
Peer-assisted Content Distribution on a Budget✩

Pietro Michiardia, Damiano Carrab,∗, Francesco Albanesea, Azer Bestavrosc

aNetworking and Security Department, Eurecom, France
bComputer Science Department, University of Verona, Italy
cComputer Science Department, Boston University, USA

Abstract

In this paper, we propose a general framework and present a prototype im-

plementation of peer-assisted content delivery application. Our system –

called Cyclops – dynamically adjusts the bandwidth consumed by content

servers (which represents the bulk of content delivery costs) to feed a set of

swarming clients, based on a feedback signal that gauges the real-time health

of the swarm. Our extensive evaluation of Cyclops in a variety of settings –

including controlled PlanetLab and live Internet experiments involving thou-

sands of users – shows a significant reduction in content distribution costs

when compared to existing swarming solutions, with a minor impact on the

content delivery times.

Keywords: Internet Content Distribution, Peer-assisted Content

Distribution

✩This research was supported in part by NSF awards #0720604, #0735974, #0820138,
and #0952145 and has been partially supported by the French ANR-VERSO project
VIPEER.

∗Corresponding author
Email addresses: pietro.michiardi@eurecom.fr (Pietro Michiardi),

damiano.carra@univr.it (Damiano Carra), francesco.albanese@eurecom.fr
(Francesco Albanese), best@cs.bu.edu (Azer Bestavros)

Preprint submitted to Elsevier February 10, 2012

1. Introduction

Traditional Content Delivery Networks (CDNs) such as Akamai [1] were

conceived as special-purpose services catering almost exclusively to large,

highly-popular content providers such as iTunes and CNN. Today, however,

the advent of cheap Internet storage and delivery services – for example

Amazon S3 [2] and CloudFront [2] – make it possible for much smaller-scale

content providers to deploy and provision their own “ad hoc” CDNs in an

almost real-time fashion.

In general, the major cost contributor for CDNs is the bandwidth con-

sumed to deliver content from content servers to the clients. Essentially, the

bandwidth costs associated to content distribution are reflected into “content

delivery plans” that customers of a CDN service are required to pay. With

the goal of bounding such costs – and thus attract a variety of customers,

including small content producers with budget contraints – it is increasingly

the case that content delivery solutions are evolving from simple client-CDN

interactions (reminiscent of the traditional client-server model) into swarm-

CDN interactions, wherein the content servers are not merely responding to

individual client requests, but rather to the collective demand of a set of

clients that are looking for the same content, usually referred to as “swarm.”

Indeed, to reduce bandwidth requirements, an increasing number of CDN

solutions (including those offered by major market players such as Akamai

[1], Limelight [17], and Amazon [2]) rely on swarm-based, peer-assisted ap-

proaches that leverage the uplink capacity of end-users to reduce the CDN

bandwidth consumption. This approach, which is particularly effective for

highly-popular content, can be seen as seamlessly bridging client-CDN and

2

swarm-CDN interactions: For less-popular content, a peer-assisted CDN be-

haves as a traditional CDN system, whereas for highly-popular content, it

behaves as a peer-to-peer system.

Existing cloud-based peer-assisted CDNs rely on swarm-based protocols

such as BitTorrent [5]. While such swarm-based protocols are quite efficient

for exchanging content among peers (in terms of download time, resource

utilization, and fairness), they are not designed to provide the content source

with the means to gauge the marginal utility of its contribution to the swarm.

Specifically, in a peer-assisted CDN setting, swarm-based protocols do not

enable the content server to gauge and hence manage the inherent tradeoffs

between server bandwidth utilization and the efficacy of content delivery.

This is precisely the capability that the work presented in this paper aims to

provide.

Paper Scope and Contributions: In this paper, we propose a frame-

work for peer-assisted CDN solutions in which the content server is able to

adjust the bandwidth it contributes to the swarm (the set of clients down-

loading content) so as to achieve a specific objective based on a feedback

signal related to the state of the swarm. Our framework is general enough

to allow for many possible combinations of objectives and feedback signals.

