first to show parametric consistency of the likelihood-estimates and to provide explicit rates
for this type of models. It thus complements the existing literature. Our other contribution is the
connection to a particular type of relaxed maximum-entropy problems that we established in the
introduction. We have shown that this type of relaxation leads to an interpretation as the marginal
model of a conditional Gaussian distribution. Interestingly, this has not drawn attention before,
though our semidefiniteness constraints can be obtained as special cases of the general relaxed
maximum-entropy problem discussed in Dudı́k and Schapire (2006).

3. Parametric and Algebraic Consistency

This section constitutes the main part of this paper. Here, we discuss assumptions that lead to
consistency properties of the solution to the likelihood problem ML and state our consistency result.
We are interested in the high-dimensional setting, where the number of samples n, the number of
observed binary variables d, and the number of latent conditional Gaussian variables l are allowed to
grow simultaneously. Meanwhile, there are some other problem-specific quantities that concern the
curvature of the problem that we assume to be fixed. Hence, we keep the geometry of the problem
fixed.

For studying the consistency properties, we use a slight reformulation of Problem ML from the
introduction. First, we switch from a maximization to a minimization problem, and let ` be the neg-
ative log-likelihood from now on. Furthermore, we change the representation of the regularization
parameters, namely

(Sn, Ln) = argmin
S,L

`(S + L) + λn (γ‖S‖1 + trL)

s.t. L � 0,
(SL)

where γ controls the trade-off between the two regularization terms and λn controls the trade-off
between the negative log-likelihood term and the regularization terms.

We want to point out that our consistency proof follows the lines of the seminal work in Chan-
drasekaran et al. (2012) who investigate a convex optimization problem for the parameter estimation
of a model with observed and latent Gaussian variables. The main difference to the Ising model is
that the Gaussian case requires a positive-definiteness constraint on the pairwise interaction param-
eter matrix S + L that is necessary for normalizing the density. Furthermore, in the Gaussian case
the pairwise interaction parameter matrix S + L is the inverse of the covariance matrix. This is no
longer the case for the Ising model, see Loh and Wainwright (2012).
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In this work, we want to answer the question if it is possible to recover the parameters from data
that has been drawn from a hypothetical true model distribution parametrized by S? and L?. We
focus on two key concepts of successful recovery in an asymptotic sense with high probability. The
first is parametric consistency. This means that (Sn, Ln) should be close to (S?, L?) w.r.t. some
norm. Since the regularizer is the composed norm γ‖S‖1 + trL, a natural norm for establishing
parametric consistency is its dual norm

‖(S,L)‖γ = max

{
‖S‖∞
γ

, ‖L‖
}
.

The second type of consistency that we study is algebraic consistency. It holds if Sn recovers the
true sparse support of S?, and if Ln has the same rank as L?.

In the following we discuss the assumptions for our consistency result. For that we proceed as
follows: First, we discuss the requirements for parametric consistency of the compound matrix
in Section 3.1. Next, we work out the three central assumptions that are sufficient for individual
recovery of S? and L? in Section 3.2. We state our consistency result in Section 3.3. Finally, in
Section 3.4 we outline the proof, the details of which can be found in the full version of this paper,
see Nussbaum and Giesen (2019).

3.1. Parametric consistency of the compound matrix

In this section, we briefly sketch how the negative log-likelihood part of the objective function
in Problem SL drives the compound matrix Θn = Sn + Ln that is constructed from the solu-
tion (Sn, Ln) to parametric consistency with high probability. We only consider the negative log-
likelihood part because we assume that the relative weight λn of the regularization terms in the
objective function goes to zero as the number of sample points goes to infinity. This implies that
the estimated compound matrix is not affected much by the regularization terms since they con-
tribute mostly small (but important) adjustments. More specifically, the `1-norm regularization on
S shrinks entries of S such that entries of small magnitude are driven to zero such that Sn will likely
be a sparse matrix. Likewise, the trace norm (or nuclear norm) can be thought of diminishing the
singular values of the matrix L such that small singular values become zero, that is, Ln will likely
be a low-rank matrix.

