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Abstract

We introduce three novel differentially private algorithms that approximate the 2"4-moment
matrix of the data. These algorithms, which in contrast to existing algorithms always
output positive-definite matrices, correspond to existing techniques in linear regression
literature. Thus these techniques have an immediate interpretation and all results known
about these techniques are straight-forwardly applicable to the outputs of these algorithms.
More specifically, we discuss the following three techniques. (i) For Ridge Regression, we
propose setting the regularization coefficient so that by approximating the solution using
Johnson-Lindenstrauss transform we preserve privacy. (ii) We show that adding a batch of
d + O(e~?) random samples to our data preserves differential privacy. (iii) We show that
sampling the 2"%-moment matrix from a Bayesian posterior inverse-Wishart distribution
is differentially private. We also give utility bounds for our algorithms and compare them
with the existing “Analyze Gauss” algorithm of Dwork et al (2014).

Keywords: Differential Privacy; Linear Regression; Second-Moment Matrix; Wishart
Distribution

1. Introduction

Differentially private algorithms (Dwork et al., 2006b,a) are data analysis algorithms that
give a strong guarantee of privacy, roughly stated as: by altering a single datapoint we do
not significantly change the probability of any outcome of the algorithm. The focus of this
paper is on differentially private approximations of the 2nd-moment matrix of the data and
the uses of such approximations in linear regression. Recall, given a dataset A € R™*¢, its
2nd-moment matriz is the matrix ATA (also referred to as the Gram matrix of data or
the scatter matriz if the mean of A is 0). Not surprisingly, since the 2nd-moment matrix
of the data plays a major role in many data-analysis techniques, numerous differentially
private algorithms that involve an approximation of the 2nd-moment matrix have already
been designed. These algorithms include privately approximating the 2"d-moment matrix
for approximating the PCA of the data (Dwork et al., 2014), techniques for approximating
the rank-k PCA of the data directly (Chaudhuri et al., 2012; Hardt and Roth, 2012, 2013;
Hardt, 2013; Kapralov and Talwar, 2013), or differentially private algorithms for linear
regressions (Chaudhuri et al., 2011; Kifer et al., 2012; Thakurta and Smith, 2013; Bassily
et al., 2014), the latter were also studied empirically (Zhang et al., 2012; Chen et al., 2016).

However, existing techniques for differentially private linear regression suffer from the
drawback that they approximate a single regression. That is, they assume that each datapoint
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is composed of a vector of features  and a label y and find the best linear combination of
the features that predicts y. Yet, given a dataset A with d attributes we are free to pick any
single attribute as a label, and any subset of the remaining attributes as features. Therefore,
a database with d attributes yields exp(d) potential linear regression problems; and running
these algorithms for each linear regression problem separately simply introduces far too
much random noise.! We stress that running multiple regressions on the data is a highly
prevalent technique in data analysis.? In contrast, the differentially private techniques that
approximate the 2"d-moment matrix of the data, such as the Analyze Gauss paper of Dwork
et al (2014), allow us to run as many regressions on the data as we want. Yet, to the best of
our knowledge, the utility of this approach for the purpose of linear regression has never been
analyzed. Furthermore, the Analyze Gauss algorithm suffers from the drawback that it does
not necessarily output a positive-definite matrix. This, as discussed in Xi et al. (2011) and
as we show in our experiments, can be very detrimental — even if we do project the output
back onto the set of positive definite matrices.® Finally, the notion of adding Gaussian
noise to the 2nd-moment matrix is foreign to existing literature on linear regression, and
statisticians and data-analysts have no “natural” interpretation to such Gaussian noise.

Our Contribution and Organization. In this work, we introduce three differentially
private algorithms that approximate the 2"d-moment matrix, which are all based on the
Wishart distribution and thus all three always output a positive-definite matrix. All of
which are also based on a novel approach to prove differential privacy that utilizes x2-
distribution concentration bounds (see Proof Technique below).* Most importantly, these
three algorithms are in direct correspondence with existing techniques in linear regression —
techniques which are (not surprisingly) based on regularization and have been extensively
studied and successfully applied since the 1970s. Thus our work contributes to an increasing
line of works (Blocki et al., 2012; Dimitrakakis et al., 2014; Vadhan and Zheng, 2015; Wang
et al., 2015; Zhang et al., 2016; Geumlek et al., 2017) that shows how differential privacy can
rise from existing techniques, devised far before privacy in data analysis became a concern.
(Hopefully this explains the “old techniques” title of this paper — emphasizing the notion of
preserving privacy using techniques that predate the invention of differential privacy.) In
addition to proving these techniques are differentially private, we also analyze their utility,
both theoretically and empirically. Despite the provided utility analysis, we emphasize that
our motivating question isn’t surpassing the baseline of Analyze Gauss, which is known to
match the lower bounds of private PCA (Dwork et al., 2014). Rather, the main focus of this
work is to understand the privacy preserving properties of existing algorithms.

(The overview of our techniques requires some notation first. We assume the data is a matrix
A € R™? with n sample points in d dimensions. For the ease of exposition, we focus on a
single regression problem, given by A = [X;y] — i.e., the label is the d-th column and the

1. Indeed, Ullman’s iterative mechanism (Ullman, 2015) allows us to answer exp(d) queries, but in the
more-cumbersome online model which may require exponential runtime.

2. Any paper whose main result is “there exists a positive correlation between feature x and label y, even
when we control for variables a, b and ¢” is based on running multiple regressions.

3. Though the focus of this work is on linear regression, one can postulate additional reasons why releasing
a positive definite matrix is of importance, such as using the output as a kernel matrix or doing statistical
inference on top of the linear regression.

4. A recent work (Jiang et al., 2016) also uses the Wishart distribution. Unfortunately, their main claim,
stating that additive Wishart noise yields e-differential privacy, has been proven wrong.
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features are the first p def 7 — 1 columns — and denote its regressor as (3. We use opin(A)
to denote the least singular value of A.)

1. The Johnson-Lindenstrauss Transform and Ridge Regression. Blocki et al (2012) have
shown that projecting the data using a Gaussian Johnson-Lindenstrauss transform preserves
privacy if omin(A) is sufficiently large. Our first result improves on the analysis of Blocki
et al and uses a smaller bound on o,y (A) (shaving off a factor of log(r) with r denoting
the number of rows in the JL transform). This result implies that when omin(A4) is large
we can project the data using the JL-transform and output the 2nd-moment matrix of the
projected data and preserve privacy. Furthermore, it is also known (Sarlds, 2006) that the
JL-transform gives a good approximation for linear regression problems. However, this
is somewhat contradictory to our intuition: for datasets where y is well approximated
by a linear combination of X, the least singular value should be small (as A’s stretch
along the direction (3, —1) T is small). That is why we artificially increase the singular
values of A by appending it with a matrix w - Ijxg. It turns out that this corresponds to
approximating the solution of the Ridge regression problem (Tikhonov, 1963; Hoerl and
Kennard, 1970), the linear regression problem with ls-regularization — the problem of finding
BE = argming 3, |ly; — B - xi||? + w?||B||%. Literature suggests many approaches (Hastie
et al., 2009) to determining the penalty coefficient w?, approaches that are based on the data
itself and on minimizing risk. Here we propose a fundamentally different approach — set w
as to preserve (e, 0)-differential privacy. Admittedly, the need for regularization for privacy
was presented in prior works (Chaudhuri et al., 2011; Kifer et al., 2012) and subsequent
works® (Minami et al., 2016; Wang, 2018) yet never from the purposes of approximating the
Gram-matrix. Further details appear in Section 3.

2. Additive Wishart noise. Whereas the Analyze Gauss algorithm adds Gaussian noise
to AT A, here we show that we can sample a positive definite matrix W from a suitably
chosen Wishart distribution Wy(V, k), and output ATA 4 W. This in turn corresponds to
appending A with k i.i.d samples from a multivariate Gaussian A/ (04, V). One is able to
view this too as an extension of Ridge regression, where instead of appending A with d
fixed examples, we append A with k ~ d + O(1/€?) random examples.® Note, as opposed to
Analyze Gauss (Dwork et al., 2014), where the noise has 0-mean, here the expected value of
the noise is kV. This yields a useful way of post-processing the output: ATA 4+ W — kV.
Details and theorems regarding the additive Wishart noise mechanism, including dealing
with the special case of a all-1 column (intercept), appear in Section 4.

3. Sampling from an inverse- Wishart distribution. The Bayesian approach for estimating the
2"d_moment matrix of the data assumes that the n sample points are sampled i.i.d from some
N (04, V) for some unknown V. We begin with some prior belief on V', each datapoint causes
us to update our belief on V' until finally we infer some posterior distribution for V. Though
often one just outputs the MAP of the posterior belief (in this case, the mean of the posterior
distribution), it is also common to output a sample drawn randomly from the posterior
distribution. We show that if one uses the inverse-Wishart distribution as a prior (which is
common in practice, as the inverse-Wishart distribution is conjugate prior), then sampling

5. After posting this work on arXiv.
6. Though it is also tempting to think of this technique as running Bayesian regression with random prior,
this analogy does not fully carry through as we discuss later.
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from the posterior is (e, d)-differentially private, provided the prior is sufficiently well-spread.
This gives rise to our third approach of approximating AT A — sampling from a suitable
inverse Wishart distribution. We comment that the idea that existing techniques in Bayesian
analysis, and specifically sampling from the posterior distribution, are differentially-private
was already introduced in beautiful works such as Dimitrakakis et al. (2014); Vadhan and
Zheng (2015); Zhang et al. (2016). But whereas their work focuses on estimating the mean
of the sample, we focus on estimating the variance / 2"d-moment. Details and theorems
regarding sampling from the inverse-Wishart distribution appear in Section 5.

Section 6 completes the picture by stating the utility guarantees of all 4 algorithms (the
above-mentioned three plus the existing “Analyze Gauss” mechanism). We comment that
similar results were obtained in a subsequent work (Wang, 2018). These bounds however are
somewhat “all over the place” as each depends on slightly different assumptions. This should
not come as a surprise — our algorithms are in direct correspondence with existing techniques
in linear regression, and the literature on linear regression / 22d_moment matrix estimation
is replete with numerous variations, each working under slightly different premise or setting.
Therefore, in addition to providing theoretical bounds, we also compare empirically all 4
algorithms on both synthetic and real data.

Our proof technique. To prove that each algorithm preserves (e, d)-differential privacy
we state and prove three separate theorems, but their proofs all follow a similar high-level
approach. This approach is best explained in comparison to the work of Blocki et al (2012),
who were the first to show that the JL-transform is differentially private. Blocki et al
observed that by projecting the data using a r-row matrix of Gaussians, we effectively repeat
the same one-dimensional projection r independent times. They proved that each row in
this projection yields a privacy-loss of at most €, and using the off-the-shelf composition
theorem (2010), they got an overall privacy-loss of roughly O(ey/rlog(r)). Moreover, the
bound of € privacy-loss per row was itself derived from two terms, each of ratio at most
e/2. Blocki et al studied the ratio of the PDFs of two multivariate Gaussians, given by
the multiplication of two terms: the first depends on the determinant of the variance, and
the second depends on some exponent (see exact definition in Section 2). Through careful
analysis, Blocki et al bounded the ratio of each of the terms (w.h.p) by e/2.

Here, we shave-off a log(r) factor and derive a bound of O(e\/r) by studying the specific
r-fold composition of the projection rather than by appealing to existing composition
theorems. The ratio of the r-fold composition is still composed of two terms as before (the
determinant term and the exponential term). Yet each of the two terms is bounded by
roughly e"¢ so we cannot mimic the approach of Blocki et al. Instead, we observe that
the two terms are of opposite signs. So we use the Matrix Determinant Lemma and the
Sherman-Morrison Lemma (see Theorem 10) to combine both terms into a single exponent
term, and bound its size using tight concentration bounds on the x2-distribution; and so we
have a privacy loss of €(r + O(y/r)) — er = O(e4/r). The main lemma we use in our analysis
is Lemma 8 . This lemma, in addition to giving tight bounds for the Gaussian JL-transform
(mimicking the approach of Dasgupta and Gupta (2003)), also gives a result that may be
of independent interest. Standard JL lemma shows that for a (r x d)-matrix R of i.i.d
normal Gaussians and any fixed vector v it holds w.h.p that vTv € (1£n)v" (ARTR)v
provided r = O(n~2). In Lemma 8 we also show that for any fixed v we have w.h.p. that
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vwe (1+n)v" (-1 RTR) 1w provided r = d+O(n~2). ” This result is the reason why the
number of added samples in the additive Wishart noise case is k = d + O(e~2). We comment
that our analysis proves (¢, d)-differential privacy, but in the case of additive Wishart noise

the technique does not abide the stronger notions of concentrated differential privacy (or
zCDP) (Bun and Steinke, 2016; Dwork and Rothblum, 2016).