For instance, the objective may simply be to keep the swarm alive based on

a feedback signal indicating the level of redundancy for particular pieces of

content in the swarm. Alternately, the objective may be to ensure a desirable

level of service based on a feedback signal gauging average delivery time to

clients.

To establish a reference model for these as well as other combinations of

3

objectives and feedback signals, in Section 2, we discuss the cost-performance

tradeoff for peer-assisted content delivery. Our findings suggest the existence

of a quiescent (close to optimal) operating point beyond which the marginal

utility from additional content server bandwidth utilization is negligible.

Based on this understanding, in Section 3, we present the design and pro-

totype implementation of Cyclops, a peer-assisted content delivery service.

The content server in Cyclops is able to modulate its bandwidth contri-

bution to the swarm so as to remain in the vicinity of the aforementioned

quiescent operating point – thus minimizing its cost without sacrificing per-

formance. Our design relies on the feedback signal provided through an

on-line monitoring tool, which we have implemented as part of Cyclops.

To demonstrate the effectiveness of our approach, in Sections 4 and 5

we report on a fairly extensive series of Internet experiments, in which we

compare the performance of Cyclops to those of “open-loop” swarm-based

protocols used by cloud-based content delivery services. Our experiments

are carried out both in a controlled environment (by delivering content to

PlanetLab clients) and in the wild (by delivering content to a real Internet

user population). These experiments show that our feedback-based approach

reduces drastically the volume of data served from the cloud (and hence the

cost incurred by the content provider) with negligible performance degrada-

tion.

For illustrative purposes, our experimental setting involves an instance of

Cyclops deployed as a “cloud-based” service. In particular, we used Ama-

zon EC2 instances to create a possible deployment scenario and measure

the performance and costs of content delivery. In live experiments involv-

4

ing more than 10,000 users exhibiting highly dynamic arrival and departure

patterns, we were able to document monetary savings of up to two orders of

magnitudes for our system.

2. Cost-Performance Tradeoff

When designing a content server, one of the first problem to solve is the

bandwidth allocation, i.e., how many resources are necessary to provide the

content delivery service. In this Section we consider the tradeoff between

the bandwidth utilization by a content server to the average delivery time

perceived by a set of swarming users (clients).

To this aim we have developed a simple Markovian model that provides

some interesting insights. Since the details of the model are not necessary

for understanding the design of our system, we refer the interested reader to

Appendix A for a complete description of the model. Here we report only

the results with some sample inputs.

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

D
o

w
n

lo
ad

 T
im

e
[s

]

Server rate α [piece/sec]

λ = 1.5 µ
λ = 3 µ
λ = 6 µ

Figure 1: Download time as a function of the content server rate.

Figure 1 quantifies the tradeoff between the server bandwidth utilization

(i.e., the average upload rate α of the content server) and the average delivery

5

rate to clients involved in a swarm with upload capacity λ – the parameter µ

represents the departure rate, i.e., the rate at which the content disappears,

in contrast to λ, which can be interpreted as the rate at which the content

is replicated (for the details see Appendix A).

The figure shows three operating regions. The first region (left-side of the

plot) is when α tends to zero, resulting in piece starvation, and a correspond-

ing increase in download time. The second operating region (right-side of the

plot) is when α tends to values that far exceed λ, resulting in a client-server-

like mode of operation. The third and more interesting operating region is

an intermediate one, within which an increase in α does not result in a corre-

sponding decrease in download time. The “width” of this region depends on

the health of the swarm, which is a function of the content popularity cap-

tured by the client departure rate µ, and the mean client upload bandwidth

λ.

The behavior described by our model suggests the existence of a quiescent

operating point (at the transition between the first and second operating

regions depicted in Fig. 1), beyond which the marginal utility from additional

bandwidth utilization is negligible. A content server operating around this

quiescent point would be fully leveraging the uplink bandwidth of its clients,

while minimizing its own cost: operating below this quiescent point would

jeopardize performance, and operating above this quiescent point would be

cost inefficient. Note that previous models, such as the one proposed in [18],

show that the download time depends linearly from the server bandwidth,

while our model highlights the existence of different operating regions.

