
Proceedings of Machine Learning Research vol 98:1–27, 2019 30th International Conference on Algorithmic Learning Theory

Minimax Learning of Ergodic Markov Chains

Geoffrey Wolfer GEOFFREY@POST.BGU.AC.IL
Computer Science Department
Ben-Gurion University of the Negev
Beer Sheva, Israel

Aryeh Kontorovich KARYEH@CS.BGU.AC.IL

Computer Science Department
Ben-Gurion University of the Negev
Beer Sheva, Israel
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Abstract
We compute the finite-sample minimax (modulo logarithmic factors) sample complexity of learning
the parameters of a finite Markov chain from a single long sequence of states. Our error metric is
a natural variant of total variation. The sample complexity necessarily depends on the spectral gap
and minimal stationary probability of the unknown chain, for which there are known finite-sample
estimators with fully empirical confidence intervals. To our knowledge, this is the first PAC-type
result with nearly matching (up to logarithmic factors) upper and lower bounds for learning, in any
metric, in the context of Markov chains.
Keywords: ergodic Markov chain, learning, minimax

1. Introduction

Approximately recovering the parameters of a discrete distribution is a classical problem in com-
puter science and statistics (see, e.g., Han et al. (2015); Kamath et al. (2015); Orlitsky and Suresh
(2015) and the references therein). Total variation (TV) is a natural and well-motivated choice of
approximation metric (Devroye and Lugosi, 2001), and the metric we use throughout the paper will
be derived from TV (but see Waggoner (2015) for results on other `p norms). The minimax sample
complexity for obtaining an ε-approximation to the unknown distribution in TV is well-known to
be Θ(d/ε2), where d is the support size (see, e.g., Anthony and Bartlett (1999)).

This paper deals with learning the transition probability parameters of a finite Markov chain in
the minimax setting. The Markov case is much less well-understood than the iid one. The main
additional complexity introduced by the Markov case on top of the iid one is that not only the state
space size d and the precision parameter ε, but also the chain’s mixing properties must be taken into
account.

Our contribution. Up to logarithmic factors, we compute (apparently the first, in any metric)
finite sample PAC-type minimax sample complexity for the learning problem in the Markovian
setting, which seeks to recover, from a single long run of an unknown Markov chain, the values of
its transition matrix up to a tolerance of ε in a certain natural TV-based metric |||·||| we define below.
We obtain upper and lower bounds on the sample complexity (sequence length) in terms of ε, the
number of states, the stationary distribution, and the spectral gap of the Markov chain.

c© 2019 G. Wolfer & A. Kontorovich.
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2. Main results

Our definitions and notation are mostly standard, and are given in Section 3. Since the focus of this
paper is on statistical rather than computational complexity, we defer the (straightforward) analysis
of the runtime of our learner to the Appendix, Section A.

2.1. Minimax learning results

Theorem 1 (Learning sample complexity upper bound) There exists an (ε, δ)-learner L (pro-
vided in Algorithm 1), which, for all 0 < ε < 2, 0 < δ < 1, satisfies the following. If L receives
as input a sequence X = (X1, . . . , Xm) of length at least mUB drawn according to an unknown
d-state Markov chain (M ,µ), then it outputs M̂ = L(d,X) such that∣∣∣∣∣∣∣∣∣M − M̂

∣∣∣∣∣∣∣∣∣ < ε

holds with probability at least 1− δ. The sample complexity is upper-bounded by

mUB := c ·max

{
1

γpsπ?
log

(
d
√

Πµ

δ

)
,
d

ε2π?
log

(
d

δ

)}
= Õ

(
max

{
d

ε2π?
,

1

γpsπ?

})
,

where c is a universal constant, γps is the pseudo-spectral gap (3.4) ofM , π? the minimum station-
ary probability (3.1) ofM , and Πµ ≤ 1/π? is defined in (3.2).

The proof shows that for reversibleM , the bound also holds with the spectral gap (3.3) in place
of the pseudo-spectral gap.

Theorem 2 (Learning sample complexity lower bound) For every 0 < ε < 1/32, 0 < γps <
1/8, and d = 6k, k ≥ 2, there exists a d-state Markov chain M with pseudo-spectral gap γps
and stationary distribution π such that every (ε, 1/10)-learner must require in the worst case a
sequenceX = (X1, . . . , Xm) drawn from the unknownM of length at least

mLB := Ω

(
max

{
d

ε2π?
,

log d

γpsπ?

})
,

where γps, π? are as in Theorem 1.

The proof of Theorem 2 actually yields a bit more than claimed in the statement. For any
π? ∈ (0, 1/d], a Markov chain M can be constructed that achieves the d

ε2π?
component of the

bound. Additionally, the 1
γpsπ?

component is achievable by a class of reversible Markov chains with
spectral gap γ = Θ(γps), and uniform stationary distribution.

Although the sample complexity mUB depends on the pseudo-spectral gap γps and minimal
stationary probability π? of the unknown chain, these can be efficiently estimated with finite-sample
data-dependent confidence intervals from a single trajectory both in the reversible (Hsu et al., 2017),
and even in the non-reversible case (Wolfer and Kontorovich, 2019). The form of the lower bound
mLB indicates that in some regimes, estimating the pseudo-spectral gap up to constant multiplicative
error, which requires Ω̃

(
1

γpsπ?

)
, is as difficult as learning the entire transition matrix (for our choice
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of metric |||·|||). We stress that our learner only requires ergodicity (and not, say, reversibility) to
work.

Our results also indicate that the transition matrix may be estimated to precision ε =
√
γpsd

with sample complexity Õ
(

1
γpsπ?

)
, which is already relevant for slowly mixing Markov chains. For

this level of precision in the reversible case, in light of Hsu et al. (2017), one also obtains estimates
on γ and π? with no increase in sample complexity.

Finally, even though the upper bound formally depends on the unknown (and, in our setting,
not learnable) initial distribution µ, we note that (i) this dependence is logarithmic and (ii) an upper
bound on Πµ in terms of the learnable quantity π? is available.

2.2. Overview of techniques

The upper bound for learning in Theorem 1 is achieved by the mildly smoothed maximum-likelihood
estimator given in Algorithm 1. If the stationary distribution is bounded away from 0, the chain will
visit each state a constant fraction of the total sequence length. Exponential concentration (con-
trolled by the spectral gap) provides high-probability confidence intervals about the expectations. A
technical complication is that the empirical distribution of the transitions out of a state i, conditional
on the number of visits Ni to that state, is not binomial but actually rather complicated — this is
due to the fact that the sequence length is fixed and so a large value of Ni “crowds out” other ob-
servations. We overcome this via a matrix version of Freedman’s inequality. The factor Πµ in the
bounds quantifies the price one pays for not assuming (as we do not) stationarity of the unknown
Markov chain.

Our chief technical contribution is in establishing the sample complexity lower bounds for
the Markov chain learning problem. We do this by constructing two different independent lower
bounds.

The lower bound in Ω̃
(

1
γpsπ?

)
is derived successively by a covering argument and a classical

reduction scheme to a collection of testing problems using a class of Markov chains we construct,
with a carefully controlled spectral gap.1 The latter can be estimated via Cheeger’s inequality,
which gives sharp upper bounds but suboptimal lower bounds (Lemma 11). To get the correct order
of magnitude, we use a contraction-based argument. The Dobrushin contraction coefficient κ(M),
defined in (3.6), is in general a much cruder indicator of the mixing rate than the spectral gap γ,
defined in (3.3). Indeed, 1− γ ≤ κ holds for all reversible M (Brémaud, 1999, pp. 237-238), and
for some ergodic M , we have κ(M) = 1 (in which case it yields no information, since the latter
holds for non-ergodic M as well). This is in fact the case for the families of Markov chains we
construct in the course of proving Theorem 2. Fortunately, in both cases, even though κ(M) = 1,
it turns out that κ(M2) < 1, and coupled with the contraction property (3.7), our bound on κ(M2)
actually yields an optimal estimate of γps. Although the calculation of κ(M2) in Lemma 9 is
computationally intensive, the contraction coefficient is, in general, more amenable to analysis than
the eigenvalues directly, and hence this technique may be of independent interest.