2. Preliminaries and Notation

Notation. Throughout this paper, we use lower-case letters to denote scalars; bold
characters to denote vectors; and UPPER-case letters to denote matrices. The [-dimensional
all zero vector is denoted 0;, and the (I x m)-matrix of all zeros is denoted 0;y,,. The
[-dimensional identity matrix is denoted [;x;. (Subscripts are omitted when the dimension
is clear.) For two matrices M, N with same number of rows we use [M; N] to denote the
concatenation of M and N. For a given matrix, ||M|| denotes the spectral norm (= opax(M))
and [|[M||r denotes the Frobenious norm (37, x Mj%k)l/Q; and use opax (M) and opin(M) to
denote its largest and smallest singular value resp.

The Gaussian Distribution and Related Distributions. We denote by Lap(o) the
Laplace distribution whose mean is 0 and variance is 20%. A univariate Gaussian N (i, 02)
denotes the Gaussian distribution whose mean is ; and variance 2. Standard concentration
bounds on Gaussians give that Pr[z > p+0+/In(1/v)] < v. A multivariate Gaussian N (u, )
for some positive semi-definite X denotes the multivariate Gaussian distribution where the
mean of the j-th coordinate is the u; and the co-variance between coordinates j and £ is
¥ k. The PDF of such Gaussian is defined only on the subspace colspan(X), where for every
x € colspan(X) we have PDF(x) = ((277)T“”k(2) ~dét(2)) 1/2-exp (—%(a: - ,u)TZT(a: - ,u)),
where det(X) is the multiplication of all non-zero singular values of ¥ and X denotes the
Moore-Penrose Inverse of 3. We repeatedly use the rules regarding linear operations on

Gaussians. That is, for any scalar ¢, it holds that cN (u,02) = N (¢ p, c?0?), and for any

matrix C it holds that C'- N (g, ) = N (C’u, CZCT).

The y2-distribution, where k denotes the degrees of freedom of the distribution, is
the distribution over the norm of the sum of k i.i.d normal Gaussians. That is, given

X1,..., X ~N(0,1) it holds that ||(X1, X2, .., Xz)|? Y X2. Standard tail bounds on the

x2-distribution give that for any v € (0, ) we have Pry. 2 (X € (\/E +4/2 ln(%))z] >1—v.
(We present them in Section B for completeness.) The Wishart-distribution Wy(V, m)
is the multivariate extension of the y2-distribution. It describes the scatter matrix of a
sample of m i.i.d samples from a multivariate Gaussian A (04, V') and so the support of the
distribution is on positive definite matrices. For m > d — 1 we have that PDFyy, (v, (X) o

m

det(V) ™2 det(X) e exp(—3tr(V1X)). The inverse-Wishart distribution Wit (V,m)
describes the distribution over positive definite matrices whose inverse is sampled from the
Wishart distribution using the inverse of V; i.e. X ~ W, H(V,m) iff X~ ~ Wy(V~1 m).

For m > d —1 it holds that PDF,, 1y, (X) oc det(V) % det(X)™ ™% - exp(—Ltr(VX1)).

7. To the best of our knowledge, for a general JLT, this is known to hold only when r = O(d - p~2) and the
transform preserves the lengths of all unit-length vectors in the R space, see (Sarlés, 2006) Corollary 11.
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Differential Privacy. In this work, we deal with input of the form of a (n x d)-matrix
with each row bounded by a l3-norm of B. Converting A into a linear regression problem, we
denote A as the concatenation of the (n x p)-matrix X with the vector y € R" (A = [X; y])
where p = d — 1. This implies we are tying to predict y as a linear combination of the
columns of X. Two matrices A and A’ are called neighbors if they differ on a single row.

Definition 1 (Dwork et al., 2006b,a) An algorithm ALG which maps (n x d)-matrices into
some range R is (e, d)-differential privacy if for all pairs of neighboring inputs A and A’ and
all subsets S C R it holds that Pr[ALG(A) € S] < ePr[ALG(A’) € S| + 0. When 6 =0 we
say the algorithm is e-differentially private.

It was shown in Dwork et al. (2006b) that for any f where || f(A)— f(A")|l1 < A1 then adding
iid Laplace noise Lap(%) to each coordinate of f(A) is e-differentially private. It was shown
in Dwork et al. (2006a) that for any f where || f(A4) — f(A4")|]2 < Az then adding iid Gaussian
noise N (0,2431n(2/6)/¢) to each coordinate of f(A) is (e, §)-differentially private. This is
precisely the Analyze Gauss algorithm of Dwork et al (2014) analyzed in Section 6. Dwork
et al observed that in our setting we have that [|ATA — A'TA’||p = B2, and so they add i.i.d
Gaussian noise to each coordinate of AT A (forcing the noise to be symmetric, as AT A is
symmetric). Also, composing two (e, §)-differentially private algorithms yields an algorithm
which is (2¢, 29)-differentially private.

3. Ridge Regression: Choose Regularization to Preserve Privacy

In standard linear regression, the uniqueness of the regressor 8 = arg ming | X8 — y|?
relies on the fact that X is of full-rank. This clearly isn’t always the case, and X "X may
be singular or close to singular. To that end, as well as for the purpose of preventing
over-fitting, regularization is introduced. One way to regularize the linear regression problem
is to introduce a lp-penalty term: finding B = argming || X3 — y||* + w?|8]|*>. This
is known as the Ridge regression problem, introduced by Tikhonov (1963); Hoerl and
Kennard (1970) in the 60s and 70s. Ridge regression always has a closed form solution:
B = (XTX +w?l,x,) "X Ty. The problem of setting w has been well-studied (Hastie et al.,
2009) where existing techniques are data-driven, often proposing to set w as to empirically
minimize the risk of B%. Conversely, we propose a fundamentally different approach: set w
based on the privacy-loss you wish to incur (after using Gaussian JL projection).

Observe, the Ridge regression problem can be written as: min | XB8—y|*+ | wlyxpB3—0,|>.
So, denote X’ as the ((n 4+ p) x p)-matrix which we get by concatenating X and wl,p, and
denote y’ as the concatenation of y with p zeros. Then B = argmin || X’8 — /||?. Since
p =d—1 and we denote A = [X;y], we can in fact set A" as the concatenation of A with the

(]

= [|X'8 —y'|* + w?.
Hence 8% = argmin f(8). Hence, a differentially private approximation of A’T A’ results
in the ability to approximate any of the (exponentially many) Ridge regression problems
based on the data. Here we propose approximating A’T A’ via the Johnson-Lindenstrauss
transform, which is known to be differentially private if all the singular values of the given
input are sufficiently large (Blocki et al., 2012). And that is precisely why we appended A
with wl to create A’ — as it must be the case that all singular values of A'T A’ are greater

d-dimensional matrix wl;xq, and we have that f(3) def
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then w?. Therefore, applying the JLT to A’ gives a differentially private approximation of
A'TA’" (see Theorem 2 below). As discussed in the Introduction, the following theorem also
improves on the original bounds of Blocki et al. (2012).

Theorem 2 Fiz e >0 and § € (0,1). Fix B > 0. Fiz a positive integer r and let w be

such that w? = 4B? (,/27" In($) + ln(%)) Je. Let A be a (n x d)-matriz with d < r and where

each row of A has bounded Lo-norm of B. Given that omin(A) > w, the algorithm that picks
a (r x n)-matriz R whose entries are i.i.d samples from a normal distribution N (0,1) and
publishes R - A is (e, 0)-differentially private.

Input: A matrix A € R™% and a bound B > 0 on the l>-norm of any row in A.
Privacy parameters: €, > 0.
Parameter r indicating the number of rows in the resulting matrix.

Set w = \/4B2 («/27‘ In($) —|—ln(%)) Je.  Set A" as the concatenation of A with wlgyg.

Sample a r x (n + d)-matrix R whose entries are i.i.d samples from N (0,1). return
M= %(RA’)T(RA’) and the approzimation B = argming,_ 1 BTMp.
Algorithm 1: Approximating Ridge Regression while Preserving Privacy

This gives rise to our first algorithm. Algorithm 1 gets as input the parameter r —
the number of rows in our JLT, and chooses the appropriate regularization coefficient w.
Based on Theorem 2 and above-mentioned discussion, it is clear that Algorithm 1 is (e, d)-
differentially private. In Section A (deferred for brevity), we also present a variation on
Algorithm 1, where we first use some of the privacy budget to estimate oy, of the data,
and adjusts w accordingly.

4. Additive Wishart Noise: Regression with Random Regularization

As discussed in the previous section, Ridge regression can be viewed as regression where in
addition to the sample points given by [X;y] we see d additional datapoints given by wljxq.
Our second technique follows this approach — we introduce abount d + O(e~2) datapoints
that are random and independent of the data.® Formally, we give the details in Algorithm 2
and immediately following it we present the theorem proving it is (e, d)-differentially private.

Input: A matrix A € R"*? and a bound B > 0 on the ly-norm of any row in A.
Privacy parameters: €, > 0.
Set k + |d+ % -21In(4/6)|. Sample vy, v, ..., vy i.i.d examples from N (04, B2l xq).
return M = ATA + Zle viv; ' and the approzimation 5 = argming,—_1 8T Mp.
Algorithm 2: Additive Wishart Noise Algorithm

Theorem 3 Fiz e € (0,1) and § € (0,2). Fiz B > 0. Let A be a (n x d)-matriz
where each row of A has bounded lo-norm of B. Let W be a matriz sampled from the
d-dimensional Wishart distribution with k-degrees of freedom using the scale matriz B% - Iy 4
(i.e., W ~ Wy(B? - Igxq,k)) for k> |d+ % -21n(4/5)|. Then outputting X = ATA+ W s
(e, 0)-differentially private.

8. Independent of the data itself, but dependent of its properties. Our noise does depend on the l2-bound B.
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The One-Dimensional Version: The full proof of Theorem 3, though technical and
hairy, is a multi-dimensional analog of the following unidimensional back-of-the-envelop
calculation. Suppose A is just a {0, 1}-vector (a 1-dimensional input), so ATA = #1s in A.
Fix a neighboring A’ so that A’TA’ = ATA + 1. Thus Algorithm 2 outputs a scalar
sampled by ATA + X where X ~ x7 for k = O(In(3)/€®). Concentration bounds give that

x

X e (\fj: V21In(2/6) ) w.p > 1 — 6. As the PDF of the y?-distribution is o e % we
have for any a in the appropriate interval

PDF[ATA+ X =qa]  PDF2la-AT4] B2 - !
PDF[ATA' 1 X = q] ~ PDF, mATAT] — (1 + ATA 1) e ?s Xp( (a—ATA_1) 5)
k

Based on the concentration of the X%-distribution we have that on the likely values of a

1 k—2 11 (\fi\/m) \/2k:1n 2/5 21n(2/6
2 a-ATA-1 2" 2 (\fi\/m) =
so by plugging in the value of k, we see that the log of the PDF-ratio is at most e.

This one dimensional version contains the flavor of most of the proof, and hopefully
illustrates the discussion at the Introduction (“Our Proof Technique”): the log of the ratio
is composed of two terms — both are roughly % yet are of opposite sign — and we show that
only w.p. < J it holds that the magnitude of the difference between them is > €. In the full
proof we replace scalars with determinants and matrix product, and so the simple arithmetic
manipulations in this one-dimensional example are replaced with the Sherman-Morison
Lemma and the matrix inverse lemma. More importantly, the x?-concentration bounds are
replaced with our lemma regarding the JLT. This 1-dimensional example also illustrates
that our technique is (e, §)-differentially private yet isn’t zZCDP (Dwork and Rothblum, 2016;
Bun and Steinke, 2016) as the Reyni divergence between the two PDFs is unbounded: if
A is the all-0 vector then it is possible (though highly unlikely) to have ATA 4 X < 1, an
impossible outcome under the neighboring A’ that holds a single 1 entry where A’TA’ = 1.

Remarks. (1) Ridge Regression also has a Bayesian interpretation, as introducing a prior
on 3 in regression problem. It is therefore tempting to argue that Theorem 3 implies that
solving the regression problem with a random prior preserves privacy. (Le., output the MAP
of B after setting its prior to a random sample from the Wishart distribution.) However,
notice that our algorithm also adds random noise to X "y. Indeed, just using random prior
doesn’t guarantee privacy: with a random prior, if y = 0,, then the MAP has to be 0,, thus
we can differentiate between the input in which y = 0, to a neighboring input where y # 0,,.
We leave the (very interesting) question of whether Wishart additive random noise can be
interpreted as a Bayesian prior for future work.

(2) Observe that Wishart noise has non-zero mean, but rather E[W] = kB? - Ij.q. It
thus stands to reason that we post-process the output by zeroing the mean and releasing
ATA + W — kB? - I;.4. Note that when oy, (AT A) is small, it might be the case that
some of the eigenvalues of ATA + W are smaller then kB2, in which case Lemma 9 assures

us that w.h.p we can release ATA+ W — B? (\/E — (Vd+ \/W))Q I and the output
remains a positive definite matrix. This is the algorithm we set to evaluate empirically in
the experiments detailed in Sections 6 and E.