The negative log-likelihood function is strictly convex and thus has a unique minimizer Θ̂. We can
assume that Θ̂ ≈ Θn. Let Θ? = S? + L? and ∆Θ = Θ̂ − Θ?. Then, consistent recovery of
the compound matrix Θ? is essentially equivalent to the estimation error ∆Θ being small. Now,
consider the Taylor expansion

`(Θ? + ∆Θ) = `(Θ?) +∇`(Θ?)>∆Θ +
1

2
∆>Θ∇2`(Θ?)∆Θ +R(∆Θ)

with remainder R(∆Θ). It turns out that if the number of samples is sufficiently large, then the
gradient ∇`(Θ?) is small with high probability, and if ∆Θ is small, then the remainder R(∆Θ) is
also small. In this case, the Taylor expansion implies that locally around the true parameters the
negative log-likelihood is well approximated by the quadratic form induced by its Hessian, namely

`(Θ? + ∆Θ) ≈ `(Θ?) +
1

2
∆>Θ∇2`(Θ?)∆Θ.
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This quadratic form is obviously minimized at ∆Θ = 0, which would entail consistent recovery of
Θ? in a parametric sense. However, this does not explain how the sparse and low-rank components
of Θ? can be recovered consistently. In the next section we elaborate sufficient assumptions for the
consistent recovery of these components.

3.2. Assumptions for individual recovery

Consistent recovery of the components, more specifically parametric consistency of the solutions
Sn and Ln, requires the two errors ∆S = Sn−S? and ∆L = Ln−L? to be small (in their respective
norms). Both errors together form the joint error ∆S + ∆L = Θn − Θ? ≈ ∆Θ. Note though that
the minimum of the quadratic form from the previous section at ∆Θ = 0 does not imply that the
individual errors ∆S and ∆L are small. We can only hope for parametric consistency of Sn and Ln
if they are the unique solutions to Problem SL.

For uniqueness of the solutions we need to study optimality conditions. Problem SL is the Lagrange
form of the constrained problem

min `(S + L) s.t. ‖S‖1 ≤ cn and ‖L‖∗ ≤ tn

for suitable regularization parameters cn and tn, where we have neglected the positive-semidefiniteness
constraint on L. The constraints can be thought of as convex relaxations of constraints that require
S to have a certain sparsity and require L to have at most a certain rank. That is, S should be con-
tained in the set of symmetric matrices of a given sparsity and L should be contained in the set of
symmetric low-rank matrices. To formalize these sets we briefly review the varieties of sparse and
low-rank matrices.

Sparse matrix variety. For M ∈ Sym(d) the support is defined as

supp(M) = {(i, j) ∈ [d]× [d] : Mij 6= 0},

and the variety of sparse symmetric matrices with at most s non-zero entries is given as

S(s) = {S ∈ Sym(d) : | supp(S)| ≤ s}.

Any matrix S with | supp(S)| = s is a smooth point of S(s) with tangent space

Ω(S) = {M ∈ Sym(d) : supp(M) ⊆ supp(S)}.

Low-rank matrix variety. The variety of matrices with rank at most r is given as

L(r) = {L ∈ Sym(d) : rank(L) ≤ r}.

Any matrix L with rank r is a smooth point of L(r) with tangent space

T (L) =
{
UX> +XU> : X ∈ Rd×r

}
,

where L = UDU> is the restricted eigenvalue decomposition of L, that is, U ∈ Rd×r has orthonor-
mal columns and D ∈ Rr×r is diagonal.

Next, we formulate conditions that ensure uniqueness in terms of the tangent spaces of the intro-
duced varieties.
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Transversality. Remember that we understand the constraints in the constrained formulation of
Problem SL as convex relaxations of constraints of the form S ∈ S(s) and L ∈ L(r). Because
the negative log-likelihood function ` is a function of S + L, its gradient with respect to S and its
gradient with respect to L coincide at S + L. Hence, the first-order optimality conditions for the
non-convex problem require that the gradient of the negative log-likelihood function needs to be
normal to S(s) and L(r) at any (locally) optimal solutions Ŝ and L̂, respectively. If the solution
(Ŝ, L̂) is not (locally) unique, then basically the only way to get an alternative optimal solution that
violates (local) uniqueness is by translating Ŝ and L̂ by an element that is tangential to S(s) at Ŝ
and tangential to L(r) at L̂, respectively. Thus, it is necessary for (local) uniqueness of the optimal
solution that such a tangential direction does not exist. Hence, the tangent spaces Ω(Ŝ) and T (L̂)
need to be transverse, that is, Ω(Ŝ)∩T (L̂) = {0}. Intuitively, if we require that transversality holds
for the true parameters (S?, L?), that is, Ω(S?) ∩ T (L?) = {0}, then provided that (Ŝ, L̂) is close
to (S?, L?), the tangent spaces Ω(Ŝ) and T (L̂) should also be transverse.