We are now ready to describe the design and prototype implementation

6

of a content server that uses a feedback signal to adjust its bandwidth con-

tribution to the swarm so as to remain in the vicinity of a nominal quiescent

operating point. It is important to notice that the prototype we present in

the following is not an explicit implementation of the model: the design is

inspired by the key observations made above.

While our framework allows for many combinations of objectives and

feedback signals, in the remainder of this paper we focus on the objective of

maximizing the performance per unit cost, using the availability of content

in the swarm as the feedback signal.

3. System Design and Implementation

We now present the design of Cyclops, our peer-assisted content deliv-

ery service. As depicted in Fig. 2, our Cyclops service consists of a content

server and a swarm monitor. The swarm monitor interprets the signaling

messages exchanged between swarming clients, and generates a feedback sig-

nal that enables the content server to gauge the marginal utility of its con-

tribution to the swarm. The content server participates in the swarming

protocol to satisfy client requests, but only feeds the swarm when its contri-

bution is deemed necessary (based on the feedback signal). In Cyclops, the

swarm feeding rate is set to maximize the swarm performance-per-unit-cost,

using the availability of content in the swarm as the feedback signal. As

established in our model in Section 2, the quiescent operating point for this

objective is the minimum rate that avoids swarm starvation.

Cyclops is conceived to work with any swarm-based application/protocol

that features (1) a coordinating entity that tracks all swarm participants, en-

7

Content

Server

Monitoring

Tool

Feedback

Signal

Content Delivery

Service
Internet

Swarm

Control feed

Data feed

content server

bandwidth

Figure 2: Overview of Cyclops Architecture: The content server and swarm monitor

reside in the CDN in distinct virtual machines, with bandwidth used for data feed (to the

swarm) and control feed (from the swarm).

abling them to establish peer-to-peer connections; (2) content that is divided

into pieces to be distributed/exchanged independently; and (3) a control

messaging scheme used by swarm participants to advertise piece availability.

For practical reasons, we present our system and conduct our experiments

focusing on a single content server, used to deliver a single content (file) to

a set of clients. Problems related to concurrent swarms are orthogonal to

our approach, and the solutions proposed in the literature, e.g., [20], can

be integrated independently. Similarly, issues related to the efficiency of the

distribution process, solved using approaches based on traffic locality, are

complementary to our solution, and previous work on this topic, e.g., [8, 9],

can be incorporated seamlessly.

Cyclops was conceived and implemented as a service that can be de-

ployed on any content delivery platform. As an illustrative example, in this

8

work we focused on a “cloud-based” service: we used the Amazon Elastic

Compute Cloud (EC2) environment, and produced an Amazon Machine Im-

age (AMI) that supports both the content server and the swarm monitor

functionalities.

The source code of Cyclops can be found in [10].

3.1. The Cyclops Swarm Monitor

Swarm monitoring in Cyclops is achieved using a set of components

that we called the On-line Feedback (OF) nodes. OF nodes connect to

a live swarm, but neither download nor upload content: they monitor all

clients in the swarm and collect signaling messages they exchange. Using

this information, OF nodes construct snapshots in time that characterize

the health/performance of the swarm. In our particular implementation,

these snapshots are used to derive the instantaneous piece availability, which

constitutes the feedback signal fed to the Cyclops content server using a

complementary protocol.

To ensure scalability (and seamless elasticity of the service), we adopted

a distributed design for OF nodes, whereby new clients joining the swarm

are assigned to different OF node to balance load. Accordingly, a swarm S

is partitioned into Np non-overlapping sets, where Np is the number of OF

nodes in the system. Swarm partitioning is achieved using consistent hashing

[13]: each OF node is responsible for a fraction of the key-space, defined by

the client ID (e.g., IP address).