(3) In Section A we present a variation of Algorithm 2 where all examples, including the
added ones, have a constant all-1 column, namely the intercept. The intercept plays a key
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role in linear regression, especially in the ability to shift features, and we would like to
maintain this feature as 1 on the new examples as well. Our analysis shows this is doable,
but the number of added samples increases (by a constant factor) and we must make the
data-size n publicly known.

5. Sampling from an Inverse-Wishart Distribution (Bayesian Posterior)

In Bayesian statistics, one estimates the 2"-moment matrix in question by starting with
a prior and updating it based on the examples in the data. More specifically, our dataset
A contains n datapoints which we assumed to be drawn i.i.d from some N (04,V). We
assume V was sampled from some distribution D over positive definite matrices, which is
the prior for V. We then update our belief over V' where: Pr[V | A] « Pr[A|V]  Prp[V].
Finally, with the posterior belief we give an estimation of V' — either by outputting the
posterior distribution itself, or by outputting the most-likely V' according to the posterior,
or by sampling from this posterior distribution (maybe multiple times). In this section we
assume that our estimator of V' is given by sampling from the posterior distribution.

One of the most common priors used for positive definite matrices is the inverse-Wishart
distribution. This is mainly due to the fact that the inverse-Wishart distribution is conjugate
prior.? Specifically, if our prior belief is that V ~ Wd_l(\IJ, k), then after viewing n examples
our posterior is V' ~ VVd_1 ((ZZ xix;' + V), n+ k) Here we show that sampling such a pos-
itive definite matrix V' from our posterior inverse-Wishart distribution is (e, d)-differentially
private, provided the prior distribution’s scale matrix, ¥, has a sufficiently large opin (V).
This result is in line with the recent beautiful work of Vadhan and Zheng (2015), who
showed that many Bayesian techniques for estimating the means are differentially private,
provided the prior is set correctly.'® The formal description of our algorithm and its privacy
statement are given below.

Input: A matrix A € R"*? and a bound B > 0 on the ly-norm of any row in A.
Privacy parameters: €,6 > 0.
Set 1 « 222 (2/2(n + d) In(4/6) + 21n(4/3) ). Sample M ~ W ((ATA+ - Iyxa),n +d).

€

return M and the approximation 3 = argming,—_1 BT MpB.
Algorithm 3: Sampling from an Inverse-Wishart Distribution

Theorem 4 Fiz e >0 and § € (0,1). Fiz B> 0. Let A be a (n x d)-matriz and fiz an
integer v > d. Let w be such that w? = 2B? (2\/2V1H(4/5) + 21n(4/5)>/6. If we have that
Omin(A) > w then sampling a matriz from Wy (AT A,v) is (e, 8)-differentially private.

We comment on the similarities between Theorem 4 and Theorem 2. Indeed, the
Algorithm 1 essentially samples a matrix from W(ATA + w?I, k) for some choice of w

9. A family of distributions is called conjugate prior if the prior distribution and the posterior distribution
both belong to this family.

10. The result however is in sharp contrast to the exponential mechanism for PCA sampling in (Chaudhuri
et al., 2012; Kapralov and Talwar, 2013). For example, for input of all zeros, the exponential mechanism
samples uniformly among unitary matrices; whereas the inverse-Wishart distribution would be centered on
the all-0 matrix. This is why we require the input to be well-spread and can guarantee only (e, §)-differential
privacy rather than pure differential privacy.
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and k (and then normalizes the sample by %), and Algorithm 3 samples a matrix from
WY AT A+ w?I, k) for a very similar choice of w. And so, much like we did in the Johnson-
Lindenstrauss case, we can also use part of the privacy budget to estimate opin(ATA) and
then set the parameter ¢ accordingly. Details appear in Section A.

6. Utility Analysis and Comparison to the Analyze Gauss Baseline

Theoretical Guarantees. In this paper we discuss multiple ways for outputting a differ-
entially private approximation of AT A, in addition to the additive Gaussian noise technique
presented in Dwork et al. (2014) (“Analyze Gauss”). In this section we provide theoretical
utility guarantees for our algorithms. We begin with the “Analyze Gauss” baseline. (We are
the first to analyze the performance of “Analyze Gauss” for the purpose of linear regression.)
Not surprisingly, as we repeatedly stated throughout the paper that the output of Analyze
Gauss isn’t necessarily a PSD matrix, we are able to give reasonable utility bounds only in
the case that all singular values of the input are sufficiently large, guaranteeing the output
is a PSD (as the eigenvalues of the add noise matrix aren’t large enough to flip the sign of
any of AT A’s eigenvalues). Formally, we argue the following.

Theorem 5 Fiz X € R™P and y € R® s.t. X'X is invertible. Fizn € (0,1) and
v € (0,1/e). Denote XTX = XTX + N and XTy = X"y +n where each entry of N and

n is sampled i.i.d from N (0,02). Denote also B = (XTX) ' XTy and B = (XTX) "' XTy.
Then, if there exists some constant C' > 1 s.t. we have that omn (X T X) > % -oy/plog(1/v),
then w.p. > 1 — v we have HB—BH < 21|18 + &

In the Analyze Gauss algorithm, the variance o2 of each entry is B* ln(%) /€2, In this
case, concentration bounds from Tao (2012) give that w.p. > 1 — v all eigenvalues of the
noise matrix used in the Analyze Gauss algorithm are < B2\/pIn(1/§) - In(1/v)/e. Hence
Theorem 5 effectively requires the eigenvalues of XX be O(%) times greater than then
eigenvalues of the noise matrix.

We now turn to the utility of the Additive Wishart noise algorithm (Algorithm 2).
Known concentration bounds on the eigenvalues of the Wishart noise W (Tao, 2012) (see also
Lemma 9) give that |W|| < B*(Vk+,/p++/2In(4/v))? w.p. > 1—v. Therefore, it is evident
that the difference between any eigenvalue of AT A and AT A+W is B(Vk+,/p++/2In(4/v))>.

Next, we also give a bound on the difference in the linear regression estimators.
Theorem 6 Let W ~ W,11(0?1,k), and denote N € RP*P and n € RP s.t. W =

( 7]7,\; Z’ ) Let X € R™P be a matriz s.t. XX is invertible and let y € R™ and denote

B=(XTX)"1Xy.
— - 1~
Denote XTX = XTX + N, XTy=XTy4+nand 3=XTX XTy; and also denote C def

Urnin(XTX) 3 _ 3 L 3 — L . 720-2 \/—
2 (Vrrypryamam) " |88 < 81+ (1= chs) - 52y v 2he - (/o).

The similarities between Algorithm 1 and 3 have been discussed already. Since both
algorithms are JL-based, and thus we can rely on the JL lemma for their utility analysis.
Based on the work of Sarlos, we can bound the difference between the non-private Ridge-
regressor 3% and the private approximation of it BR.

10
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Theorem 7 [(Sarlds, 2006), Theorems 116 12] Fix any n,v € (0, %) Apply Algorithm 1
with r = O(dlog(d)In(1/v)/n?). Then, w.p > 1—v it holds that for every i, the i-th singular
value of the output M satisfies that o;(M) € (1 £ n)(0;(ATA) + w?), and it also holds that

R QR R

187 - 87| < s (8.

Existing results about the expected distance E[[|3% — 8||?] (see Dhillon et al. (2013)) can
be used together with Theorem 7 to give a bound on ||3% — B||2. These results use the
Mahalanobis distance of the input, which we can approximate using the projected output
of either algorithm, but due to the hairiness of such results we omit their final form. We
also comment that all utility guarantees result in various dependencies on o (XTX) (or
Omin(ATA)). If we assume that the data is drawn i.i.d from, say, a multivariate Gaussian,
such bounds translate to sample complexity bounds, where w.h.p n draws from a multivariate
Gaussian of variance ¥ have least eigenvalue of nopi,(2).

Empirical Comparison. The lower bound in Dwork et al. (2014) proves that the mag-
nitude of the noise introduced by the Analyze Gauss algorithm is the smallest out of all
algorithms. Yet, as we stressed before, the output of Analyze Gauss isn’t necessarily a PSD
(and it bears repeating that additive Gaussian noise isn’t “interpretable” by classic techniques
in regression). Moreover, our utility guarantees depend on a variety of factors, such as the
data’s least-singular value (or rather the sub-matrix of the data we care about), so comparing
all 4 algorithms and determining which one is “best” is a laborious task at best. In fact, this
shouldn’t come as a surprise considering the vast literature on all the different techniques for
regression, varying in their performance based on different assumptions regarding the data
and even the analyst’s belief (frequentist vs. bayesian). And so, we compare the performance
of the 4 algorithms empirically on both synthetic and real data. Due to space constraints,
the bulk of the discussion of the experiments is deferred to Section E, so here we provide here
just a summary of the results. First, over synthetic data, we show that when all features are
uncorrelated indeed the magnitude of the noise is the most influential factor determining
the distance between the non-private and private regressors (hence Analyze Gauss has the
smallest error); yet, when features are correlated it is far more difficult to discern which
algorithm is better.

In addition, we also assess the performance of the four algorithms on real-life data.
The Data: We ran our algorithms over diabetes data collected over ten years (1999-2008)
taken from the UCI repository (Strack et al., 2014). We truncated the data to 9 attributes:
sex (binary), age (in buckets of 10 years), time in hospital (numeric, in days), number
lab procedures (numeric, 0-100), number procedures (numeric, 0-20), number medications
(numeric, 0-100), and 3 different diagnoses (numeric, 0-1000), and a 10*" column of all-1
(intercept). Omitting any entry with missing or non-numeric values on these nine attributes
we were left with N = 91842 entries.

The experiments: We shuffled the entries randomly and used different size prefixes of the
random dataset. We set ¢ = 0.1 and § = e~'%. We also linearly converted each attribute
independently to reside in the range [—1,1] to set our row-wise bound as 1/10, before running
our algorithms (and rescaled each attribute to its original range after the execution of each
algorithm). We tried to predict the 3" diagnosis as a linear function of the other attributes,
in three different settings: (i) using all 9 attributes; (ii) omitting the first two diagnoses from
the input and using only non-diagnoses attributes (after all, it is reasonable to conjecture one

11
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would want to estimate the value of the diagnosis based on other attributes); (iii) running the
algorithm on the entire data, but omitting the first two diagnoses from the output so that the
regressor must assign zero-value to the two other diagnoses. We believe setting (iii) captures
the benefit of outputting the 2"-moment matrix rather than a private linear-regression
algorithm: we get to to choose the features for the problem by ourselves and rather than be
constraint to the curator’s choice of features. Denoting 3 as the predictor with all 91842
entries and B as the predictor returned by a differentially private algorithm, we measured

12}

the performance of the algorithm by max{ Hgf I ,1}. We ran each algorithm 100 times.
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08 -

06

04

02 -

00

InvW -

InvW o

AG, o Fme
AG +c'l -

([ ETEE R —

T
E

Inv W

00
T
a
=
=
-
3
©

n=600(
T T T
<he
CES
o

\ddW¥.(PP)
aussian.JL -
\ddW.(PP)

aussian.JL —
aussian.JL —
aussian.JL -

aussian.JL {3 F-------
NI —

AddW(PP) S+
aussian.JL |

=2 o} ze o}

(a) Experiment on Real Data, Setting (i) (b) Experiment on Real Data, Setting (iii)
(3 diagnoses, regression with all at- (3 diagnoses, regression doesn’t use di-
tributes) agnoses as features)

Figure 1: Experiment on Real Data

Results: The experiment’s results in settings (i) and (iii) appear in Figure 1 (full results
appear in Section E, Figure 4). In both of these settings one can observe that the Additive
Wishart Algorithm outperforms the Analyze Gauss baseline (bright red), even after post-
processing the output of Analyze Gauss so it is a PSD (dark red). (We comment that we
experimented extensively with various post-processing techniques for Analyze Gauss and
the one report is the best one of all.) We note that while the improvement isn’t necessarily
substantial, it is consistent throughout all experiments. We observe in this experiment the
same phenomena as in the synthetic data: if the data’s feature are not correlated, Analyze
Gauss produces the best results; whereas if there are correlations in the data, it under
performs in comparison to the Additive Wishart noise algorithm.

More strikingly is the comparison between settings (ii) and (iii) — in both setting we
study the exact same regression problem, only in setting (iii) the algorithms also output
correlations with two additional unused features. In our full set of results one can see that
in setting (ii) Analyze Gauss outperforms Additive Wishart, and (as Figure 1b shows) in
setting (iii) it is the other way around. This is because in setting (iii) the least singular
value of the input matrix is noticeably smaller than the least singular value of the submatrix
considered in setting (ii). Therefore the additive Gaussian noise tends to output a non-PSD
matrix even for fairly large values of n. (E.g., even for n = 80000 we have that Analyze
Gauss has non-negligible probability to output a non-PSD.)