The lower bound in Ω
(

d
ε2π?

)
arises from the idea that learning the whole transition is at least

as hard as learning the conditional distribution of one of its states. From here, we design a class
of matrices where one state is both hard to reach and difficult to learn, by constructing mixture of

1. The family of chains used in the lower bound of Hsu et al. (2017) does not suffice for our purposes; a considerably
richer family is needed (see Remark 5).
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indistinguishable distributions for that particular state, and indexed by a large subset of the binary
hypercube. We express the statistical distance between words of length m distributed according
to different matrices of this class in terms of π? and the KL divergence between the conditional
distributions of the hard-to-reach state, by taking advantage of the structure of the class, and invoke
an argument from Tsybakov to conclude ours.

2.3. Related work

Our Markov chain learning setup is a natural extension of the PAC distribution learning model of
Kearns et al. (1994). Despite the plethora of literature on estimating Markov transition matrices
(see, e.g., Billingsley (1961); Craig and Sendi (2002); Welton and Ades (2005)) we were not able
to locate any rigorous finite-sample PAC-type results.

The minimax problem has recently received some attention, and Hao et al. (2018) have, in
parallel to us, shown the first minimax learning bounds, in expectation, for the problem of learn-
ing the transition matrix M of a Markov chain under a certain class of divergences. The authors
consider the case where mini,jM(i, j) ≥ α > 0, essentially showing that for some family of

smooth f -divergences, the expected risk is Θ
(
df ′′(1)
mπ?

)
. The metric used in this paper is based on

TV, which corresponds to the f -divergence induced by f(t) = 1
2 |t− 1|, which is not differentiable

at t = 1. The results of Hao et al. and the present paper are complementary and not directly com-
parable. We do note that (i) their guarantees are in expectation rather than with high-confidence,
(ii) our TV-based metric is not covered by their smooth f -divergence family, and most important
(iii) their notion of mixing is related to contraction as opposed to the spectral gap. In particular the
α-minorization assumption implies (but is not implied by) a bound of κ ≤ 1−dα on the Dobrushin
contraction coefficient (defined in (3.6); see Kontorovich (2007, Lemma 2.2.2) for the latter claim).
Thus, the family of α-minorized Markov chains is strictly contained in the family of contracting
chains, which in turn is a strict subset of the ergodic chains we consider.

3. Definitions and notation

We define [d] := {1, . . . , d} and use m to denote the size of the sample received by the Markov
learner. The simplex of all distributions over [d] will be denoted by ∆d, and the collection of all
d × d row-stochastic matrices by Md. For µ ∈ ∆d, we will write either µ(i) or µi, as dictated
by convenience. All vectors are rows unless indicated otherwise. We assume familiarity with basic
Markov chain concepts (see, e.g., Kemeny and Snell (1976); Levin et al. (2009)). A Markov chain
(M ,µ) on d states is specified by an initial distribution µ ∈ ∆d and a transition matrix M ∈ Md

in the usual way. Namely, by (X1, . . . , Xm) ∼ (M ,µ), we mean that

P ((X1, . . . , Xm) = (x1, . . . , xm)) = µ(x1)

m−1∏
t=1

M(xt, xt+1).

We write PM ,µ (·) to denote probabilities over sequences induced by the Markov chain (M ,µ),
and omit the subscript when it is clear from context.

The Markov chain (M ,µ) is stationary if µ = π for π = πM , and ergodic if Mk > 0
entrywise for some k ≥ 1. If M is ergodic, it has a unique stationary distribution π and moreover

4



LEARNING MARKOV CHAINS

π? > 0, where

π? = min
i∈[d]

π(i). (3.1)

Unless noted otherwise, π is assumed to be the stationary distribution of the Markov chain in con-
text. To any Markov chain (M ,µ), we associate

Πµ :=
∑
i∈[d]

µ(i)2/π(i), (3.2)

which is always Πµ ≤ 1/π?.
A reversible M ∈ Md satisfies detailed balance for some distribution µ: for all i, j ∈ [d],

µ(i)M(i, j) = µ(j)M(j, i) — in which case µ is necessarily the unique stationary distribution.
The eigenvalues of a reversibleM lie in (−1, 1], and these may be ordered (counting multiplicities):
1 = λ1 ≥ λ2 ≥ . . . ≥ λd. The spectral gap is

γ = γ(M) = 1− λ2(M). (3.3)

Paulin (2015) defines the pseudo-spectral gap by

γps := max
k≥1

{
γ((M?)kMk)

k

}
, (3.4)

where M? is the time reversal of M , given by M?(i, j) := π(j)M(j, i)/π(i); the expression
M?M is called the multiplicative reversiblization ofM .

We use the standard `1 norm ‖z‖ =
∑

i∈[d] |zi|, which, in the context of distributions (and up to
a convention-dependent factor of 2) corresponds to the total variation norm. For A ∈ Rd×d, define

|||A||| := max
i∈[d]
‖A(i, ·)‖1 = max

i∈[d]

∑
j∈[d]

|A(i, j)| (3.5)

(we note, but do not further exploit, that |||·||| corresponds to the `∞ → `∞ operator norm (Horn and
Johnson, 1985)). For anyM ∈Md, define its Dobrushin contraction coefficient

κ(M) =
1

2
max
i,j∈[d]

‖M(i, ·)−M(j, ·)‖1 ; (3.6)

this quantity is also associated with Döblin’s name. The term “contraction” refers to the property∥∥(µ− µ′)M
∥∥

1
≤ κ(M)

∥∥µ− µ′∥∥
1
, µ,µ′ ∈ ∆d, (3.7)

which was observed by Markov (1906, §5).
Finally, we use standard O(·), Ω(·) and Θ(·) order-of-magnitude notation, as well as their tilde

variants Õ(·), Ω̃(·), Θ̃(·) where lower-order log factors are suppressed.

Definition 3 An (ε, δ)-learner L for Markov chains with sample complexity functionm0(·) is an al-
gorithm that takes as inputX = (X1, . . . , Xm) drawn from some unknown Markov chain (M ,µ),
and outputs M̂ = L(d,X) such that m ≥ m0(ε, δ,M ,µ) ⇒

∣∣∣∣∣∣∣∣∣M − M̂
∣∣∣∣∣∣∣∣∣ < ε holds with

probability at least 1− δ.

The probability is over the draw ofX and any internal randomness of the learner. Note that by The-
orem 2, the learner’s sample complexity must necessarily depend on the properties of the unknown
Markov chain.
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4. Proofs

Proof [of Theorem 1] We proceed to analyze Theorem 1, and in particular, the random variable

M̂(i, j) =
Nij

Ni
it constructs, where

Ni = |{t ∈ [m− 1] : Xt = i}| , Nij = |{t ∈ [m− 1] : Xt = i,Xt+1 = j}| .