We do not require transversality explicitly since it is implied by stronger assumptions that we mo-
tivate and state in the following. In particular, we want the (locally) optimal solutions Ŝ and L̂ not
only to be unique, but also to be stable under perturbations. This stability needs some additional
concepts and notation that we introduce now.

Stability assumption. Here, stability means that if we perturb Ŝ and L̂ in the respective tangen-
tial directions, then the gradient of the negative log-likelihood function should be far from being
normal to the sparse and low-rank matrix varieties at the perturbed Ŝ and L̂, respectively. As for
transversality, we require stability for the true solution (S?, L?) and expect that it carries over to the
optimal solutions Ŝ and L̂, provided they are close. More formally, we consider perturbations of S?

in directions from the tangent space Ω = Ω(S?), and perturbations of L? in directions from tangent
spaces to the low-rank variety that are close to the true one T = T (L?). The reason for considering
tangent spaces close to T (L?) is that there are low-rank matrices close to L? that are not contained
in T (L?) because the low-rank matrix variety is locally curved at any smooth point.

Now, in light of a Taylor expansion the change of the gradient is locally governed by the data-
independent Hessian H? = ∇2`(Θ?) = ∇2a(Θ?) of the negative log-likelihood function at Θ?.
To make sure that the gradient of the tangentially perturbed (true) solution cannot be normal to the
respective matrix varieties we require that it has a significant component in the tangent spaces at
the perturbed solution. This is achieved if the minimum gains of the Hessian H? in the respective
tangential directions

αΩ = min
M∈Ω, ‖M‖∞=1

‖PΩH
?M‖∞, and

αT,ε = min
ρ(T,T ′)≤ε

min
M∈T ′, ‖M‖=1

‖PT ′H?M‖

are large, where T ′ ⊆ Sym(d) are tangent spaces to the low-rank matrix variety that are close to T
in terms of the twisting

ρ(T, T ′) = max
‖M‖=1

‖[PT − PT ′ ] (M)‖

between these subspaces given some ε > 0. Here, we denote projections onto a matrix subspace by
P subindexed by the subspace.
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Note though that only requiring αΩ and αT,ε to be large is not enough if the maximum effects of the
Hessian H? in the respective normal directions

δΩ = max
M∈Ω, ‖M‖∞=1

‖PΩ⊥H?M‖∞, and

δT,ε = max
ρ(T,T ′)≤ε

max
M∈T ′, ‖M‖=1

‖PT ′⊥H?M‖

are also large, because then the gradient of the negative log-likelihood function at the perturbed
(true) solution could still be almost normal to the respective varieties. Here, Ω⊥ is the normal space
at S? orthogonal to Ω, and T ′⊥ is the space orthogonal to T ′.

Overall, we require that αε = min{αΩ, αT,ε} is bounded away from zero and that the ratio δε/αε
is bounded from above, where δε = max{δΩ, δT,ε}. Note that in our definitions of the minimum
gains and maximum effects we used the `∞- and the spectral norm, which are dual to the `1- and the
nuclear norm, respectively. Ultimately, we want to express the stability assumption in the ‖·‖γ-norm
which is the dual norm to the regularization term in Problem SL. For that we need to compare the
`∞- and the spectral norm. This can be accomplished by using norm compatibility constants that
are given as the smallest possible ξ(T (L)) and µ(Ω(S)) such that

‖M‖∞ ≤ ξ(T (L))‖M‖ for all M ∈ T (L), and ‖N‖ ≤ µ(Ω(S))‖N‖∞ for all N ∈ Ω(S),

where Ω(S) and T (L) are the tangent spaces at points S and L from the sparse matrix variety
S(| suppS|) and the low-rank matrix variety L(rankL), respectively. Let us now specify our as-
sumptions in terms of the stability constants from above.

