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Abstract

Folklore results in the theory of Stochastic Approximation indicates the (minimax) optimality of
Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951) with polynomially decaying step
sizes and iterate averaging (Ruppert, 1988; Polyak and Juditsky, 1992) for classes of stochastic
convex optimization. Basing of these folkore results and some recent developments, this manuscript
considers a more subtle question: does any algorithm necessarily (information theoretically) have
to query iterates that are sub-optimal infinitely often?
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1. Introduction and Problem Setup

Stochastic Approximation studies the minimization of an objective function written as an expecta-
tion, and one that admits a sample based access, i.e.,:

w* € argmin F(w) = E¢oplf(w; €)] (1)

A variety of questions in modern machine learning and, more generally, ones in various scientific
disciplines can be written as an instance of (1). In this context, we assume access to a stochastic
first order oracle (Nemirovsky and Yudin, 1983), which, when queried at any iterate w; returns a
stochastic gradient V f (wy; &) that is unbiased, i.e.,

Ee, [V f(wy; &) |we, Fio1] = VF(wy),

where, F;_; is the filtration formed by {¢; ;;11 Equipped with access to the stochastic first order
oracle, stochastic gradient descent (SGD) (Robbins and Monro, 1951) is a popular technique used
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to minimize the objective of the form (1). SGD works with the following (simple) update rule:
wey1 < we — e - V f(we; &), where,

n: > 0 is the learning rate/step size. Iterate averaged SGD (Ruppert, 1988; Polyak and Juditsky,
1992) involves running SGD and returning

n
1
w = — E Wt.
n
t=1

In the literature, the stochastic first order oracle (Nemirovsky and Yudin, 1983) has typically as-
sumed to satisfy the following two types of assumptions on its second moment. The first one
assumes a uniform bound on the variance at every point in the domain (Robbins and Monro, 1951;
Nemirovsky and Yudin, 1983), i.e.

Eeunl||IV £ (w;€) = VF(w)|[?] < o2 @)

The other assumption is with regards to the covariance of the stochastic gradient at w* (Polyak and
Juditsky, 1992; Bach and Moulines, 2013; Jain et al., 2016, 2017), i.e.,

Eep[Vf (w5 &)V f(w*;€)] X o V2F (w*). 3)

Distinctions between assumptions (2), (3) are discussed in Jain et al. (2017). Iterate averaged SGD,
coupled with polynomially decaying step sizes, i.e., n, = 1/t%, « € (0.5,1) attains minimax
rates (Nemirovsky and Yudin, 1983; Lehmann and Casella, 1998; Van der Vaart, 2000; Raginsky
and Rakhlin, 2011; Agarwal et al., 2012) in an anytime sense (i.e. for all large values of n), for
classes of stochastic convex optimization (Ruppert, 1988; Polyak and Juditsky, 1992).

2. Behavior of SGD’s Final Iterate

The anytime optimal behavior of iterate averaged SGD with polynomially decaying stepsizes presents
an interesting research program that involves understanding the behavior of the query points for
classes of SGD style algorithms. Before considering the strictly harder problem of achieving any-
time optimal behavior (i.e. when running an algorithm without the knowledge of the algorithm end
time T"), we discuss the situation when the end time 7" is known and fixed in advance.

2.1. Behavior of SGD’s final iterate with a fixed end time 7T

In the context of non-smooth optimization (with or without strong convexity), under assumption (2),
a recent work of Jain et al. (2019) presented a nuanced step size schedule that achieves minimax
rates when the time horizon 7' is fixed in advance.

In the context of smooth stochastic convex optimization (with or without strong convexity), the
situation is far from being resolved. We will detail two lines of work that attempt to make progress
on various issues arising in the smooth stochastic approximation setting:

For the special case of streaming least squares regression, working with assumption (3), the
work of Ge et al. (2019) presented the step-decay schedule (which is a geometrically decaying
stepsize procedure) which achieves near minimax rates upto a log « factor (where, & is the condition



Do GOOD ALGORITHMS NECESSARILY QUERY BAD POINTS?

number) in strongly convex case and log T" factor in the smooth case, when the horizon T is known
in advance. Surprisingly, Ge et al. (2019) show that there exists no polynomially decaying step size
procedure, i.e., where, n; = 1/t%, « € [0.5, 1] that can achieve a rate that is separated from the
minimax rate by a factor of (k) (in the strongly convex case) and Q(+/7') in the smooth case.
These lower bounds shown by Ge et al. (2019) present telling evidence towards the (un-)suitability
of standard polynomially decaying stepsizes towards obtaining optimal behavior of the final iterate
for general classes of smooth (or smooth and strongly convex) stochastic convex optimization.
Another interesting line of work in the known (finite) horizon case involves minimizing the
gradient norm (as opposed to the function value). Along this line of thought, with assumption (2),
the work of Allen-Zhu (2018) presents improvements akin to ones offered by the work of Ge et al.
(2019) for general classes of smooth (and smooth plus strongly convex) stochastic optimization.

2.2. Anytime behavior of the final iterate

For non-smooth optimization (with/without strong convexity), working with assumption (2), the
work of Shamir and Zhang (2012) obtains a final iterate achieves minimax rates (in an anytime
sense) upto a log(7T") factor. In a sense, a recent work of Harvey et al. (2018) indicates that any choice
of stepsizes that are close to the standard stepsize schedules for this problem will yield iterates that
query sub-optimal function values (that are off by multiplicative log(7") factors) infinitely often.

Switching contexts to the smooth and strongly convex stochastic optimization, the work of Ge
etal. (2019) indicates SGD’s final iterate regardless of the choice of its stepsize sequence must query
iterates that are off the minimax rate by a factor of nearly the condition number of the problem.

To state our open problem, we define the notion of a “non-adaptive” algorithm as one that
queries an iterate w; which can be any fixed (potentially non-stationary) linear combination of
previously queried stochastic gradients defined prior to the start of the algorithm, i.e.:

wy = Z ag.t)Vf(wj;fj), where, ag-t) eRV .
j<t
With this definition in place, our question is phrased as follows:
Consider a non-adaptive algorithm with access to a stochastic first order oracle. The question
we ask is: Does this algorithm have to query sub-optimal iterates (compared to the minimax
rates) infinitely often (i.e. in a lim sup sense)?

The notion of sub-optimality follows owing to Harvey et al. (2018) (where the final iterate is
at least a log(7") factor worse compared to the minimax rate) for non-smooth stochastic convex
optimization, and that of Ge et al. (2019) (where the final iterate is nearly a condition number factor
away from the minimax rate) for optimizing strongly convex least squares. Whilst Harvey et al.
(2018); Ge et al. (2019) begin to make progress towards answering this question, they are fairly
limited in that their query points are the final iterate of SGD (as opposed to dealing with any non-
adaptive procedure). Special cases of the question includes:

e Can we bridge the log 7" factor indicated as necessary by the work of Harvey et al. (2018) for
the non-smooth stochastic convex optimization (Shamir and Zhang, 2012; Jain et al., 2019)?

e Can we bridge the gap of a condition number for SGD’s final iterate for least squares (Ge
et al., 2019) under conditions satisfied by a non-adaptive algorithm?

e With regards to gradient norm (as opposed to function value), can we make progress towards
understanding query point sub-optimality in various cases of stochastic convex optimization?
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