To do so, we make use of an adaptation of Freedman’s inequality (Freedman, 1975) to random ma-
trices (Tropp et al., 2011), which has been reported for convenience in the appendix as Theorem 12.
Define the row vector sequence Y for a fixed i by

Y 0 = 0,Y t =
1√
2

(
1 [Xt−1 = i] (1 [Xt = j]−M(i, j))

)
j∈[d]

,

and notice that
∑m

t=1 Y t = 1√
2

(Ni1 −NiM(i, 1), . . . , Nid −NiM(i, d)). We also have from
the Markov property that E

M ,µ
[Y t |Y t−1] = 0, so that Y t defines a vector-valued martingale

difference, and immediately,

Y tY
ᵀ
t = ‖Y t‖22 =

d∑
j=1

(
1√
2
1 [Xt−1 = i] (1 [Xt = j]−M(i, j))

)2

=
1

2
1 [Xt−1 = i]

d∑
j=1

1 [Xt = j] +M(i, j)2 − 2 · 1 [Xt = j]M(i, j)

=
1

2
1 [Xt−1 = i]

(
1 + ‖M(i, ·)‖22 − 2M(i,Xt)

)
≤ 1 [Xt−1 = i] ,

(4.1)

so that W col,m :=
∑m

t=1 E [Y tY
ᵀ
t | Ft−1] ≤

∑m
t=1 1 [Xt−1 = i] = Ni, and ‖W col,m‖2 ≤ Ni as

W col,m is a real valued random variable. Construct now the d× d matrix Y ᵀ
tY t,

Y ᵀ
tY t =

1 [Xt−1 = i]

2



Zt,i,1,1 Zt,i,1,2 · · · Zt,i,1,d
Zt,i,2,1 Zt,i,2,2 · · · Zt,i,2,d

...
...

...
...

... Zt,i,j,k
...

...
...

...
...

...
Zt,i,d,1 Zt,i,d,2 · · · Zt,i,d,d


, (4.2)

with Zt,i,j,k = (1 [Xt = j] −M(i, j))(1 [Xt = k] −M(i, k)). Computing the row sums and
column sums of this matrix in absolute value,

d∑
k=1

|Zt,i,j,k| = |1 [Xt = j]−M(i, j)|
d∑

k=1

|1 [Xt = k]−M(i, k)| ≤
d∑

k=1

1 [Xt = k] +

d∑
k=1

M(i, k) = 2

(4.3)
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and similarly,
∑d

j=1 |Zt,i,j,k| ≤ 2. From Hölder’s inequality, ‖Y ᵀ
tY t‖2 ≤

√
‖Y ᵀ

tY t‖1 · ‖Y
ᵀ
tY t‖∞ ≤

1 [Xt−1 = i], and from the sub-additivity of the norm and Jensen’s inequality ‖W row,m‖2 :=∥∥∥∑m
t=1 E [Y ᵀ

tY t | Ft−1]
∥∥∥

2
≤
∑m

t=1 E
[
‖Y ᵀ

tY t‖2 | Ft−1

]
, it follows that

‖W row,m‖2 ≤
m∑
t=1

E

[√
1 [Xt−1 = i] · 2

2
· 1 [Xt−1 = i] · 2

2
| Ft−1

]
≤ Ni.

Now decomposing the error probability of the learner, while choosing an arbitrary value ni ∈ N for
the desired number of visits to each state,

P
M ,µ

(∣∣∣∣∣∣∣∣∣M − M̂
∣∣∣∣∣∣∣∣∣ > ε

)
≤

d∑
i=1

P
M ,µ

(∥∥∥M̂(i, ·)−M(i, ·)
∥∥∥

1
> ε and Ni ∈ [ni, 3ni]

)
+ P
M ,µ

({∃i ∈ [d] : Ni /∈ [ni, 3ni]}) .
(4.4)

Since
∥∥∥M̂(i, ·)−M(i, ·)

∥∥∥
1
> ε =⇒

∥∥∥M̂(i, ·)−M(i, ·)
∥∥∥

2
> ε√

d
, we have

P
M ,µ

(∥∥∥M̂(i, ·)−M(i, ·)
∥∥∥

1
> ε and Ni ∈ [ni, 3ni]

)
≤ P
M ,µ

(∥∥∥M̂(i, ·)−M(i, ·)
∥∥∥

2
>

ε√
d

and Ni ∈ [ni, 3ni]

)
= P
M ,µ

(√
2 ‖
∑m

t=1 Y t‖2
Ni

>
ε√
d

and Ni ∈ [ni, 3ni]

)

≤ P
M ,µ

(∥∥∥∥∥
m∑
t=1

Y t

∥∥∥∥∥
2

>
ε√
2d
ni and Ni ≤ 3ni

)

≤ P
M ,µ

(∥∥∥∥∥
m∑
t=1

Y t

∥∥∥∥∥
2

>
ε√
2d
ni and max

{
‖W row,m‖2 , ‖W col,m‖2

}
≤ 3ni

)

≤ (d+ 1) · exp

(
− ε2n2

i

2d(3ni + εni/(3
√

2d))

)
(Theorem 12)

≤ 2d · exp

(
−ε

2ni
8d

)
,

(4.5)

and setting ni = mπi
2 , it follows that for all i ∈ [d], P

M ,µ

(∥∥∥M̂(i, ·)−M(i, ·)
∥∥∥

1
> ε and Ni ∈ [ni, 3ni]

)
≤

2d · exp
(
− ε2mπ?

16d

)
, and finally, from Lemma 6 (stated and proven in the appendix), which follows

easily from Paulin (2015), it is possible to control the number of visits to states, such that for m

larger than 16d
ε2π?

ln
(

4d2

δ

)
, and m ≥ 112

γpsπ?
log

(
2d
√

Πµ

δ

)
we have that P

M ,µ

(∣∣∣∣∣∣∣∣∣M − M̂
∣∣∣∣∣∣∣∣∣ > ε

)
≤

δ, and the upper bound is proven.
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Remark 4 Note that one can derive an upper bound Õ
(

max{1/ε2,1/γps}
π?

)
for the problem with

respect to the max norm
∥∥∥M − M̂

∥∥∥
MAX

= max(i,j)∈[d]2

∣∣∣M(i, j)− M̂(i, j)
∣∣∣, by studying the

entry-wise martingales and invoking the scalar version of Freedman’s inequality (Freedman, 1975).
Similarly, since for p ∈ [1, 2), it is the case that {‖x‖2 > ε} =⇒

{
‖x‖p > d1/p−1/2 · ε

}
, we can

derive the more general upper bound Õ
(

max{d2/p−1/ε2,1/γps}
π?

)
for the problem with respect to the

norm
∣∣∣∣∣∣∣∣∣M − M̂

∣∣∣∣∣∣∣∣∣
p

= maxi∈[d]

∥∥∥M(i, ·)− M̂(i, ·)
∥∥∥
p
.

Proof [of Theorem 2 (part 1): learning lower bound Ω
(

d
ε2π?

)
]

Let 0 < ε < 1/32, andMd,γps,π? be the collection of all d-state Markov chains whose stationary
distribution is minorized by π? and whose pseudo-spectral gap is at least γps. The quantity we wish
to lower bound is the minimax risk for the learning problem :

Rm = inf
M̂

sup
M

PM

(∣∣∣∣∣∣∣∣∣M − M̂
∣∣∣∣∣∣∣∣∣ > ε

)
, (4.6)

where the inf is taken over all learners and the sup overMd,γps,π? . Suppose for simplicity of the
analysis that we consider Markov chains of d + 1 states instead of d, and that d is even. A slight
modification of the proofs covers the odd case. We define the following class of Markov chains
parametrized by a given distribution p ∈ ∆d+1, where the conditional distribution defined at each
state of the chain is always p with pd+1 = p? and pk = 1−p?

d for k ∈ [d], with p? < 1
d+2 , except for

state d+ 1, where it is only required that it has a loop of probability p? to itself.

Gp =

Mη =


p1 . . . pd p?
...

...
...

...
p1 . . . pd p?
η1 . . . ηd p?