Assumption 1 (Stability) We set ε = ξ(T )/2 and assume that

1. α = αξ(T )/2 > 0, and

2. there exists ν ∈ (0, 1
2 ] such that δ

α ≤ 1− 2ν, where δ = δξ(T )/2.

The second assumption is essentially a generalization of the well-known irrepresentability condi-
tion, see for example Ravikumar et al. (2011). The next assumption ensures that there are values
of γ for which stability can be expressed in terms of the ‖·‖γ-norm, that is, a coupled version of
stability.

γ-feasibility assumption. The norm compatibility constants µ(Ω) and ξ(T ) allow further in-
sights into the realm of problems for which consistent recovery is possible. First, it can be shown,
see Chandrasekaran et al. (2011), that µ(Ω) ≤ degmax(S?), where degmax(S?) is the maximum
number of non-zero entries per row/column of S?, that is, µ(Ω) constitutes a lower bound for
degmax(S?). Intuitively, if degmax(S?) is large, then the non-zero entries of the sparse matrix S?

could be concentrated in just a few rows/columns and thus S? would be of low rank. Hence, in order
not to confuse S? with a low-rank matrix we want the lower bound µ(Ω) on the maximum degree
degmax(S?) to be small.

Second, ξ(T ) constitutes a lower bound on the incoherence of the matrix L?. Incoherence measures
how well a subspace is aligned with the standard coordinate axes. Formally, the incoherence of a
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subspace U ⊂ Rd is defined as coh(U) = maxi ‖PUei‖ where the ei are the standard basis vectors
of Rd. It is known, see again Chandrasekaran et al. (2011), that

ξ(T ) = ξ(T (L?)) ≤ 2 coh(L?),

where coh(L?) is the incoherence of the subspace spanned by the rows/columns of the symmetric
matrix L?. A large value coh(L?) means that the row/column space of L? is well aligned with the
standard coordinate axes. In this case, the entries of L? do not need to be spread out and thus L?

could have many zero entries, that is, it could be a sparse matrix. Hence, in order not to confuse L?

with a sparse matrix we want the lower bound ξ(T )/2 on the incoherence coh(L?), or equivalently
ξ(T ), to be small.

Altogether, we want both µ(Ω) and ξ(T ) to be small to avoid confusion of the sparse and the
low-rank parts. Now, in Problem SL, the parameter γ > 0 controls the trade-off between the
regularization term that promotes sparsity, that is, the `1-norm term, and the regularization term
that promotes low rank, that is, the nuclear norm term. It turns out that the range of values for γ
that are feasible for our consistency analysis becomes larger if µ(Ω) and ξ(T ) are small. Indeed,
the following assumption ensures that the range of values of γ that are feasible for our consistency
analysis is non-empty.

Assumption 2 (γ-feasibility) The range [γmin, γmax] with

γmin =
3β(2− ν)ξ(T )

να
and γmax =

να

2β(2− ν)µ(Ω)
.

is non-empty. Here, we use the additional problem-specific constant β = max{βΩ, βT } with

βΩ = max
M∈Ω, ‖M‖=1

‖H?M‖, and

βT = max
ρ(T,T ′)≤ ξ(T )

2

max
M∈T ′, ‖M‖∞=1

‖H?M‖∞.

The γ-feasibility assumption is equivalent to

µ(Ω)ξ(T ) ≤ 1

6

(
να

β(2− ν)

)2

.

Note that this upper bound on the product µ(Ω)ξ(T ) is essentially controlled by the product να. It
is easier to satisfy when the latter product is large. This is well aligned with the stability assumption,
because in terms of the stability assumption the good case is that the product να is large, or more
specifically that α is large and ν is close to 1/2.

Gap assumption. Intuitively, if the smallest-magnitude non-zero entry smin of S? is too small,
then it is difficult to recover the support of S?. Similarly, if the smallest non-zero eigenvalue σmin

of L? is too small, then it is difficult to recover the rank of L?. Hence, we make the following final
assumption.