12



OLD TECHNIQUES IN DIFFERENTIALLY PRIVATE LINEAR REGRESSION

Acknowledgments

The bulk of this work was done when the author was a member of the Harvard’s “Privacy
Tools for Sharing Research Data” project. The author wholeheartedly thanks Prof. Salil
Vadhan for his tremendous help in shaping this paper. The author also thanks numerous
other members of this project — Prof. Kobbi Nissim, James Honaker, Vito D’Orazio,
Vishesh Karwa and Prof. Gary King, for many helpful discussions and suggestions; and
also Prof. Jelani Nelson for a few clarifications regarding certain properties of the JLT.
In addition the author thanks the anonymous referees for various helpful suggestions and
references.

References

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In FOCS, 2014.

J. Blocki, A. Blum, A. Datta, and O. Sheffet. The Johnson-Lindenstrauss transform itself
preserves differential privacy. In FOCS, 2012.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In TCC, pages 635-658, 2016.

K. Chaudhuri, A. Sarwate, and K. Sinha. Near-optimal differentially private principal
components. In NIPS, 2012.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private
empirical risk minimization. Journal of Machine Learning Research, 12, 2011.

Y. Chen, A. Machanavajjhala, J. P. Reiter, and A. F. Barrientos. Differentially private
regression diagnostics. In ICDM, pages 81-90, 2016.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Struct. Algorithms, 22(1), January 2003.

Kenneth R. Davidson and Stanislaw J. Szarek. Local operator theory, random matrices and
banach spaces. In Handbook of the geometry of Banach spaces, volume 1. 2001.

Paramveer S. Dhillon, Dean P. Foster, Sham M. Kakade, and Lyle H. Ungar. A risk
comparison of ordinary least squares vs ridge regression. JMLR, 14(1), 2013.

Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Benjamin I. P. Rubinstein.
Robust and private bayesian inference. In Algorithmic Learning Theory, pages 291-305,
2014.

C. Dwork, G. Rothblum, and S. Vadhan. Boosting and differential privacy. In FOCS, 2010.

13



OLD TECHNIQUES IN DIFFERENTIALLY PRIVATE LINEAR REGRESSION

Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy. CoRR, 2016.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In FUROCRYPT, 2006a.

Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, 2006b.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss - optimal
bounds for privacy preserving principal component analysis. In STOC, 2014.

Joseph Geumlek, Shuang Song, and Kamalika Chaudhuri. Renyi differential privacy mecha-
nisms for posterior sampling. In NIPS, pages 5295-5304, 2017.

Moritz Hardt. Robust subspace iteration and privacy-preserving spectral analysis. In 51st
Annual Allerton Conference on Communication, Control, and Computing, 2013.

Moritz Hardt and Aaron Roth. Beating randomized response on incoherent matrices. In
STOC, 2012.

Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private singular vector
computation. In STOC, 2013.

Trevor J. Hastie, Robert John Tibshirani, and Jerome H. Friedman. The elements of
statistical learning : data mining, inference, and prediction. Springer series in statistics.
Springer, 2009.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12:55-67, 1970.

Wuxuan Jiang, Cong Xie, and Zhihua Zhang. Wishart mechanism for differentially private
principal components analysis. In AAAI 2016.

M. Kapralov and K. Talwar. On differentially private low rank approximation. In SODA,
2013.

Daniel Kifer, Adam D. Smith, and Abhradeep Thakurta. Private convex optimization for
empirical risk minimization with applications to high-dimensional regression. In COLT,
2012.

K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate analysis. Probability and mathematical
statistics. Academic Press, 1979.

Kentaro Minami, Hiromi Arai, Issei Sato, and Hiroshi Nakagawa. Differential privacy without
sensitivity. In NIPS, pages 956-964, 2016.

T. Sarlés. Improved approx. algs for large matrices via random projections. In FOCS, 2006.

B. Strack, J. DeShazo, C. Gennings, J. Olmo, S. Ventura, K. Cios, and J. Clore. Impact of
HbAlc measurement on hospital readmission rates: Analysis of 70,000 clinical database
patient records. BioMed Research International, 2014:11 pages, 2014.

14



OLD TECHNIQUES IN DIFFERENTIALLY PRIVATE LINEAR REGRESSION

T. Tao. Topics in Random Matriz Theory. American Mathematical Soc., 2012.

Abhradeep Thakurta and Adam Smith. Differentially private feature selection via stability
arguments, and the robustness of the lasso. In COLT, 2013.

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method.
Soviet Math. Dokl., 4, 1963.

Jonathan Ullman. Private multiplicative weights beyond linear queries. In PODS, 2015.

Salil Vadhan and Joy Zheng. The differential privacy of bayesian inference. Technical
report, Faculty of Arts and Sciences, Harvard University, 2015. Available on http:
//nrs.harvard.edu/urn-3:HUL. InstRepos:14398533.

Yu-Xiang Wang. Revisiting differentially private linear regression: optimal and adaptive
prediction & estimation in unbounded domain. In UAI pages 93-103, 2018.

Yu-Xiang Wang, Stephen E. Fienberg, and Alexander J. Smola. Privacy for free: Posterior
sampling and stochastic gradient monte carlo. In ICML, 2015.

Oliver Williams and Frank McSherry. Probabilistic inference and differential privacy. In
NIPS, 2010.

Bowei Xi, Murat Kantarcioglu, and Ali Inan. Mixture of gaussian models and bayes error
under differential privacy. In CODASPY. ACM, 2011.

Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. Functional
mechanism: Regression analysis under differential privacy. VLDB, 5(11):1364-1375, 2012.

Zuhe Zhang, Benjamin 1. P. Rubinstein, and Christos Dimitrakakis. On the differential
privacy of bayesian inference. In AAAI 2016.

15


http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398533
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398533

OLD TECHNIQUES IN DIFFERENTIALLY PRIVATE LINEAR REGRESSION

Appendix A. Algorithms deferred from the main text

For completeness, we specify here the formal description of algorithms deferred from the
main text, as well as the figures corresponding to our various experiments.

Variation of the Ridge Regression Algorithm. In addition to Algorithm 1, we can
use part of the privacy budget to look at the least singular-value of AT A. If it happens to be
the case that oy (AT A) is large, then we can adjust w by decreasing it by the appropriate
factor. In fact, one can completely invert the algorithm and, in case omin(ATA) is really
large, not only set the regularization coeflicient to be any arbitrary non-negative number,
but also determine r based on Theorem 2. Details appear in Algorithm 4.

We comment that even though both Algorithms 1 and 4 are written as though they are
solving one specific regression (for the ease of exposition). However, their output is clearly a
private approximation of A’TA’ (or AT A) and regression is merely a post-processing of the
output.

Input: A matrix A € R"? and a bound B > 0 on the ly-norm of any row in A.
Privacy parameters: €, > 0.
Parameter ry indicating the minimal number of rows in the resulting matrix.

Set w = (g ( 21 ln(%) + ln(%)))lp. Set s < max {O,O'mjn<ATA) — M + Z}

where Z ~ Lap(g). Adjust w <+ y/max{0,w? — s}. if w > 0 then
Set A’ as the concatenation of A with wlj.g. Sample a r x (n + d)-matrix R whose
entries are i.i.d samples from a normal Gaussian. return M = 1 (RA)T(RA'), w

1

~ ro

and the approzimation B% = arg ming,—_1 BTMpB.

else

Set r* as the largest integer r satisfying g (\/27" ln(%) + ln(%)) < s Sample a
(r* x n)-matrix R whose entries are i.i.d samples from a normal Gaussian. return
M = T%(RA)T(RA), r* and the approrimation 3 = argming,—_1 BT MpB.

end
Algorithm 4: Approximating Regression (Ridge or standard) while Preserving Privacy.

Variation of the Additive Wishart Noise Algorithm for the Intercept. In linear
regression, it is common to have a column of all ones in A (or append such a column to
A). Wlog, this all-1 column is the first column of A, and so the first coordinate of 3 is
the intercept of the regression. Thus the first coordinate in each datapoint is 1 and this
fact data-independent. So it stands to reason that the k random points that we add to
the data should also have 1 in their first coordinate. Indeed, in Theorem 14 we prove that
it is possible to pad the data with &’ random examples who also have 1 in the intercept
column, provided that n, the number of entries, is known a-priori.'’ We comment that
k', the number of examples added with first coordinate set to 1, is indeed greater than
our previous parameter k (see definition in Algorithm 2 and Theorem 3) yet k' remains
on the order of d + O(log(1/5)/€?) (we made no effort to optimize constants). However,
since our analysis is based (in part) on the standard additive Gaussian noise mechanism, we

11. To see why n needs to be public, observe that the padded matrix A’ has n + k' examples whose first
coordinate is 1, and so the coordinate (A’TA'); 1 is deterministically set to n + k’.
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are forced to increase the scale matrix of the examples, from B? - Iy 4 in Algorithm 2, to
(BQIH(:%) - Igxq- We conjecture that a tighter analysis could allow for using the same scale
matrix without increasing the number of examples significantly, but we leave it as an open

problem. Details appear in Algorithm 5, and its privacy proof appear in Section C.3.

Input: A matrix A € R™"*P whose first column is all-1 and a bound B > 0 on the l3-norm
of any row in A.
Privacy parameters: €,6 > 0.

Set k' + [p+ 1+ % -In(20/6)|. Sample vy, vs,..., v i.i.d, each coordinate picked i.i.d
from N (0, B2In(1/5)/€?). Set the first coordinate of each v; to be 1. Let A denote
the ((n + k') x p)-matrix one gets by concatenating A with the new k samples. return
M = AT A and the approzimation B = argming,—_; BTMpB.

Algorithm 5: Additive Wishart Noise Algorithm where new examples also have 1 on their
intercept column

Variation of the Inverse-Wishart Sampling Algorithm. Similar to the version of
the Ridge-Regressions that uses some of the privacy budget to estimate the least singular
value of the data and sets w accordingly, we present Algorithm 6 below, which does essentially
the same thing for sampling from the inverse-Wishart distribution.

Input: A matrix A € R"? and a bound B > 0 on the lo-norm of any row in A.
Privacy parameters: €, > 0.
A parameter kg indicating the minimal degrees of freedom.

Set 1)« 422 (2,/2kg In(8/0) + 21n(8/) ). Set 5 « max {0, oin (AT A) — 222/ 4 71
where Z ~ Lap(%). Adjust ¢ < max{0,¢ — s}. if w >0 then
‘ Sample M ~ ng((ATA + - Igxa), ko).

else
Set k* as the largest integer k satisfying 4’?2 (2«/2]{: In(8/9) + 2111(8/5)) <s
Sample M ~ W, (AT A, k*).
end

return M and the approximation B = argming,__; BTMpB.
Algorithm 6: Sampling from an Inverse-Wishart Distribution whose degrees of freedom
are determined by the input.

Appendix B. Useful Lemmas

In this section we detail the main lemmas that we use in our privacy proofs in the following
section. The lemmas and theorems presented here, for the most part, were known prior
to our work. We chose to include so that the uninformed reader can have their full proof,
but, with the exception of Equation (1), we do not claim any originality to the proofs of the
lemmas. The proofs of Lemma 8 and Claim 1 are based in part on the result Dasgupta and
Gupta (2003) and in part about results regarding the Wishart distribution given in (Mardia
et al., 1979) (Theorem 3.4.7). We encourage the reader who is familiar with lemmas and
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claims in this section to skip their proofs and turn to Section C where we prove our privacy
theorems.

Lemma 8 Let X be a (r x d)-matriz of i.i.d normal Gaussians (i.e., z;j ~ N(0,1)). Fiz
B € (0,1). Then, for any vector v it holds that

Pr UvT(iXTX ~Ip| < (\/W+ 2“1(3//3)) ||'v||2} >1-8

Furthermore, if r > d then denote t = %2_‘/_? and assume t < 1. Then
T T 2 —t* o
Pr [T = (= XT0 e < ggpllel® 215 (1)

Proof Fix v. Each entry of Xwv is distributed like N(0,||v]|?) and so vT X T Xwv is just
the sum of r i.i.d Gaussians with variance |[v||2. In other words, W’UTXTX’U ~ X2

Concentration bounds (see Claim 1) give therefore that w.p. > 1 — § we have

(Vr—/2In(2/8))? < o’ XTXv < (Vr+4/21n(2/5))?
oTAXTX — I > ( 2\/W+21“/5>H I2

WTAXTX — Iy < (2 21n(f/6)+21n(7?/6)>“v‘2

and so we get the bound on v (1 XTX — I)v.