 : η = (η1, . . . , ηd, p?) ∈ ∆d+1

 . (4.7)

Remark: a family of Markov chains very similar to Gp was independently considered by Hao et al.
(2018) for proving their lower bound.
It is easy to see that the stationary distribution π of an element of Gp indexed by η is

πk =
(1− p?)2

d
+ ηkp?, for k ∈ [d], πd+1 = p? (4.8)

Form ≥ 4, η = (η1, . . . , ηd, p?) ∈ ∆d+1 and (X1, . . . , Xm) ∼ (Mη,p), setNi = |{t ∈ [m] : Xt = i}|
the number of visits to the ith state. Focusing on the (d+ 1)th state, since ∀i ∈ [d+ 1],Mη(i, d+
1) = p?, it is immediate that Nd+1 ∼ Binomial(m, p?). Introduce the subset of Markov chains in
Gp such that

η(σ) =

(
1− p? + 16σ1ε

d
,
1− p? − 16σ1ε

d
, . . . ,

1− p? + 16σ d
2
ε

d
,
1− p? − 16σ d

2
ε

d
, p?

)
,

where σ =
(
σ1, . . . , σ d

2

)
∈ {−1, 1}

d
2 . Also defineM0 with η0 =

(
1−p?
d , . . . , 1−p?

d , p?

)
. A direct

computation yields that for σ 6= σ′, ‖Mσ −Mσ′‖1 = 32ε
d dH(σ,σ′), where dH is the Hamming

8
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distance. From the Varshamov-Gilbert lemma, we know that ∃Σ ⊂ {−1, 1}d/2, |Σ| ≥ 2d/16, such
that ∀(σ,σ′) ∈ Σ with σ 6= σ′, dH(σ,σ′) ≥ d

16 . Restricting our problem to this set Σ, and finally
noticing that ∀σ ∈ Σ, ‖Mσ −M0‖1 = 16ε > 2ε, from Tsybakov’s method (Tsybakov, 2009)
applied to our problem,

Rm ≥
1

2

1−
4

2
d
16

∑
σ∈ΣDKL (Mm

σ ||Mm
0 )

log 2
d
16

 , (4.9)

where we wrote DKL (Mm
σ ||Mm

0 ) to be the KL divergence between the two distributions of words
of length m from each of the Markov chains. Leveraging a tensorization property of the KL di-
vergence, and as by construction, the only discrepancy occurs when visiting the (d + 1)th state,
Lemma 7 shows that

DKL (Mm
σ ||Mm

0 ) ≤ p?mDKL (η(σ)||η0) , (4.10)

following up with a straightforward computation,

DKL (η(σ)||η0) =
d

2

(
1− p? + 16ε

d

)
ln

(
1−p?+16ε

d
1−p?
d

)
+
d

2

(
1− p? − 16ε

d

)
ln

(
1−p?−16ε

d
1−p?
d

)
≤ 128ε2,

(4.11)

and finally combining (4.6), (4.10) and (4.11), we getRm ≥ 1
2

(
1−

512ε2mp?
d
16 ln 2

)
. Further noticing

that for the considered range of ε and for p? < 1
d+2 , it is always the case that π? = p?, so that for

m ≤ d(1−2δ) ln 2
8192ε2π?

,Rm ≥ δ.

Proof [of Theorem 2 (part 2): learning lower bound Ω
(

1
γpsπ?

)
]

We treat 0 < ε ≤ 1/8 and d = 6k, k ≥ 2 as fixed. For η ∈ (0, 1/48) and τ ∈ {0, 1}d/3, define
the block matrix

Mη,τ =

(
Cη Rτ
Rᵀ
τ Lτ

)
,

where Cη ∈ Rd/3×d/3, Lτ ∈ R2d/3×2d/3, and Rτ ∈ Rd/3×2d/3 are given by

Lτ =
1

8
diag

(
7− 4τ1ε, 7 + 4τ1ε, . . . , 7− 4τd/3ε, 7 + 4τd/3ε

)
,

Cη =


3
4 − η

η
d/3−1 . . . η

d/3−1

η
d/3−1

3
4 − η

. . .
...

...
. . . . . . η

d/3−1
η

d/3−1 . . . η
d/3−1

3
4 − η

 ,

9
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Rτ =
1

8


1 + 4τ1ε 1− 4τ1ε 0 . . . . . . . . . 0

0 0 1 + 4τ2ε 1− 4τ2ε 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . 0 1 + 4τd/3ε 1− 4τd/3ε

 .

Holding η fixed, define the collection

Hη =
{
Mη,τ : τ ∈ {0, 1}d/3

}
(4.12)

of Markov matrices. Denote by Mη,0 ∈ Hη the element corresponding to τ = 0. Note that every
M ∈ Hη is ergodic and reversible, and its unique stationary distribution is uniform.

A graphical illustration2 of this class of Markov chains is provided in Figure 1; in particular,
every M ∈ Hη consists of an “inner clique” (i.e., the states indexed by {1, . . . , d/3}) and “outer
rim” (i.e., the states indexed by {d/3 + 1, . . . , d}).

Figure 1: Generic topology of theHη Markov chain class: every chain consists of an “inner clique”
and an “outer rim”.

Lemma 8 in the Appendix establishes a key property of the elements of Hη: each M in this
class satisfies

γps(M) = Θ(η). (4.13)

Suppose that X = (X1, . . . , Xm) ∼ (Mη,π), where M ∈ Hη and π is uniform. Define the
random variable TCLIQ = TCLIQ(M), to be the first time all of the states in the inner clique were

2. Additional figures are provided in Section C in the Appendix.

10
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visited,

TCLIQ = inf {t ≥ 1 : |{X1, . . . , Xt} ∩ [d/3]| = d/3} , (4.14)

Lemma 10 in the Appendix gives a lower estimate on this quantity:

m ≤ d

20η
ln

(
d

3

)
=⇒ P (TCLIQ > m) ≥ 1

5 . (4.15)

Let Md,γps,π? be the collection of all d-state Markov chains whose stationary distribution is mi-
norized by π? and whose pseudo-spectral gap is at least γps. Writing X = (X1, . . . , Xm), recall
that the quantity we wish to lower bound is the minimax risk for the learning problem (it will be
convenient to write ε/2 instead of ε, which only affects the constants):

Rm = inf
M̂

sup
M

PM

(∣∣∣∣∣∣∣∣∣M − M̂
∣∣∣∣∣∣∣∣∣ > ε

2

)
, (4.16)

where the inf is taken over all learners and the sup overMd,γps,π? . We employ the general reduction
scheme of Tsybakov (2009, Chapter 2.2). The first step is to restrict the sup to the finite subset
Hη (Md,γps,π? .

Rm ≥ inf
M̂

sup
τ

PMη,τ

(∣∣∣∣∣∣∣∣∣Mη,τ − M̂
∣∣∣∣∣∣∣∣∣ > ε

2

)
. (4.17)

Define TCLIQ as in (4.14). Then

Rm ≥ inf
M̂

sup
τ

PMη,τ

(∣∣∣∣∣∣∣∣∣Mη,τ − M̂
∣∣∣∣∣∣∣∣∣ > ε |TCLIQ > m

)
PMη,τ (TCLIQ > m) (4.18)

and Lemma 10 implies that for m < d
20η ln

(
d
3

)
,

Rm ≥
1

5
inf
M̂

sup
τ

PMη,τ

(∣∣∣∣∣∣∣∣∣Mη,τ − M̂
∣∣∣∣∣∣∣∣∣ > ε |TCLIQ > m

)
. (4.19)

Observe that all τ 6= τ ′ ∈ {0, 1}d/3 verify
∣∣∣∣∣∣Mη,τ −Mη,τ ′

∣∣∣∣∣∣ = ε. For any estimate M̂ =

M̂(X), define
τ ?(X) = argmin

τ

∣∣∣∣∣∣∣∣∣M̂ −Mη,τ

∣∣∣∣∣∣∣∣∣.
Then for τ 6= τ ?(X), we have

ε = |||Mη,τ −Mη,τ? ||| ≤
∣∣∣∣∣∣∣∣∣Mη,τ − M̂

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣M̂ −Mη,τ?

∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣∣∣∣Mη,τ − M̂

∣∣∣∣∣∣∣∣∣, (4.20)

whence {τ ? 6= τ} ⊂
{∣∣∣∣∣∣∣∣∣Mη,τ − M̂

∣∣∣∣∣∣∣∣∣ > ε/2
}

and

Rm ≥
1

5
inf
M̂

sup
τ

PMη,τ (τ ? 6= τ |TCLIQ > m) =
1

5
inf

τ̂ :X 7→{0,1}d/3
sup
τ

PMη,τ (τ̂ 6= τ |TCLIQ > m) .

(4.21)

11
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Since TCLIQ > m implies that Ni? = 0 for some i? ∈ [d/3],

Rm ≥
1

5
inf
τ̂

sup
τ

PMη,τ (τ̂i? 6= τi? |Ni? = 0) . (4.22)

There are as many M ∈ Hη with τi? = 0 as those with τi? = 1, so if M is drawn uniformly at
random and state i? has not been visited, the learner can do no better than to make a random choice
of τ̂i? (where τ̂ determines M̂ ). More formally, writing τ (i) = (τ1, . . . , τi−1, τi+1, . . . , τd/3) ∈
{0, 1}d/3−1, the τ vector without its ith coordinate, we can employ an Assouad-type of decompo-
sition (Assouad, 1983; Yu, 1997):

Rm ≥
1

5
inf
τ̂

21−d/3
∑

τ (i)∈{0,1}d/3−1

[
1

2
Pτi=0 (τ̂i 6= τi |Ni = 0) +

1

2
Pτi=1 (τ̂i 6= τi |Ni = 0)

]

=
21−d/3

10

∑
τ (i)∈{0,1}d/3−1

inf
τ̂

[Pτi=0 (τ̂i = 1 |Ni = 0) + Pτi=1 (τ̂i = 0 |Ni = 0)]

=
21−d/3

10

∑
τ (i)∈{0,1}d/3−1

[
1− ‖Pτi=0 (X = · |Ni = 0) + Pτi=1 (X = · |Ni = 0)‖1

]
=

1

10
.

(4.23)

Combined with Lemma 8, and inclusion of events, this implies lower bounds of Ω
(
d
γ ln d

)
and

Ω
(
d
γps

ln d
)

for the learning problem, which are tight for the case π? = 1
d .

Remark 5 Let us compare construction Hη to the family of Markov chains employed in the lower
bound of Hsu et al. (2017):

M(i, j) =

{
1− ηi, i = j
ηi
d−1 , else

, (4.24)

where ηi ∈ {η, η′} with η′ ≈ η/2. For our lower bound, H′η has to be a ε-separated set under
|||·|||. In the construction of Hsu et al., the spectral gap γ and the separation distance ε are coupled,
and using their family of Markov chains would lead to a lower bound of order d/γ ≈ d/ε, which
is inferior to Ω

( √
d

ε2π?

)
. The free parameter η was key to our construction, which enabled us to

decouple γ from ε.
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Appendix A. Algorithm

Algorithm 1 The learner L
Input: d, (X1, . . . , Xm)
Output: M̂
M̂ ← 0 ∈ Rd×d
Visits← 0 ∈ Rd
for t← 1 to m do

Visits(Xt)← Visits(Xt) + 1
end
for i← 1 to d do

if Visits(i) > 0 then
for t← 1 to m− 1 do

M̂(i, j)← M̂(i, j) + 1 [Xt = i] · 1 [Xt+1 = j] /Visits(i)
end

else
M̂(i, ·) = (1/d, 1/d, . . . , 1/d)

end
end
return M̂

Constructing M̂ has time complexity O(d(d+m)).

Appendix B. Auxiliary lemmas and reported theorems for the proofs of Theorem 1
and Theorem 2

Lemma 6 Let (M ,µ) an ergodic d-state Markov chain together with its initial distribution, with
stationary distribution π, pseudo spectral gap γps and minimum stationary probability π?.

Form ≥ 112
γpsπ?

log

(
2d
√

Πµ

δ

)
, P
M ,µ

({
∃i ∈ [d] : Ni /∈

[
1
2mπi,

3
2mπi

]})
≤ δ

2 , whereNi is the num-

ber of visits to state i.
Proof

Invoking Paulin (2015, Proposition 3.14, Theorem 3.8, Theorem 3.10), for any walk of length
m,

PM ,µ

(
|Ni −mπi| >

1

2
mπi

)
≤ Π

1/2
µ ·PM ,π

(
|Ni −mπi| >

1

2
mπi

)1/2

. (B.1)

Then for reversibleM with spectral gap γ,

PM ,µ

(
Ni /∈

[
1

2
mπi,

3

2
mπi

])
≤
√

Πµ exp

(
−

γ
(

1
2mπi

)2
2(4mπi(1− πi) + 101

2mπi)

)
(B.2)
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and for generalM with pseudo-spectral gap γps,

PM ,µ

(
Ni /∈

[
1

2
mπi,

3

2
mπi

])
≤
√

Πµ exp

(
−

γps
(

1
2mπi

)2
2(8(m+ 1/γps)πi(1− πi) + 201

2mπi)

)
.

(B.3)

Hence, from a direct computation and an application of the union bound, as long asm ≥ 112
π?γps

ln

(
2d
√

Πµ

δ

)
,

P
M ,µ

(
Ni /∈ [1

2mπi,
3
2mπi]

)
≤ δ

2d , whence the lemma in the non-reversible case. The similar result

with the spectral gap in lieu of the pseudo-spectral gap for reversible chains can be proven the exact
same way from Theorem B.2.

Lemma 7 For two Markov chainsM1 andM2 of the class Gp defined at (4.7) indexed respectively
by η1 and η2, it is the case that

DKL (Mm
1 ||Mm

2 ) ≤ p?mDKL (η1||η2) , (B.4)

Proof Recall that from the tensorization property of the KL divergence,

DKL (Mm
1 ||Mm

2 ) =

m∑
t=1

E
X1,...Xt−1

[
DKL

(
Xt ∼M1 |X1,...,Xt−1

∣∣∣∣Xt ∼M2 |X1,...,Xt−1

)]
,

(B.5)

so that successively,

DKL (Mm
1 ||Mm

2 )

=

m∑
t=1

E
X1,...Xt−1

[
DKL

(
Xt ∼M1 |Xt−1

∣∣∣∣Xt ∼M2 |Xt−1

)]
=

m∑
t=1

E
X1,...Xt−2

[
E

Xt−1

[
DKL

(
Xt ∼M1 |Xt−1

∣∣∣∣Xt ∼M2 |Xt−1

)
|X1 = x1, . . . , Xt−2 = xt−2

]]
(B.6)

=

m∑
t=1

E
X1,...Xt−2

 ∑
xt−1∈[d+1]

(
DKL

(
Xt ∼M1 |xt−1

∣∣∣∣Xt ∼M2 |xt−1

))
P
M1

(Xt−1 = xt−1 |Xt−2 = xt−2)


= p?

m∑
t=1

E
X1,...Xt−2

[
DKL

(
Xt ∼M1 |Xt−1=d+1

∣∣∣∣Xt ∼M2 |Xt−1=d+1

)]
= p?

m∑
t=1

DKL (M1(d+ 1, ·)||M2(d+ 1, ·))

= p?mDKL (M1(d+ 1, ·)||M2(d+ 1, ·))
(B.7)

and, DKL (Mm
1 ||Mm

2 ) ≤ p?mDKL (η1||η2).
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Lemma 8 For allM ∈ Hη [defined in (4.12)], we have γ = Θ(η) and γps = Θ(η).