Assumption 3 (Gap) We require that

smin ≥
CSλn
µ(Ω)

and σmin ≥
CLλn
ξ(T )2

,

where CS and CL are problem-specific constants that are specified more precisely later.
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Recall that the regularization parameter λn controls how strongly the eigenvalues of the solution Ln
and the entries of the solution Sn are driven to zero. Hence, the required gaps get weaker as the
number of sample points grows, because the parameter λn goes to zero as n goes to infinity.

3.3. Consistency theorem

We state our consistency result using problem-specific data-independent constants C1, C2 and C3.
Their exact definitions can be found alongside the proof in (Nussbaum and Giesen, 2019, Section 5),
that is, in the full version of this paper. Also note that the norm compatibility constant ξ(T ) is
implicitly related to the number of latent variables l. This is because ξ(T ) ≤ 2 coh(L?) as we have
seen above and

√
l/d ≤ coh(L?) ≤ 1, see Chandrasekaran et al. (2011). Hence, the smaller l,

the better can the upper bound on ξ(T ) be. Therefore, we track ξ(T ) and µ(Ω) explicitly in our
analysis.

Theorem 1 (Consistency) Let S? ∈ Sym(d) be a sparse and let 0 � L? ∈ Sym(d) be a low-rank
matrix. Denote by Ω = Ω(S?) and T = T (L?) the tangent spaces at S? and L?, respectively to the
variety of symmetric sparse matrices and to the variety of symmetric low-rank matrices. Suppose
that we observed samples x(1), . . . , x(n) drawn from a pairwise Ising model with interaction matrix
S? + L? such that the stability assumption, the γ-feasibility assumption, and the gap assumption
hold. Moreover let κ > 0, and assume that for the number of sample points n it holds that

n >
C1κ

ξ(T )4
d log d,

and that the regularization parameter λn it set as

λn =
C2

ξ(T )

√
κd log d

n
.

Then, it follows with probability at least 1 − d−κ that the solution (Sn, Ln) to the convex program
SL is

a) parametrically consistent, that is, ‖(Sn − S?, Ln − L?)‖γ ≤ C3λn, and

b) algebraically consistent, that is, Sn and S? have the same support (actually, the signs of
corresponding entries coincide), and Ln and L? have the same ranks.

3.4. Outline of the proof

The proof of Theorem 1 is similar to the one given in Chandrasekaran et al. (2012) for latent variable
models with observed Gaussians. More generally, it builds on a version of the primal-dual-witness
proof technique. The proof consists of the following main steps:

(1) First, we consider the correct model set M whose elements are all parametrically and al-
gebraically consistent under the stability, γ-feasibility, and gap assumptions. Hence, any
solution (SM, LM) to our problem, if additionally constrained toM, is consistent.

(2) Second, since the setM is non-convex, we consider a simplified and linearized version Y of
the setM and show that the solution (SY , LY) to the problem constrained to the linearized
model space Y is unique and equals (SM, LM). Since it is the same solution, consistency
follows from the first step.

11
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(3) Third, we show that the solution (SM, LM) = (SY , LY) also solves Problem SL. More
precisely, we show that this solution is strictly dual feasible and hence can be used as a
witness as required for the primal-dual-witness technique. This implies that it is also the
unique solution, with all the consistency properties from the previous steps.

(4) Finally, we show that the assumptions from Theorem 1 entail all those made in the previous
steps with high probability. Thereby, the proof is concluded.

4. Discussion

Our result, that constitutes the first high-dimensional consistency analysis for sparse + low-rank
Ising models, requires slightly more samples (in the sense of an additional logarithmic factor log d,
and polynomial probability) than were required for consistent recovery for the sparse + low-rank
Gaussian models considered by Chandrasekaran et al. (2012). This is because the strong tail prop-
erties of multivariate Gaussian distributions do not hold for multivariate Ising distributions. Hence,
it is more difficult to bound the sampling error E[Φ] − Φn of the second-moment matrices, which
results in weaker probabilistic spectral norm bounds of this sampling error. Under our assumptions,
we believe that the sampling complexity, that is, the number of samples required for consistent
recovery of sparse + low-rank Ising models, cannot be improved. We also provided a detailed
discussion of why all of our assumptions are important.
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