We now argue that

which implies

IJ(X“T’T% ~ x4 +1- To see this, we argue that specifically for

the vector ey (the indicator of the d-th coordinate) we have m ~ X%—d 1 and
the results for any v follows from taking any unitary function s.t. UTv = ||v|e4, and the
observation that the distributions of X and XU are identical.

Now, clearly eg(XTX) le; = (XTX);}i. Now, if we denote the last column of X as x4

X_dTX_d X_dTCL'd

and the first d — 1 columns of X as X_,4 then XTX = . Thus,

' X_g | |xdl?
the formula for the entries of the inverse give
1 2 T T 1y T
———— = ||zg||” g X_q(X_qg X_ X gz
XX ! |4l d X a(Xq X_q) d Td
T -1 T def T
=g (I—X,d(X,d X,d) X,d )a:d = &g P Tq

Now, w.p. 1 we have that X_4 has full rank (d — 1). For any choice of X_; with full rank
we get a matrix P which has rank r — (d — 1) and its eigenvalues are either 1 or 0. Hence,

for any X_4 we get W ~ Xg—d+1' Since this distribution is independent of X_; we
d,d
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therefore have that this result holds w.p. 1. lLe.:

1 —

d,d

_ /PDF <(XT;();; = | X (XX ) X = p) PDF (I X (X TX ) X T = P) dP
/ ,

r—d+1

= / PDF (I - X a(X_4"X_a)'X 4" = P)-PDF,2_ (2)dP
P

—1-PDF  (:) =PDF  (2)

Therefore, same argument from Claim 1 gives that with probability > 1 — 8 we have
T

?ﬂ(;ﬁe (miMY

o (i XTX) v 2 <\/r—d+1—|—\/21n(2/5)> Iv]
2
o (e XTX) v < ( rod+l )!v|!2

SO

r—d+1 Vr—d+1—+/2In(2/B)
which implies
9, /2m(2/B) n 21n(21ﬁ13)

T 1 T —1 r—d—1 r—d
o' (- (= X)) v < (11 /e
r—d—1
9, /2n(2/B) _ 2In(2/B)
o7 (I—( 1 XTX)—I) v>— \/: r—d—1
r—d+1 (1- 21n%2/,§))2

Some arithmetic manipulations show that when %ﬂ? < 1 we have that

2In(2/8) _ 2In(2/B)

‘UT (I - (r—cll+1XTX)_1) 'v‘ < r—d-1 r—d—1

as this is the larger term of the two. |

Claim 1 Fiz k and let X1, ..., Xy be iid samples from N (0,1). Then, for any 0 < A < k
we have that Pr[y; X2 > (Vk + VA)? < e 22 and Pr[Y); X? < (VEk — VA)?] < e=8/2,

Proof We start with the following calculation. For any X ~ A (0,1) and any s < 1/2 it

holds that
0o 0o
2 2(1-2
E[eSXQ] = [ LeTedr = #e_x (2 . dx
V2T V2T
—oo —00
y=x+/1—2s 00 2
so dy=dx\/1-2s 1 ,% dy 1
= —e =
V2 1-2s 1-2s
—00
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We now use Markov’s inequality, to deduce that for any A € (0,1/2)

X25 (V4 VAP = P S 5 AEevar) o Bl ]
Z + ) ] I‘[ it > e ] m
k
_ HE[eAXf]e—)\(\/E-l—\/Z)Q _ < 1 )2 o~ AVE+VA)?
; 1—2\
2\ 5

_ 2 7)\(\/E+\/Z)2 < ( _ )

_<1+1_2)\) <exp (1o5n AVE 4+ VA)?
Setting A = — VA _ g5 that 1 — 2\ = Yk _ e have

2(VE+VA) VE+VA
ZXz (VE + VA)?] < exp (%M—%@(\/&%—ﬂ)) = exp(—%5)

A similar Calculatlon gives the lower bound. |

Lemma 9 Fir § € (0,e7!). Let X be a matriz sampled from a Wishart distribution

Wa(V,m) where \/m > (\/ﬁ+ 2111(%)). Then, w.p. > 1 — 6 we have that for every
7 =1,2,...,d it holds that

0i(X) € (Vim+ <\/&+ \/2111(?)))2@(‘/)
Furthermore, we also have that for any 0 < o < m it holds ||aV — X|| < ||V - |a — (vV/m —
(Vd+/2m(3)))? and [[(aV)~ = X <

Ouin(V) - o™t = (Vim+ (Vd+/2In(3))) 2.

Proof In order to sample X ~ Wy(V, m) we first sample a matrix ¥ € R™*? in which
every entry is i.i.d normal Gaussian. We then multiply Y by V1/2, s.t. every row in YV1/2
is sampled i.i.d from N (04, V). We then set X = V1/2yTyv1/2,

Now, we invoke a theorem of Davidson and Szarek (2001) (Theorem II.13) that states
that for any t > 1 we have Prlomax(Y) > vm 4+ Vd +t] < e /2 and Prlomm(Y) <
vm—+d—t] < e~t"/2. So we deduce that w.p. > 1 — § it holds that all of the singular

values of Y lie on the interval (M — (\/&—i— \/2111(%)) ,v/m+ (\/&—i— \/2ln(%))>. Next,

we let u; denote the j-th eigenvector of V, corresponding to the j-th eigenvalue o;(V).
Therefore, for any j we have

u; " Xu; = (V2 )YTY(V1/2uj)S(\/THJr(\/g+\/21n(§)>)2||vl/2uj]2
= o;(V)(Vm + <\/&+ \/21n(§)>)2
wTXw; = (Vi — (Vi 2 ) PIV s = o (V) (i = (Va+21n(3) )

20
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and furthermore, for any subspace S we have that

max wTXu < (vin+ (Vs m>>2'< Gt HVI/QW’P)

uesS: ||lul|=1 weS: ||lul|=1
. T 2 2 . 1/2,. 112
Xu > — d 21In(% . \%
B (R ETE)) (ueéf“zn” “ﬂ”)

Thus, to complete the first part of the proof, we invoke the Courant-Fischer Min-Max

Theorem that state that
-

0j(X) = max min u' Xu
(SCRY: dim(S)=j} {u€S: |[ul|=1}
= min max  u' Xu
{SCR?: dim(S)=d—j+1} {u€S: ||u||=1}
Therefore, we can pick S’ = span{u,...u;} and S” = span{u;j, ..., uq} to deduce
0j(X)> min  u'Xu>(Vm-— <\/g+ \/2111(3)))20]-(1/)
ueS:||lul|=1
oi(X) < max uTXu§ m—l—(\/;i—l— 21n2>20'-V
S0 < max (v V2In(3))Poy(v)

As for the second part of the claim, it follows from the fact that aV—X = V1/2 (aI — YTY> vz,

Now, if we denote Y = UXUT as the SVD decomposition of Y, then we have al —
YTY = U(al —¥)UT and all the entries on the diagonal of (al —¥) lie in the range

o — (vVm £ (\/& + ,/21n(%)))2|. As a < m we have that all eigenvalues are upper bounded
by (m — «a) +2y/m (\/& +4/2 ln(%)) and the claim follows. Similarly, for (aV)~! — X! =
V12 (aI — YTY) V=12 all eigenvalues lie in the range o' — (y/m=+ (\/& + \/2111(%)))_2],

which in this case is upper bounded by |a~! — (v/m + (\/& + \/21n(%)))_2]. (We comment
that the bounds on ||V — X|| and on ||(aV)~! — X ~!|| require we use both the upper- and
lower-bounds on the eigenvalues of Y'.) |

The other two useful tools we use are the formula for rank-1 updates of the determinant
and the inverse (the Sherman-Morrison lemma).

Theorem 10 Let A be a (d x d)-invertible matriz and fix any two d-dimensional vectors
w,v s.t. vI A7 u # —1. Then:

det(A+uv') = det(A)(1 + v’ A" u)
A lypT AT
1+vTA lu
Proof Since we have A +uv' = A(I + A~ uv"), we analyze the spectrum of the matriz
I+ A 'uv™. Clearly, for any x L v we have (I + A luv )z =2 +0- A lu=x, sod — 1
of the eigenvalues of I + A" 'uv" are exactly 1. As for the last one, take a unit length vector
z = ﬁv, and we have zT (I + A" luv ")z = 1+ ||lv|| - 2TA7'u = 1 + vT A~ u. Therefore,
det(A+uv') = det(A) det(I + A~ tuvT) = det(A)(1 + v A~ 1u).

(A+uv’)t=A4"1—

21
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As for the Sherman-Morrison formula, we can simply check and see that indeed:
A lypT AT uv'A™! uv' A" luwT AT
1+vTA 1y 1+vTA lu 1+vTA 1y

A+ uv')(A? =T4+uv'A! -
(

1 v A 1y
=I+u-(1- — T AT =T
tu ( 1+vTA4A" 1l 1 +UTA_1u> v

Appendix C. Privacy Theorems

In this section, we provide the formal proofs the our algorithms are differential privacy.
We comment that, because we hope these algorithms will be implemented, we took the
time to analyze the exact constants in our proofs rather than settling for O(:)-notation. In
addition to the three algorithms we provide, we give another theorem about the privacy of an
algorithm that adds Gaussian noise to the inverse of the data, which may be of independent
interest.

C.1. Privacy Proof for Algorithm 1
Theorem 11 Fiz e >0 and § € (0,1). Fix B> 0. Fiz a positive integer r and let w be

such that L4 e
w2 — B2 <1 + ~ ' In(4/0) (2\/27‘ ln(%) + 21n(§)>>

€

Let A be a (n x d)-matriz with d < r and where each row of A has bounded La-norm of
B. Given that omin(A) > w, the algorithm that picks a (r x n)-matriz R whose entries are
iid samples from a mnormal distribution N (0,1) and publishes R - A is (e, §)-differentially
private.

Corollary 12 assuminge < 1 and § < e~ !, if it holds that r > 2111(%) then it suffices to have

w? > 8327”‘12(4/6) for the results of Theorem 11 to hold. Alternatively, given input where its

2

2
least singular value is publicly known to w, we can set r = [(ﬁ) w , if indeed 1T >
Nz
0

21n(%) and satisfy (e, 0)-differential privacy. Therefore, if the rows of A are i.i.d draws from

2
a 0-mean multivariate Gaussian with variance 33, then we may set r as {(n;';;‘—ll“(f()J l =
(3
0

Q(n?).

Proof Fix A and A’ be two neighboring (n x d) matrices, s.t. A — A’ is a rank-1 matrix

of the form E % A4 — A’ = ei(v —v')T. We thus denote M as the matrix with the i-th

row zeroed out, and have MTM = ATA —vv" = A'TA’ — v/'v'T. Recall that we assume
that omin(A), omin(A4’) > w and ||E|| = ||v — v'|| < 2B. We transpose A and R and denote
X =ATRT and X’ = (A")TRT. For each column y; of R it holds that y; T ~ N (0p, Inxn),
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and therefore the j-th column of X is distributed like a random variable from N (O, ATA>.

Furthermore, as the columns of R are independently chosen, so are the columns of X are
independent of one another. Therefore, for any r vectors 1, ..., x, € R? it holds that

PDFx (x4, ..., x;) = H <\/ (27)e det( ATA)) 1exp (—fa:j (ATA)7? )

-1

PDFx/(x1, ..., ;) = H (\/ (27)4 det( A’TA’)) exp( ST(ATANT )
We apply the Matrix Determlnant Lemma, and the Sherman-Morrison Lemma, and deduce:
det(ATA) = det(MTM) (1 + v (MTM) 'v)
det(ATA") = det(MTM) (1+v/T(MTM)"o)
MTM) oo T (MTM)!
ATA—IZ MTM —17(
( ) ( ) 1+oT(MTM)-1
MTM)—I,U/,UIT(MTM)—I
A/TA/ -1 _ MTM -1 (
( ) ( ) 1 + ,U/T(MTM)—l /

Eogether with the inequality ﬁ‘; =1+2z)(1- m) < exp(x — —) for any xz,y # 1 we
ave

PDF)((:EL..., det A/TA/) T T Am—1
I | A'A AT A ;
PDFx/ (1, ..., @r “det(ATA) exp (—32;T((ATA) ™! = (ATA) )a)

NO|—=

_ <1+v (MTM)_l'u)

1+oT (MTM) v exp (=, (ATA) ! = (4T 4) )ay)

. L/ T aml x; T (MTM) T (MTM) 1z,
< HeXp (5(1}, (MM)™ " == 1+ o T(MTM) o )
j=1
+1(_ v (MTM) o ;" (MTM) oo T(MT M) ! ))
1+ 0T (MTM) 1o 1+oT(MTM) 1o
o T(MTM) = (S5 s T) (MTM) ! )
. (1(_ revT(MTM) v +UT(MTM)‘1(Z§1-’ijjT)(MTM)‘1 )
P 1+ o (MTM) v 1+ o (MTM) v

(2)

Denote

r
2 = ,v/T(MTM)fl,v/ o ,v/T(MTM)fl (:‘ ijij) (MTM)fl,v/

23
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we have that
1 (PDFx(Ccl,...,CCT)> < 7“( z1 n —29 (fv/(MTM)*l'U/)Q )
n i

PDFx/(x1,...,x;)) ~— 2\1 4+ o' (MTM)" 1o/ 14+oM™M) v  1+o'(MTM) 1o

.,
< 5 (lal + 22l + o' (M) o)

We now turn to analyze each of the above three terms separately. The easiest to bound
are the terms v(M T M) v and v/ (M T M)~ 1v'. Weyl’s inequality yields that oy, (MTM) >

2

-1
Omin(ATA) — B2, and so we give both terms that bound %232 = (% — 1) . We turn to

bounding |z], |22]-

We continue assuming that i, .., x, were sampled from AT A. If they were sampled
from A’TA’ then the proof is analogous. Denote X as the matrix whose columns are
xi,...,x,.. We have

20 = (MTM) o) (MTM — (1XTX)) (MTM) 1o
= (MTM)10)T (ATA - woT = (1XTX)) (MTM) '
= (MTM) " 0)T(ATA)2 (1 = (ATA)7H2 (AXTX) (AT A)712) (ATA) 2 (MT M) o
— (0(MTM) tw)?