Remark. For the lower bound in Theorem 2, we only need γ, γps ∈ Ω(η). The other estimate follows
from the Cheeger constant computation in Lemma 11, which has been deferred to Section D.
Proof We focus our proof on the spectral gap, and will later show that the pseudo spectral gap is
of the same order for our class of Markov matrices. We begin by computing the Cheeger constant
(see, e.g., Levin et al. (2009, Chapter 7)) of the chains in Hη. For M ∈ Hη, denote its Cheeger
constant by

Φ = min
S⊂[d],π(S)≤ 1

2

∑
i∈S,j∈[d]\S

π(i)M(i, j)

π(S)
, (B.8)

and recall that for a lazy reversible Markov chain, Cheeger’s inequality states that the spectral gap
γ satisfies Φ2

2 ≤ γ ≤ 2Φ. From this inequality and Lemma 11, we have that γ ≤ 6η. It remains to
prove the corresponding linear lower bound. From Levin et al. (2009, Theorem 12.5), we have

tmix ≥ ln 2(1/γ − 1),

where

tmix = tmix(M) = min

{
t ∈ N : sup

µ∈∆d

1

2

∥∥µM t − π
∥∥

1
≤ 1/4

}
.

From (3.7), we have that the Dobrushin coefficient κ(·) satisfies

∥∥µM t − π
∥∥

1
=
∥∥µM t − πM t

∥∥
1

=
∥∥M t(µ− π)

∥∥
1

≤ κ(M t) ‖µ− π‖1
≤ κ(M2)bt/2c ‖µ− π‖1 ≤ κ(M2)bt/2c.

(B.9)

Since κ(M2) ≤ 1− η
16 from Lemma 9, it follows that tmix ≤ 64 ln 2

η , and hence

γ ≥

(
1 +

tmix

ln 2

)−1

≥
(

1 +
64

η

)−1

≥ η

64
, (B.10)

whence γ = Θ(η).
Now note that for a symmetric M , π is the uniform distribution, M? = Mᵀ = M , and γps =

maxk≥1

{
γ(M2k)

k

}
. Denoting by 1 = λ1 > λ2 ≥ · · · ≥ λd the eigenvalues ofM , we have that for

all i ∈ [d] and k ≥ 1, λ2k
i is an eigenvalue for M2k, and furthermore 1 = λ2k

1 > λ2k
2 ≥ · · · ≥ λ2k

d .
We claim that

γps = max
k≥1

1− λ2k
2

k
= 1− λ2

2
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— that is, the maximum is achieved at k = 1. Indeed, 1 − λ2k
2 = (1 − λ2

2)
(∑k−1

i=0 λ
i
2

)
and the

latter sum is at most k since λ2 < 1. As a result, γps(M) = 1 − λ2
2 = 1 − (1 − γ(M))2 =

γ(M)[2− γ(M)] and

γ(M) ≤ γps(M) ≤ 2γ(M), (B.11)

which completes the proof.

Lemma 9 (Bounding the Dobrushin contraction coefficient) For allM ∈ Hη,

κ(M2) ≤ 1− η
(

1

8
− ε

2

)(
1 +

1

d/3− 1

)
≤ 1−

η

16
. (B.12)

Proof

Special case: M = Mη,0. Such anM ∈ Hη corresponds to the case τ = 0, and in this case we
claim that

κ(M2) = 1−
η

8

(
1 +

1

d/3− 1

)
≤ 1−

η

8
. (B.13)

We begin by computingM2:

M2 =

(
C

(2)
η,0 R

(2)
η,0

R
(2)
η,0

ᵀ
L

(2)
0

)
, (B.14)

where C(2)
η,0 ∈ Rd/3×d/3, L(2)

0 ∈ R2d/3×2d/3, and R(2)
η,0 ∈ Rd/3×2d/3 are given by

C
(2)
η,0 =


α1 α6 . . . α6

α6 α1
. . .

...
...

. . . . . . α6

α6 . . . α6 α1

 , (B.15)

R
(2)
η,0 =


α3 α3 α4 . . . . . . . . . α4

α4 α4 α3 α3 α4 . . . α4
...

...
...

...
...

...
...

α4 . . . . . . . . . α4 α3 α3

 , (B.16)

L
(2)
0 =


S

(2)
0 0

S
(2)
0

. . .

0 S
(2)
0

 , S
(2)
0 =

(
α2 α5

α5 α2

)
, (B.17)

18



LEARNING MARKOV CHAINS

and

α1 = (3/4− η)2 +
η2

d/3− 1
+ 1/32

α2 = 25/32

α3 = (1/8)(3/4− η) + 7/64

α4 = (1/8)
η

d/3− 1

α5 = 1/64

α6 = 2(3/4− η)
η

d/3− 1
+ (d/3− 2)

η2

(d/3− 1)2
.

(B.18)

We observe that κ(M2) = maxi∈[5] κi, where

κ1 =
1

2
(2|α3 − α4|+ 2α2 + 2α5) = |α3 − α4|+ α2 + α5

κ2 =
1

2
(2|α5 − α2|) = |α5 − α2|

κ3 =
1

2
((d/3− 1)|α6 − α4|+ |α3 − α1|+ (2d/3− 2)α4 + |α3 − α2|+ |α3 − α5|)

κ4 =
1

2
((d/3− 2)|α4 − α6|+ |α4 − α1|+ |α3 − α6|+ (2d/3− 4)α4 + 2α3 + |α4 − α5|+ |α4 − α2|)

κ5 =
1

2
(2|α6 − α1|+ 4|α4 − α3|) = |α6 − α1|+ 2|α4 − α3|.

(B.19)

We proceed to compute maxκi.

κ1: Since d = 6k, k ≥ 2 and η < 1
48 <

13
16 , we have

κ1 = |α3 − α4|+ α2 + α5

=
1

8

∣∣∣∣13

8
− η

(
1 +

1

d/3− 1

)∣∣∣∣+
51

64

= 1− η

8

(
1 +

1

d/3− 1

)
.

(B.20)

κ2 < κ1: Since κ2 = |α5 − α2| = 49
64 , and as η < 1

48 , it follows that κ2 < κ1.

κ5 < κ1:

|α6 − α1| =
∣∣∣∣2(3/4− η)

η

d/3− 1
+ (d/3− 2)

η2

(d/3− 1)2
− (3/4− η)2 +

η2

d/3− 1
+ 1/32

∣∣∣∣
=

∣∣∣∣η(3(d− 3)d− 2((d− 6)d+ 18)η)

2(d− 3)2
− 17

32

∣∣∣∣ .
(B.21)
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Write g(η, d) =
η(3(d− 3)d− 2((d− 6)d+ 18)η)

2(d− 3)2
, and notice that for d ≥ 6,

g(η, d) ≤
η(3(d− 3)d− 2((d− 6)d+ 18)η)

18
.

Now

d

dη
η(3(d− 3)d− 2((d− 6)d+ 18)η) = 3(d− 3)d− 4((d− 6)d+ 18)η,

which is strictly positive as long as η < 3(d−3)d
4((d−6)d+18) . But since η < 1/48, this holds for all d ≥ 6,

and thus g(·, d) is strictly increasing on [0, 1/48]. Further,

g(1/48, d) =
71d2 − 210d− 18

2304(d− 3)2
,

which is decreasing for d ≥ 6, is majorized by g(1/48, 6) = 71
1152 <

17
32 , and so

|α6 − α1| =
17

32
− g(η, d). (B.22)

Since g(η, d) > 0 for η < 1
48 <

3
2

(
(d−3)d

(d−6)d+18

)
, it follows that α2 + α5 > |α6 − α1|+ |α4 − α3|,

which shows that. that κ5 < κ1.

κ3 < κ1: Let us compute

(d/3− 1)|α6 − α4| = (d/3− 1)

∣∣∣∣2(3/4− η)
η

d/3− 1
+ (d/3− 2)

η2

(d/3− 1)2
− (1/8)

η

d/3− 1

∣∣∣∣
= η

∣∣∣∣11

8
− η

(
1 +

1

d/3− 1

)∣∣∣∣
= η

[
11

8
− η

(
1 +

1

d/3− 1

)]
, since η <

1

48
<

11

16
,

(B.23)

and

|α3 − α1| =
∣∣∣∣(1/8)(3/4− η) + 7/64− (3/4− η)2 − η2

d/3− 1
− 1/32

∣∣∣∣
=

∣∣∣∣25

64
− 11

8
η + η2

(
1 +

1

d/3− 1

)∣∣∣∣ . (B.24)

Noticing that for d ≥ 6, we have 25
64 −

11
8 η + η2

(
1 + 1

d/3−1

)
> 25

64 −
11
8 η and η < 1

48 <
25·8
64·11 ≈

0.284,

|α3 − α1| =
25

64
− 11

8
η + η2

(
1 +

1

d/3− 1

)
(B.25)
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and

|α3 − α2| = |(1/8)(3/4− η) + 7/64− 25/32| = 37

64
+
η

8
. (B.26)

Since η < 1
48 <

3
2 ,

|α3 − α5| = |(1/8)(3/4− η) + 7/64− 1/64| = 3

16
− η

8
, (B.27)

and a direct computation shows that

κ3 =
1

2
((d/3− 1)|α6 − α4|+ |α3 − α1|+ (2d/3− 2)α4 + |α3 − α2|+ |α3 − α5|) =

37

64
+
η

8
,

(B.28)

whence κ3 < κ1.

κ4 < κ1: We compute

|α4 − α2| =
∣∣∣∣(1/8)

η

d/3− 1
− 25/32

∣∣∣∣ =
25

32
− η

8(d/3− 1)
(B.29)

|α4 − α5| =
∣∣∣∣(1/8)

η

d/3− 1
− 1/64

∣∣∣∣ =
1

64
− η

8(d/3− 1)
(B.30)

|α4 − α1| =
∣∣∣∣(3/4− η)2 +

η2

d/3− 1
+ 1/32− (1/8)

η

d/3− 1

∣∣∣∣
=

∣∣∣∣19

32
− h(η, d)

∣∣∣∣ , (B.31)

where h(η, d) = η(1/8−η)
d/3−1 + η(3/2− η). For η restricted to [0, 1/48],

h(η, ·) is positive and decreasing, and achieves its maximum at d = 6. Since h(η, 6) = η(13/8−
2η) < 19/32, we have |α4 − α1| = 19

32 − h(η, d). Further,

|α6 − α3| =
∣∣∣∣2(3/4− η)

η

d/3− 1
+ (d/3− 2)

η2

(d/3− 1)2
− (1/8)(3/4− η)− 7/64

∣∣∣∣
=

∣∣∣∣32
(

η

d/3− 1

)
− η2

d/3− 1
− η2

(d/3− 1)2
+
η

8
− 13

64

∣∣∣∣
=:

∣∣∣∣f(η, d)− 13

64

∣∣∣∣ .
(B.32)

Now
d

dη
f(η, d) =

3

2

(
1

d/3− 1

)
− 2η

d/3− 1
− 2η

(d/3− 1)2
+

1

8
,

which is positive as long as η < 3
2

1 + d/3−1
8

1 + 1
d/3−1

. The latter expression increases in d and is minimized

at d = 6, so the sufficient condition becomes η < 27
32 , which holds for our range of η. It follows that

21



LEARNING MARKOV CHAINS

f(·, d) is increasing, and f(1/48, d) = 2d2+59d−198
768(d−3)2

, decreasing in d, is majorized by f(1/48, 6) =
19
576 ≈ 0.033 < 13/64 ≈ 0.20. Thus, we may omit the absolute value in (B.32):

|α6 − α3| =
13

64
− 3

2

(
η

d/3− 1

)
+

η2

d/3− 1
+

η2

(d/3− 1)2
− η

8
. (B.33)

Putting κ̃4 = (d/3 − 2)|α6 − α4| + (2d/3 − 4)α4 + 2α3 + |α4 − α5| + |α4 − α2|, a routine but
tedious computation yields

κ̃4 =
9

8
η + η2

(
1

(d/3− 1)2
− 1

)
+ η

2d/3− 17

8(d/3− 1)
+

77

64
. (B.34)

Combining this with the estimates above, we get

κ4 =
1

2
(κ̃4 + |α4 − α1|+ |α3 − α6|)

= 1− η

8

(
1 +

14

d/3− 1

)
+

η2

d/3− 1

(
1 +

1

d/3− 1

) (B.35)

and so κ4 < κ1 as long as η < 13
8

(
1 + 1

d/3−1

)−1
, which always holds for our range of η and d.

This completes the proof of (B.13) — the special case where τ = 0.

General τ . The general case is proved along a very similar scheme, which we outline below. Start
by computingM2:

M2
η,τ =

(
C

(2)
η,τ R

(2)
η,τ

R
(2)
η,τ

ᵀ
L

(2)
τ

)
(B.36)

where C(2)
η,τ ∈ Rd/3×d/3, L(2)

τ ∈ R2d/3×2d/3, and R(2)
η,τ ∈ Rd/3×2d/3 are given by

C
(2)
η,τ =


α

(1)
1 α6 . . . α6

α6 α
(2)
1

. . .
...

...
. . . . . . α6

α6 . . . α6 α
(d/3)
1

 , (B.37)

R
(2)
η,τ =


α

(d/3+1)
3 α

(d/3+2)
3 α

(d/3+3)
4 . . . . . . . . . α

(d)
4

α
(d/3+1)
4 α

(d/3+2)
4 α

(d/3+3)
3 α

(d/3+4)
3 α

(d/3+5)
4 . . . α

(d)
4

...
...

...
...

...
...

...
α

(d/3+1)
4 . . . . . . . . . α

(d−2)
4 α

(d−1)
3 α

(d)
3

 , (B.38)

L
(2)
τ =


S

(2,1)
τ 0

S
(2,2)
τ

. . .

0 S
(2,d/3)
τ

 , S
(2,k)
τ =

(
α

(d/3+2k−1)
2 α

(d/3+2k)
5

α
(d/3+2k)
5 α

(d/3+2k)
2

)
,

(B.39)
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where

α
(i)
1 = (3/4− η)2 +

η2

d/3− 1
+ 1/32 +

τiε
2

2

α
(2k+1)
2 = 25/32 +

τkε

2

(
ε− 3

2

)
α

(2k+2)
2 = 25/32 +

τkε

2

(
ε+

3

2

)
α

(2k+1)
3 = (1/8)(3/4− η) + 7/64 +

τkε

2

(
3

2
− η
)
− τkε

2

4

α
(2k+2)
3 = (1/8)(3/4− η) + 7/64− τkε

2

(
3

2
− η
)
− τkε

2

4

α
(2k+1)
4 = (1/8)

η

d/3− 1
+
τkε

2

η

d/3− 1

α
(2k+2)
4 = (1/8)

η

d/3− 1
− τkε

2

η

d/3− 1

α
(i)
5 = 1/64− τiε

2

4

α6 = 2(3/4− η)
η

d/3− 1
+ (d/3− 2)

η2

(d/3− 1)2
.