Recall that X is a matrix whose rows are i.i.d samples from the multivariate Gaus-
sian NV (0, ATA>. Therefore, the rows of the matrix X(ATA)~Y2 are i.i.d samples from

N (0, Ixq). In other words, the distribution of X (AT A)~1/2 is the same as a matrix whose
entries are i.i.d samples from N (0,1). We can therefore invoke Lemma 8 and have that w.p.
>1-4/2.

‘2’2’ < (2 21n(4/6) + 2111(4/(5)) H(ATA)1/2<MTM>71IUHQ " (’U(MTM)il'U)Z

Loy 2Oy (T (MTM)TH MM 4 00T )(MTM) o) + (o(MT M) o)?
— (w(MTM) o) (2 /21n(r4/6) n 21n(r4/6)) + (o(MTM) v)?2 (2 21n(r4/6) n 21117"4/(5) n 1)

< (%2 B 1)—1 (2\/@+ 21nsn4/5)> n (%z; B 1)—2 <2 /2ln(r4/§) + 21n(r4/5) +1>

As the bound on |z| is the same as the bound on |z2| we conclude that

PDFX(QZ‘l,--.,mr) r 1 T -1,/
1 < - MM
D<PDFX/($1,...,mr)) ~ 2 (|Zl|+|zz‘+v( ) v)

< (& - 1)_1 (2,/2r In(4/8) + 21n(4/5)> + (% - 1)_2 <21/2r In(4/8) + 21n(4/8) + 3;)

€ +62< 21/2rIn(4/8) + 21n(4/6) LB )
L+ w7 (2¢/2r In(4/8) + 21In(4/6))2 ~ 1671n(4/0)

13
<—(1+—— 2+ =] ) <
_1+1n(i/5)< T (/o) <2+16)> ‘

by plugging in the value of w?. |
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C.2. Privacy Proof for Algorithm 2
Theorem 13 Fiz e € (0,1) and § € (0,2). Fiz B > 0. Let Cy and Cy be such that they

satisfy .
24/C9 €
Ve«
Ci(v/Cy —1)2 — B2

(E.g., C;y = B? and Cy = i—;‘) Let A be a (n x d)-matriz where each row of A has bounded
Lo-norm of B. Let N be a matriz sampled from the d-dimensional Wishart distribution
with v-degrees of freedom using the scale matriz V' (i.e., N ~ Wy(V,v)) for any matriz V
with least singular value omin(V) > C1 (e.g. V.= C1lgxaq) and v > |d +2C31n(4/6)]. Then
outputting X = ATA + N is (e, 8)-differentially private.

We comment that in order to sample such an N, one can sample a matrix N’ € RV*% of i.i.d
normal Gaussians, multiple all entries by B//€ and set N’ = NTN.

Proof Fix A and A’ that are two neighboring datasets that differ on the i-th row, denoted
as v' in A and v'7 in A’. Let M denote A or A’ without the i-th row, i.e. MTM =
ATA—vvT = A'TA' —2'v'T. Therefore, denoting oyin(M) and omin(A) as the least singular
value of M and A resp., we have that o2, (M) < o2, (A) < o2, (M) + B2. Same holds for
the least singular value of M and A’.

Recall that

v—d—1

We argue that Wishart-matrix additive noise is (e, d)-different-ially private, using the explicit
formulation of the PDF. For the time being, we ignore the issue of outputting a matrix X
s.t. either X — ATA, X — A'TA" or X — MM are non-invertible. (Note, if our input matrix
is A, then Pr[X — AT A non invertible] = Pry.yy,(v,) [V non invertible] = 0. However, it
is not a-priori clear why we should also have that Pr[X — A’T A’ non invertible] = 0 and
also have that Pr[X — M "M non invertible] = 0.) Later, we justify why such events can be
ignored. We now bound the appropriate ratios. If we denote the output of the mechanism
as a matrix X, then we compare
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v—d—1
PDFyy,v,)(X —ATA) [ det(X — ATA)\ 2
PDFyyy(v) (X — ATA) ~ \ det(X — ATA)
cexp (— 3 (tr(V X — ATA) — (VX - ATA)))

v—d—1
det(X —MTM —vv") 2
det(X — MTM —v'v'T)
cexp (=3 (Br(VHX = ATA = X 4 ATAT)))

v—d—1
B ( 1—o" (X —=M"M) ) 2

1-vT(X - MTM) v
- exp (—%tr(V‘lv"v’T) + %tr(V‘l'va))
v—d—1
(AB)=tx(BA) [ 1 —v (X — MTM) v 2
B 1—vT(X - MTM) 1o
- exp (—%v’TV_lv’ + %’UTV_l’U)

We can now use the inequality % = (1-2)(1+ %) <exp(—z + ) for any z and any
y # 1 to deduce

PDF X 1
1 ATA+N( ) S*"UT (V_l—(y—d—l)(X—MTM)_l)v
PDF 41 41 v (X) 2
+1.,,/T( vod-1 (X—MTM)l—V1>v’
2 1— 'U’T(X _ MTM)*LU’

Note that we either have X —MTM = X —ATA4+vv" = N+vvT or X—MTM = N+v'v'T.
And so, we continue assuming X was sampled using AT A4, but the case X was sampled from
A'T A’ is symmetric. Further, we only show a bound for the first term of the two above, as
the other term will have the same upper bound.
— - 1 (X—ATA)  loT(X-ATA)!
Note that (X—MTM)™ = (X—AT A+vv") ™! = (X—ATA) 1 -t fod
hence

(vT(X — ATA) 1w)?
14 0T (X —ATA)
v (X —ATA)
14+ vT(X - ATA) v

V(X —M M) lv=0vT(X —ATA) v

B (’U'T(X - ATA)—I,U)2
1+ovT(X —ATA) 1o

’U/T(X _ MTM)_l’U/ — ’U,T(X _ATA)—l,UI
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And so we have:
TV —w-d-1)X -M"M) v

o (V= (—d+ 1)(X = MTM) ) v+ 20T (X - MTM)~!
TV = w=d+1)(X - ATA) ) v+ 20T(X - ATA)!
+(v—d+ 1) (0" (X — ATA) 1v)?
Now, note that (X — ATA) ~ Wy(V,v), and S0 V 2(X — ATAYWVY2 ~ Wy(Igxa, v).

So we invoke Lemma 8 on the term v ( d+1 (X —ATA))~ )
_ —1
= (V-120)7 (I - (V 1/2()5:214114) 1/2) ) (V_1/2U) and infer that w.p. > 1—6/2 we
have the following bound
T (V—l - (y —d—1)(X - MTM)‘1> v
- (\/y d+1— \/2111 4/5) (Vv—d+1 — \/2In(4/6)) (\/u d+1 — \/21H(4/5))4
V12| 2
= - 24/2(v — 1)In(4/6) — 2In(4 2
(Vo it = Vam)? ( V2(v —d +1)In(4/6) — 21n(4/6) + 2 + - 211](;/?)2)
~ 2y2(v—d+1)In(4/6) — 21In(4/5) + 6 (V=122

(Vv—d+1 — \/21n(4/5))?
Analogously, w.p. > 1 — §/2 the following bound holds as well:

T v—d—1 Tam -1 —1) /
X - M M)~ -
Y (1 T (X = M) ooV

P et 1)/ T(X — MTM)~ /)2
1— U’T(X _ MTM)_l /
Lyt i 1)(v'T(X — MTM)"')?
1—vT(X — MTM)~ 1o/
T Tyl 1)y, W d=DET(X — ATA) ")
<w ((u—d—i— DX —ATA) T v + T X - T
- (\/y d+1 — \/2111 4/5)) (Vv—d+1 — \/2In(4/5))*

=o' ((v—d-1)(X - MTM)"!

<o ((v-d+1)(X - MTM)!
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Combining the two upper bounds we get

ln( PDF 47 44 v (X) )
PDFA/TA/+N(X)

L oT(-1 v—d—1 Tam—1
<2 _ X-M"M
<o (Vi- o o T (X = MTI) 1o )
1/T( v—d—1 T -1 1) /
- X - MM~ -
3V (Toorx — a1 ooV
2y2(v —d+1)In(4/3) — 2In(4/8) + 6 ||V 20| + [V 1/20/||?

- (Vv—d+1 — \/2In(4/5))? 2
1
5<<6 B?  22(v—d+1)In(4/d)
N Jmin(V) (\/I/—d—i-l - \/21n(4/6))2
All we now need to do is to plug in the fact that v = |[d + Cy - 2In(4/6)| >d— 1+ Cs -
21n(4/90), and that omin(V) > C1 to deduce

m( PDF 47 44 v (X) > - B* 2-21In(4/68) - /Co - 2B2\/C; <.
PDFyrayn(X)) = C1 (v/Ca-2In(4/8) — /2In(4/0))2 ~ C1(y/Ca —1)2 —

C.3. Privacy Proof for Algorithm 5

While the proof of the Additive Wishart Algorithm is proven in the main body, we now
prove that the version of the Additive Wishart Algorithm that maintains the intercept is
also privacy-preserving.

Variation: Intercept. As we mentioned earlier, it will be useful for us to deal with
the case of the input has a all-1 column (representing the intercept in linear regression).
In this case, the random example we pad the input with will also have 1 in that column.
And so, the matrix which is originally [A;1] with A being our input (n x p)-matrix 2

is padded with random examples turns into , where R is a random (v X p)-

1
R 1
matrix. We then output the 2nd moment matrix of the padded matrix, i.e. the matrix:

ATA+R'™R AT1+R"1

(AT1+RT1)T n+v

is deterministically always n 4 v, and therefore this algorithm reveals the number of entries
in the data. However, we assume n is known in advance and do not consider this a privacy
violation. For simplicity, we analyze solely the case where every entry of R is chosen i.i.d
from A (0,C1). Let P4 be the distribution over outputs we get given that the input is A.
(Since the output is a symmetric matrix, we denote it as a distribution over pairs (X, u)
with X being a (p X p)-matrix and u being a p-dimensional vector.) We argue the following.

. It is evident that the last coordinate in the output matrix

Claim 2 In our setting, we have

|

PDFp, (ATA+ X, AT1 4+ u) o exp (—2”514) ~det(X — %uuT) 2 exp(———5F—)

12. We keep to the convention of defining p as d = p + 1.
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That is, the density function of Pa at (ATA+ X, AT1 4 u) is the product of sampling u
from a Guassian N'(0,Cyv - I,x,) times sampling the matriz (X — %uuT) from a Wishart
distribution Wy(C1Ipxp, v — 1) with (v — 1)-degrees of freedom. I.e.

PDFp, (ATA+ X, A1 +u) = PDF (0,001, ) (%) - PDFyy (1 1wy (X — ZunT)

Proof By definition, PDFp, (AT A+ X, AT1+u) = PDF[RT1 = u|-PDF(RTR= X | R"1 =
u). Each column of R is sampled independently from N(0,C} - I, ), thus each of the p
coordinates of R'1 is sampled i.i.d from N(0,C; -v), hence PDF[RT1 = u] = (27Cy -v)~P/2.

Jul?
exp (— 9.

Let v = %1 be a unit length vector, and denote vs,...,v, a completion of v; into
an orthonormal basis for R”. Denote the (v x v)-matrix they form as V s.t. VVT = I,,,.
’UlTR
Hence RTR = RTVVTR = | RTw...RTv, || 1 | = Zi(RTo)(RTo)T = luuT +
T
v, ' R

o1 (RT;)(RTv;)T. We thus have that given RT1 = w then RTR = X if and only if
o1 (RT0;)(RTv;)T = X — LuuT. The key point is that each row of R is chosen from a
spherical Gaussian, and so its projection onto v; is independent of its projection onto v;
for any i # j. Moreover, since each row of R is sampled i.i.d from N (0, Cy 1, xp,) we have
that each coordinate of RTv; is sampled i.i.d from N(0,C;). Hence, ;o1 (RTv;)(RTv;)T
is the sum of (v — 1) independent p-dimensional outer products of vectors sampled from
N(0,C11pxp). By definition this is the Wishart distribution with (v — 1) degrees of freedom
Wiy (CiIpp, v — 1). m

We can now prove that padding A with v = p + O(In(1/§)/e?) random examples from
N(0, (B?1In(1/6)/€*)I,xp) while keeping the intercept column filled with 1s is still differentially
private.

Theorem 14 Fiz ¢ € (0,1) and § € (0,2). Fizx integers n and p and a scalar B >
0. Let A be a (n x p)-matriz where each row of A has bounded La-norm of B. Set
an integer v > p + 1 + 250In(20/3)/€® and let R denote a Gaussian matriz whose v
rows are sampled from N (0, (B%In(1/6)/€?)I,xp). Then outputting the 2°¢ moment matriz
ATA+R'R A"1+R"1 | . , , :
(AT1 4 RT1)T "ty is (€,0)-differentially private.
Proof Fix A and A’ that are two neighboring datasets that differ on the i-th row, denoted
as v' in A and v'7 in A’. Let M denote A or A’ without the i-th row, i.e. MTM =
ATA—vvT = A'TA' —2'v'T. Therefore, denoting opmin(M) and opmin(A) as the least singular
value of M and A resp., we have that o2, (M) < 02;,(A) < 02, (M) + B2 Same holds
for the least singular value of M and A’. Given that the output of that algorithm is
(MTM + X; M1 4 y) we are upper bounding the ratio
PDFp,(MTM + X; M™1 + y)
PDFp, (MTM + X; MT1 +y)
o PDF/\/(O,BQVIPXP) (y - U) ) PDFWp(G2Ip><p,V—1) (X —vv' — %(y - U)(y - U)T)
PDFu(0,B201,,,) (Y — V') PDFyy o2p, o1y (X — 00T — L(y —v')(y — v)T)
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Standard results from differential privacy through additive Gaussian noise assure that w.p.

PDF —v
> 1—-6/5 we have that ||y|| < By/v(,/p++/21n(20/9)) and as a result N(©,B2v1, ) Y

<
(y—') =
)
exp(e/5), provided B?v > 50B21n(6/6)/€>.
We now note that

PDFN(O,BQVIPXP

X—vv' — Ly —v)(y—v)'

- X — v/v/T + (vlvlT _ 'U’UT)
~Hy -y - v)T+ @ =)y - )+ (y—0) 0 —v) + (v - v)(v - )T
- X _ ’U/'U/T + (’U/’U/T _ U’UT)

Ly =)y =) = o)y — )T~ Ly — ) )T — (o) (v )T
Denoting Ay = (v/v'T —vv') and Ay = L(v' —v)(y —v) T+ L(y —v')(v' —v)T + L(v -
v')(v —v')T. From definition, we have that Ay is a symmetric rank-3 matrix. Moreover,
as ||v]| and ||v’| are upper bounded by B and ||y — v|| and ||y — v'|| are upper bounded

by B\/v(y/p + +/2In(12/5) + 1), it holds that the Frobenius norm of A is upper bounded
by BQ(Zﬂ‘/iH_ Y 2\%12/6)“ + 4). From the definition of v we thus have that [|Aq||p < 3B2.

Hence we can write Ay as the sum of 3 symmetric rank-1 matrices, w;u;" with ||u;| < v/3B.
We now apply Theorem 13, twice: once for a single change in the form of A; (replacing

v with v’) and once for the 3-changes the form As. (Namely, we use the property of group
privacy.) This is why we choose v s.t. v — 1 > p+2501n(20/6)/€? — so that we can upper
PDFyy, (p2r  oon)(X—00T = (y=0)(y—v)")

Py (021, 1) (X =00 T (=) (y=v)T)

thus get an upper bound of e€ overall, w.p. > 1 — 9. |

bound the ratio

by exp(4e/5) w.p. > 1—4§/5. We

C.4. Privacy Proof for Algorithm 3

Theorem 15 Fize >0 and § € (0,1). Fiz B> 0. Let A be a (n x d)-matriz and fix an
integer v > d. Let w be such that

w? = E(l_BZE) <2\/2uln(4/5) + 2111(4/6))

3(4/9)
Then, given that omin(A) > w, the algorithm that samples a matriz from Wy (AT A, v) is
(e, 0)-differentially private.

We comment on the similarity between the bounds of Theorem 11 and Theorem 15. This is
after all quite natural, since the JL-theorem is a way to sample from a Wishart distribution
Wa(ATA,r) ( since every row in the matrix RA is an i.i.d sample from N (O,ATA)).

Clearly, one can sample a matrix from Wy(ATA,r) and invert it, to get a sample from
Wi H(ATA)~! r) and vice-versa. Therefore, we get similar bounds. The only slight difference
lies in the fact that we require in Theorem 15 that v > d, s.t. the matrix we sample is indeed
invertible, whereas we do not require any such lower bound for sampling from Wd(ATA, 7).
Proof As always, we denote A’ as a neighbor of A that differs just on a single row,
which we denote v for A and v’ for A’, and as before, the matrix M is the matrix A
with the i-th row all zeroed out. Therefore, ATA —vvT = A'TA" —v'v'T = MTM. So,
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denoting omin(M) and opmin(A) as the least singular value of M and A resp., we have that
02 (M) < 02, (A) < 02, (M) + B2 Same holds for the least singular value of M and A’.

Recall that PDF,,, 1 474, (X) o det(ATA)3 det(X)™ 2 exp (—3tr((ATA)X D).
So like before, we 1nv0ke the determinant update lemma, the Sherman Morisson lemma and

the inequality 17 1‘” < exp(z — W) and deduce:

PDFyy1(474,) (X) det(ATA)"/2 exp (—Jtr((ATA)X 1))

PDFyy 1 (amars)(X)  det(AT A2 exp (—Ltr((AT4)X 1))

mln(

_ v/2
[ 1+0T(MTM) 1 T R
= <1 T T exp (—2tr((A A-ATANX )

v _ o' T(MTM) ' 1
exp (2 <UT(MTM) lv — T o T (M M) 1o - exp (—2 (tr((’uvT — v X~

IN

o T+ v
L+ T -1 -1 LT v Tt
< exp (211 (V(M M) - X )U rexp ( —5v 1—|—U’T(MTM)_1’U’(M M)

We continue assuming X ~ W;'(ATA,v) (the case X ~ W, (A'TA' v) is symmetric).
By definition, we have that X' ~ W;((ATA)~',v). Hence (ATA)Y/2X~1(ATA)~Y/2 ~
Wa(lixd, V), which implies that the distribution of
(ATA)Y/2X~1(ATA)~1/2 is the same as sampling a (v x d)-matrix of i.i.d A (0,1) samples
and take its cross-product with itself.

We continue using the Sherman-Morrison formula, and derive the bound

v - ’UT T —1,0 2
T (MM = X o =0T (ATA) T - X o - : E vT(j(qu,i)lq);

< (ATA)T20)T - (Vlgeq — (ATA)2XTHATA)?) - (ATA) )

< [[(AT A) 22 (2\/2V1n(4/5) 4 21n(4/5)>

which holds w.p. > 1 —§/2 due to Lemma 8. Similarly, we have

T v Tan—1 —1\ .
— M'M - X
v <1+U’T(MTM)1'U’( ) >’U

v - (,U/T(MTM)—I,U/)Q

1— ,U/T(MTM)—l /

v- (U’T(MTM)_lv/)Z v (,U/T(ATA)—LU)Q

1— 'U’T(MTM)*LU’ 1— fu’T(ATA)*l /
. Al ATA)*LU)2 v - ('U'T(ATA)fl'UP

< _o'T T A1 A A A

=Y (V(A 4) X )v 1 —v'T(MTM)~ v 1 —v'T(ATA) 1o/

< I(ATA) 22 (2,/2y1n(4/5) +21n(4/(5)>

1 1
] T A)~1/24/ T AN—1/2,.112
v [ATA R PIATA 0 (e + T )

— T (V(MTM)—l . X—l) v+

- (V(ATA)*1 - X*l) v+

31

H))
= exp (; (I/ . ’UT(MTM)fl'U . 'UTXl’U)) - exp <_1 < v- vlT(MTM)—_llrl;’/ _ UITXl’U’)>
X

99



OLD TECHNIQUES IN DIFFERENTIALLY PRIVATE LINEAR REGRESSION

Denoting the least singular value of (AT A) as w?, and using the fact that ||v]|, ||[v'|| < B and
crudely upper bounding v'T(MTM) 1v" and v'T(ATA)"1v' by 1 we get

PDF,, 1 (X) 5 ,
W H(ATAp) 1 B ( ) 1 B
< —.9.___ o
ln(PDFWdl(A,TA,V)(X)) <502 5 (2y2vIn(4/0) +2In(4/0) | + 5 - 7 (dv + 4v)

As we have w? = (13726 (2\/21/ In(4/9) + 21n(4/5)) we get that
T 2In(4/9)

PDFW?(!‘”AV) (X) €2 €2 4v
In <e— + <e
POFyy 14 (X) 2In(4/6) = 8vin(4/9)

Appendix D. Utility Theorems

In this section we provide the utility guarantees of the additive Wishart noise algorithm and
the “Analyze Gauss” algorithm. Throughout this section we assume our database D € R"*¢
is in fact composed of D = [X;y] where X € R™*? and y € R" (so we denote p = d — 1).
Clearly, to assume vy is the last column of D simplifies the notation, but y can be any single
column of D and X can be any subset of the other columns of D.

In this section we will repeatedly use the Woodbury formula, which states that for any
invertible A € RP*P and U € RP*F and V € R¥*P of corresponding dimension we have

-1
(A+UV) = A7 = A7 (L + VATU) VA
which implies that for any B € RP*P we have the binomial inverse formula:
(A+B) t=A"1 - A YI,x, - BA ) 'BA! (3)

Our goal is to compare the distance between our predictor to the predictor one gets

—

without noise, i.e. to B = (XTX)"'XTy. Since we release a matrix DT D that approximates

—_—~—

DD, we can decompose it into the p x p matrix XTX and the p-dimensional vector X Ty
and compute 8 = (XTX) 21X Ty. We thus give bounds on

|5-8] =

Our analysis presents utility analysis that depends on the input parameters. This is

in contrast to previous works on DP ERM that give a uniform bound and obtain it via

regularization of the problem. (This is natural, as for X = 0,4, clearly B is ill-defined

unless we regularize the problem.) We begin with the utility of the additive Wishart noise
mechanism.

(XTX) 'XTy — (XTX) 1xTy

Theorem 16 Let W ~ W,1(0?1,k), and denote N € RP*P and n € RP s.t. W =

( T]l\-f,- 7: ) Let X € R™P be a matriz s.t. XX is invertible and let y € R™ and denote

B=(X"X)"'Xy.
— - .
Denote XTX = XTX + N, XTy=XTy4+nand 3=XTX XTy; and also denote C def

C7'min()(-r)() 3 _ 3 L 3 — L . 720-2 \/—
o2 (Vi+ypty/2m(/n) Then HB BH§O+1”5”+(1 C+1> o (xTx) V 2kp - In(dp/v).
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Proof Because 0] is a diagonal matrix, standard results on the Wishart distribution give
that N ~ W, (02 Ipxp, k). We therefore denote R as a (k x p)-matrix of i.i.d samples from a
normal Gaussian A (0, 1), and have N = 0?RTR. The Woodbury formula gives that
XTX4+N)1=XTX) -} XTX)'RTI + ?R(XTX) 'R IR(XTX) !
Denoting Q = o R(XTX)~1/2 we get
= (XTX) = (XTX) 2 QTI + Q1) Q| (XTX) 12
Now, if we denote Q@ = UAVT where Q’s singular values are \i,...,\q, we get QT (I +
QENHIQ=V- d1ag((1+)\2> ) VT =V. d1ag(< 1+1>\2> )-VT. Note that
QTQ S (XTX)_l/zRTR(XTX)_l/Q

and so, due to Lemma 9 we have \? = 0, (QTQ) < ft\mfmtx"f;nu/y )* < C7' wop.
>1—wv/2. Therefore, w.p. > 1 —v/2 we have amaX(QT(I + QQT) 1Q) < C+1 And so we
have that both () (XTX)' = (XTX + N)™' 2 &5(XTX)™! and (i) (XTX + N)™*
o (XX
Next we turn to bound ||n|. One easy bound, given Lemma 9, is to show that w.p.
> 1—r/2 it holds that

In]| < [Weall < [WII -1 < o®(VE + v/ +/2In(4/v))*

Alternatively we can derive the following bound. Each coordinate in n is the result of the
dot-product between the j-th column of R, denoted r; with the d-th column of R, denoted
rq. Each coordinate in R is sampled i.i.d from N (0, 02). Next, we use the fact that for
two independent Gaussians with the same variance X,Y ~ N (0, 02) it holds that XY =

(XZY)Q - (X_QY)Q with (X +Y) and (X —Y)) are two independent'® Gaussians N( ; ;).