(B.40)

The case analysis, entirely analogous to our argument for τ = 0 (but with more cases to con-
sider), yields

κ(M2
η,τ ) = 1− η

(
1

8
− ε

2

)(
1 +

1

d/3− 1

)
≤ 1−

η

16
.

Lemma 10 (Cover time) ForM ∈ Hη [defined in (4.12)], the random variable TCLIQ = TCLIQ(M)
[defined in (4.14)] satisfies

m ≤ d

20η
ln

(
d

3

)
=⇒ P (TCLIQ > m) ≥ 1

5
(B.41)

Proof
Let M ∈ Hη and M I ∈ Md/3 be such that M I consists only in the inner clique of M , and

each outer rim state got absorbed into its unique inner clique neighbor:

M I =


1− η η

d/3−1 . . . η
d/3−1

η
d/3−1 1− η . . .

...
...

. . . . . . η
d/3−1

η
d/3−1 . . . η

d/3−1 1− η

 .
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By construction, it is clear that TCLIQ(M) is almost surely greater than the cover time of M I . The
latter corresponds to a generalized coupon collection time

U = 1 +
∑d/3−1

i=1 Ui where Ui
is the time increment between the ith and the (i+ 1)th unique visited state.
Formally, ifX is a random walk according toM I (started from any state), then U1 = min{t >

1 : Xt 6= X1} and for i > 1,

Ui = min{t > 1 : Xt /∈ {X1, . . . , XUi−1}} − Ui−1. (B.42)

The random variablesU1, U2, . . . , Ud/3−1 are independent andUi ∼ Geometric

(
η −

(i− 1)η

d/3

)
,

whence

E [Ui] =
d/3

η(d/3− i+ 1)
, Var [Ui] =

1−

(
η −

(i− 1)η

d/3

)
(
η −

(i− 1)η

d/3

)2 (B.43)

and

E [U ] ≥ 1 +
d/3

η
σd/3−1, Var [U ] ≤

(d/3− 1)2

η2

π2

6 (B.44)

where σd =
∑d

i=1
1
i , and π = 3.1416 . . . .

Invoking the Paley-Zygmund inequality with θ = 1− 2
√

2/3

σd/3−1
we have

P
(
U > θE [U ]

)
≥

1 +
Var [U ]

(1− θ)2(E [U ])2

−1

≥

(
1 +

5

3(1− θ)2σ2
d/3−1

)−1

=
1

5

(B.45)

(since π2

6 ≤
5
3 ). Further, σd/3−1 ≥ σ3 = 11/6 implies

θE [U ] ≥ 3

20
· d/3
η
σd/3−1 ≥

d

20η
ln

(
d

3

)
,

and thus for m ≤ d
20η ln

(
d
3

)
, we have P (TCLIQ > m) ≥ 1

5 .
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Appendix C. Additional figures

1/81/8

7/87/8

3/4− η

1/8

1/8

7/8

7/8

3/4− η

1/8

1/8

7/8

7/8

3/4− η

η
2

η
2

η
2

Figure 2: Graph representation ofMη,0 with d = 9.

1 + 4τ1ε

8

1− 4τ1ε

8

7− 4τ1ε

8

7 + 4τ1ε

8

3/4− η

1 + 4τ2ε

8

1− 4τ2ε

8

7− 4τ2ε

8

7 + 4τ2ε

8

3/4− η

1 + 4τ3ε

8

1− 4τ3ε

8

7− 4τ3ε

8

7 + 4τ3ε

8
3/4− η

Figure 3: Graph representation ofMη,τ for d = 9 and general τ ∈ {0, 1}3.
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Appendix D. Miscellaneous results

Lemma 11 (Computing the Cheeger constant) For 0 < η < 1/48 and M ∈ Hη, we have
Φ(M) = 3η. [Hη and Φ are defined in (4.12) and (B.8).]

Proof The proof proceeds in three steps. First we exhibit a set of states S3η that achieves the value
3η, which proves the upper estimate on Φ. We then argue that if an S ⊂ [d] fails to satisfy some
property, then it cannot achieve a value smaller than 3η in (B.8). Finally, we optimize over all S
that do satisfy the latter property.

Step I. ForM with uniform π, (B.8) simplifies to

Φ = min
S⊂[d],|S|≤ d

2

|S|
∑

i∈S,j /∈S

M(i, j). (D.1)

Referring to the construction of Hη [defined in (4.12) and illustrated in Figure 1], we partition the
states into the inner clique I = {1, . . . , d/3} and its complement, the outer rim J = {d/3 + 1, . . . , d};
these inherit the obvious connectedness properties from the Markov graph. Let S3η = {i, j, k} be
such that i ∈ I , j, k ∈ J , andM(i, j) = 1

8 + 1
2τiε,M(i, k) = 1

8 −
1
2τiε (that is, i is connected to j

and k). As |S3η| = 3 ≤ d
2 , we have

Φ ≤ |S3η|
∑

i∈S3η ,j /∈S3η

M(i, j) = 3 ·
(
d

3
− 1

)
·
(

η

d/3− 1

)
= 3η.

Step II. For any S ⊂ [d], suppose that i ∈ S ∩ I has two neighbors j, k ∈ J such that at least one
(say, j) is not in S. Since η < 1/48 and ε < 1/8, plugging such an S into the minimand in (D.1)
yields

|S|
∑

i∈S,j /∈S

M(i, j) ≥ 1/8± τiε/2 > 3η. (D.2)

An analogous argument shows that (D.2) also holds if j ∈ S∩J has a neighbor i ∈ I \S. It follows
that Φ is fully determined by the quantity |S ∩ I|.

Step III. In light of Step II, we may rewrite the objective function of the optimization problem
(D.1) as follows, where, for Ĩ ⊆ I , we write J̃(Ĩ) to denote the neighbors of Ĩ in J :

Φ = min
Ĩ⊆I,|Ĩ|≤d/6

3|Ĩ|
∑

i∈Ĩ∪J̃(Ĩ),j /∈Ĩ∪J̃(Ĩ)

M(i, j)

= min
k∈[d/6]

(3k)k

(
d

3
− k
)(

η

d/3− 1

)
.

Since k 7→ k2(d/3− k) is increasing on [d/6], the the minimum is achieved at k = 1, which shows
that Φ = 3η.
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Appendix E. Reported results from literature

Theorem 12 (Rectangular Matrix Freedman, (Tropp et al., 2011, Corollary 1.3) (weakened version))
Consider a matrix martingale {Xt : t = 0, 1, 2, . . .} whose values are matrices with dimension
d1 × d2, and let {Y t : t = 1, 2, 3, . . .} be the difference sequence. Assume that the difference se-
quence is uniformly bounded with respect to the spectral norm:

‖Y t‖2 ≤ R almost surely for t = 1, 2, . . . .

Define two predictable quadratic variation processes for this martingale:

W col,m :=
m∑
t=1

E [Y tY
ᵀ
t | Ft−1] and

W row,m :=

m∑
t=1

E [Y ᵀ
tY t | Ft−1] for m = 1, 2, 3, . . . .

(E.1)

Then, for all ε ≥ 0 and σ2 > 0,

P

(∥∥∥∥∥
m∑
t=1

Y t

∥∥∥∥∥
2

> ε and max
{
‖W row,m‖2 , ‖W col,m‖2

}
≤ σ2

)
≤ (d1 + d2) · exp

(
− ε2/2

σ2 +Rε/3

)
.

(E.2)

27


	Introduction
	Main results
	Minimax learning results
	Overview of techniques
	Related work

	Definitions and notation
	Proofs
	Algorithm
	Auxiliary lemmas and reported theorems for the proofs of Theorem 1 and Theorem 2
	Additional figures
	Miscellaneous results
	Reported results from literature