And so r;-rq = Z;, — Z;, where Z;,, Z;, ~ ﬁ - X4. Tail bounds for the y2-distribution (see

Claim 1) give that w.p. > 1—v / 2 it holds that each coordinate of m is bounded in absolute

value by < 2 \f%— V2In(4p/v))? — % \f V2In(4p/v))? = 4/2kIn(4p/v), which means
Inll < 20720k - Ta(dp/v).
Combining both bounds, we have that w.p. > 1 — v it holds that
B-B=(XTX) - (XX +N)) Xy - (XTX+N)!

therefore

3 3 < 1 T 1vT 200'2 T -1 kp -1
18 =Bl = 771X X)Xyl + = (X7 X) "y 2kp - In(4p/v)

202
oriIBI+ Gt ooy V2 /)

C’—i—l
|

13. This is where we need to use the fact that X and Y have the same variance. We have ( ; i_§ ) =

< 1 _11 ) ( ‘;/( ) and so the variance of < § J_r )Y/ ) is diagonal iff X and Y have the same variance.

14. We conjecture that the true bound in log(p)-factor smaller, i.e. O(c?y/2kp - In(4/v)).
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Next, we discuss the utility of the “Analyze Gauss” mechanism of Dwork et al. (2014).

Theorem 17 Fiz X € R™P and y € R" s.t. X'X is invertible. Fiz n € (0,1) and
v e (0,1/e). Denote XTX = X"X + N and ﬁ = X Ty + n where each entry of N and
n is sampled i.i.d from N (0,0%). Denote also B=(X"X)"'XTy and B = (XTX)*l)/(:@.
Then, if there exists some constant C' > 1 s.t. we have that omn (X T X) > % -o/plog(1/v),
then w.p. > 1 — v we have HB—BH < |8 + &

)

We comment that this is not precisely the same as the behavior of the “Analyze Gauss’
algorithm. The difference lies in the fact that Analyze Gauss outputs X' X + M where
M is a symmetric matrix whose entries along and above the main diagonal are sampled

i.i.d from a suitable A (0,0?%). However, one can denote M = %(N + NT) for a matrix N

whose entries are i.i.d samples from N (0, 02), and so the same result, up to a factor of v/2,
holds for Analyze Gauss.
Proof Plugging in (3) we get

(XTX) ' XTy =
(Ipp = (XTX) ™ Ly = N(XTX)™)7IN) (XTX) X Ty
t (Lyp = (XTX) ™ Iy — N(XTX) ™) 7IN) (XTX) '
Denoting Z = (XTX) Y (Ixp — N(XTX)™1)7IN, we bound on || Z|, |I — Z|| and ||n| so

that we can derive a bound on (XTX)_l)/(\T?/ - (XTX)_lXTyH.

Standard bounds on a symmetric ensemble of Gaussians (used also in (Dwork et al.,
2014)) give that [|N|| < C-o,/plog(1/v) w.p. > 1 — & for some suitable constant C' > 0.
Hence we have that | N - |[|[(XTX)™!| < 5. Hence, all singular values of N(XTX)™! are
upper bounded in absolute value by 1, and so all singular values of I — N(XTX)™! lie in
the range [1 —n, 1+ 7). This implies that [|Z] < { and || - Z|| < 1+ 1. = ﬁ Next
we note that ||[n||* ~ o? - x2, and so, w.p. > 1 — % it holds that |n| < o(\/p+ /2In(2/v)).

Thus, we get
~ n a4 1 Vo2p+/20%21In(2/v) n o4 n
_ < 1 . < -
8 -8] < T 0Bl + g, - N < 1Bl
|
_ omin(XTX) . .
Corollary 18 Denote p %0 /plog(L/v) " Then, for the same constant C in Theorem 17, if

p > 2C we have
15-8) < %81+
p p

Proof The proof follows from Theorem 17, and the observation that we can flip the role of

XTX and XTX because the Gaussian distribution is symmetric. And so, we just use the

notation p = % |

34



OLD TECHNIQUES IN DIFFERENTIALLY PRIVATE LINEAR REGRESSION

Appendix E. Experiments: Comparison with the “Analyze Gauss”
Baseline

Experimental Comparison between Algorithms. In this section we compare between
the following techniques.

1. Analyze Gauss algorithm: output ATA 4+ N with N a symmetric matrix whose entries
are i.i.d samples from a Gaussian (bright red).

2. Post processing of Analyze Gauss: if the output of Analyze Gauss is not positive definite,
add clyxq to it with ¢ = E[||N||] (dark red).'®

3. The additive Wishart noise algorithm given by Algorithm 2 - with post processing.
Namely, outputting ATA 4+ W — k- V (if this leaves the output positive definite) or ATA +
W — (VE — (Vd+ /2In(4/0)))? - V otherwise (green).

4. The JL-based algorithm, Algorithm 4 (blue).

5. Algorithm 6, which, as we commented in the experiments of Section 5, is analogous to
Algorithm 4 and seems to consistently do better than Algorithm 4 (light blue).

Experiments over synthetic data. First, we compare the algorithms a simple setting
using only a a single regression. We pick p = 20 i.i.d. independent features sampled
from a normal Gaussian, a pick some 3 €g [—1,1]P™! (the last coordinate denotes the
regression’s intercept), and set y as the linear combination of the features and the intercept
(the all-1 column) plus random noise sampled from A (0,0.5). Hence our data had dimension
d=p+2 =22 We vary n to take any of the values in {2!4 = 4,096,215 216 . 225 =
33,554,432}, We also vary € to take any of the values {0.05,0.1,0.15,0.2,0.25,0.5}, and
fixed!® § = e719) and use the ly-bound of B = v/2.5d. (As preprocessing, each datapoint
whose length is > B is shrunk to have length B.) For each estimator we experimented with,
we run it ¢ = 15 times, and report the mean and standard variation of the 15 experiments.
In all experiments we measure the lo-distance between the outputted estimator of each
algorithm to the true B we used to generate the data. After all, the algorithms we give
are aimed at learning the @ that generated the given samples, and so they should return
an estimator close to the true 3. We coded all experiments R and ran the experiments on
standard laptop.

In this case the bottom line is fairly clear: once n is sufficiently large, the Analyze Gauss
baseline outperforms all other algorithms. We plotted the relative distance of the private
regressor to the non-private regressor and the results for the case of € = 0.5 are presented in
Figure 2. (The results for different values of € are similar.)

We also compare the performances of all algorithms where there are multiple regressions of
interest (and so the data has multiple small singular values). Here is it far more complicated
to declare “a clear winner.” In this experimental setting the data A is composed of 30
features: the first p = 20 columns are independent of one another (sampled i.i.d from a
normal Gaussian); the latter 10 columns are the result of some linear combination of the

15. We have experimented extensively with multiple ways to project the output of the Analyze Gauss algorithm
onto the manifold of PSD matrices; including zeroing or setting to 1 all negative eigenvalues (which is the
equivalent in this case to the general post-processing technique of Williams and McSherry (2010)), or
setting different values for c. This other techniques did not seem to do better than technique 2 above. In
fact, their utility was just as bad as the standard Analyze Gauss algorithm (with no post-processing).

16. We are aware that it is a good standard practice to set § < % since otherwise, sampling from the data is
(€, 0)-differentially private. However, as we vary n drastically, we aim to keep all other parameters equal.
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Distance true regressor to private regressor (normalized)
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Figure 2: Single-Regression experiment on synthetic data (¢ = 0.5)

first p ones. And so A = [X;y1,...,y10] where for every i we have y; = X3; + e; where
each coordinate of e; is sampled i.i.d from N (0,0.25). We fix the privacy-loss at € = 0.5, but
we vary the number of y-features used in our regression. Specifically, we look at the linear
regression problem where the label is some y;,, and the features of the problem are the first
p columns (plus an addition intercept column) plus some m additional y-columns. (I.e.:
{z1,...2p} U{1} U {y1,...,ym} where the latter m columns are disjoint of y;,.) A good
approximation of B should therefore return some B which is 0 (or roughly 0) on the latter
m coordinates. This corresponds to what we believe to be a high-level task a data-analyst
might want to perform: finding out which features are relevant (or irrelevant) for regression.

The results in this case are far less conclusive and are given in Figure 3. When m = 0, we
are back to the case of a single regression (with no redundant features) and Analyze Gauss
out-performs all other algorithms once n is large enough (same results as in Figure2). Yet, it
is enough to set m = 1 to get very different results, where Analyze Gauss does fairly poorly.
Still, post-processing Analyze Gauss still does fairly as well as the other three techniques,
given in this paper.

Experiments over Real Data. The Data: We ran the 5 algorithms over diabetes data
collected over ten years (1999-2008) taken from the UCI repository (Strack et al., 2014). We
truncated the data to 9 attributes: sex (binary), age (in buckets of 10 years), time in hospital
(numeric, in days), number lab procedures (numeric, 0-100), number procedures (numeric,
0-20), number medications (numeric, 0-100), and 3 different diagnoses (numeric, 0-1000),
and a 10" column of all-1 (intercept). Omitting any entry with missing or non-numeric
values on these nine attributes we were left with IV = 91842 entries.

The experiments: We shuffled the entries randomly and used different size prefixes of
the random dataset. We set € = 0.1 and § = e~ 0. We also linearly converted each attribute
independently to reside in the range [—1,1] to set our row-wise bound as 1/10, before running
our algorithms (and re-converted each attribute to its original range after the execution
of each algorithm). We tried to predict the 3¢ diagnosis as a linear function of the other
attributes, in three different settings: (i) using all 9 attributes; (ii) omitting the first two
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Figure 3: (best seen in color) The results of running our algorithm on synthetic data
composed of multiple linear regressions. We use m to denote the number of additional
columns that are linearly dependent of the first p = 20 columns.

diagnoses from the input and using only non-diagnoses attributes (after all, it is reasonable to
conjecture one would want to estimate the value of the diagnosis based on other attributes);
(iii) running the algorithm on the entire data, but omitting the first two diagnoses from the
output so that the regressor must assign zero-value to the two other diagnoses. We believe
setting (iii) captures the benefit of outputting the 2"9-moment matrix rather than a private
linear-regression algorithm: we can choose the features for the problem by ourselves and not
be constraint by a curator’s choice of features. Denoting 3 as the predictor with all 91842
entries and 5 as the predictor returned by a differentially private algorithm, we measured

the performance of the algorithm by max{ Hﬁﬁ ﬂf I 1}. We ran each algorithm 100 times.
Results: Results appear in Figure 4, where we contrast our experiments in settings (i),
(ii) and (iii). Like before, comparing settings (i) and (ii) (Figures 4a and 4b resp.) we
observe the same phenomena as in the synthetic data: if the data’s feature are not correlated,
Analyze Gauss produces the best results; whereas if there are correlations in the data, it
under performs in comparison to the Additive Wishart noise algorithm. More strikingly is
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Figure 4: (best seen in color) Results for Our Experiment on Real Data

the comparison between settings (ii) and (iii) — in both setting we study the exact same
regression problem, only in setting (iii) the algorithms also output correlations with two
additional unused features. Indeed, in setting (ii) (Figure 4b) there’s little difference between
Analyze Gauss and the Additive Wishart algorithm.

In contrast, in setting (iii) (Figure 4c) the input matrix least singular value is smaller,
and the additive Gaussian noise tends to output a non-PSD even for fairly large values of
n. E.g., even for n = 80000 we have that Analyze Gauss has non-negligible probability to
output a non-PSD, which means we have to post-process the output — hence the difference
between standard Analyze Gauss (bright red) and post-processing Analyze Gauss (dark
red). It is thus no surprise that in setting (iii) (and in setting (ii) as well), Additive Wishart
outperforms the Analyze Gauss algorithm. Note that for various values of n both JL
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Algorithm (blue) and the Inverse-Wishart Algorithm (light-blue) exhibit roughly the same
performance. The reason is that their estimation the least singular value of the data remains
fairly small for all different values of n. As a result, they run using roughly the same
lo-penalty term regardless of the data size. Also, these algorithms tend to do slightly worse
than the additive noise algorithm because they are forced to spend some of the privacy
budget on privately estimating the least singular value, thus only use a budget of 0.75¢ for
outputting the approximated 2"d-moment matrix itself.
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