9

3.2. The Cyclops Content Server

The main objective of our approach is to minimize server bandwidth

consumption without running the risk of starving the swarm. Based on the

feedback signal provided by the swarm monitor, the content server feeds

the swarm only when necessary, i.e., when piece availability falls below a

desirable threshold. To that end, in our design we adopted an ON/OFF

control strategy, whereby the content server operation oscillates between two

states: serving and idle.

When in the serving state, the content server dedicates its full uplink

capacity to serve missing pieces of content. By design, the server avoids

injecting duplicate pieces into the swarm. The rationale for doing so is that

pieces can be quickly replicated by the swarm participants themselves. All

clients connected to the content server are induced to request the set of

missing pieces, which constitute the serving set maintained by the content

server: this is possible since the server masquerades as a set of virtual clients

holding a fraction of all available pieces. This serving set is partitioned into

k non-overlapping subsets that are announced as “available.” For instance,

if the serving set consists of pieces {1,2,3,4} and k = 2, then k messages

each announcing pieces {1,2} and {3,4}, respectively, will be sent to k users

that will eventually issue download requests. Once a piece has been served,

it is removed from the serving set, provided that the swarm monitor has

confirmed the presence of the piece in the swarm. When the server has

finished injecting all missing pieces into the swarm, it transitions to the idle

state.

When in the idle state, the content server simply closes all connections

10

to remote clients, and refuses any incoming connection. The content server

remains in the idle state until the feedback signal triggers a transition to the

serving state.

4. Experimental Methodology

In this Section, we summarize the specifics of the Cyclops instance we

have experimented with, along with various details regarding its illustrative

deployment on a commercial cloud provider. We also describe the different

types of experiments we have conducted, both in a controlled environment

(involving PlanetLab clients under our control), and in the wild (involving

thousands of real Internet users accessing content we advertised and made

available).

BitTorrent-based Swarming: As we alluded to in Section 3, Cyclops

can be instantiated to work with any swarm-based content distribution pro-

tocol, supporting a specific set of features. For experimental purposes, we

created an instance of Cyclops that is compatible with the popular Bit-

Torrent (BT) client. Note that, in all our experiments, clients execute un-

modified BT code. This choice is partly motivated by the wide adoption of

BT by Internet users, as well as its adoption by many content delivery ser-

vices (including Amazon S3 and many others [6]) as an underlying swarming

protocol. The details of the BT protocol and algorithms are not essential to

understanding Cyclops, thus we refer interested readers to [16] for a tech-

nical description of BT. Here we only mention that the coordinating entity

that maintains the list of clients in the swarm is called the tracker, and that

the two control messages used by BT to advertise pieces available at a client

11

are the have and the bitfield messages: they indicate the availability at a

client of a specific (single) piece, and of a set of pieces, respectively [16].

In the remainder of this paper, we use open-loop-BT to refer to a standard

peer-assisted content delivery system based on BitTorrent, whereas we use

Cyclops to refer to our “feedback-controlled” content delivery service.

Deployment Details: In our experiments, we used Amazon’s Elastic

Computing Cloud (EC2) to host, on separate virtual machines, the open-

loop-BT content server (called the seed), the tracker, and Cyclops (includ-

ing the content server and the swarm monitor). To mitigate the negative

impacts on networking performance due to shared resources (CPU and I/O)

in a virtualized environment, we used large EC2 instances, which were all

located in a single US-based data center. Our open-loop-BT and Cyclops

content servers were well-provisioned, with an upload capacity of 2.4 Mbps.

Note that, in our experiments, a single OF node proved to be sufficient to

monitor the entire swarm fed by Cyclops.

As for the threshold used to trigger from the idle state to the serving state,

in order to let the system work using the minimum amount of bandwidth,

we have set it to one piece.

Flash Crowd Experiments: To emulate a flash crowd arrival process

– representative of a scenario in which a large number of clients exhibit a

sudden interest in some specific content – we deployed a set of clients on

PlanetLab machines, whereby all clients initiate their requests as a result of

a centralized trigger: clients start downloading the content within 1 minute

of that trigger signal. Once a user is done downloading the content it contin-

ues to serve other clients until the end of the experiment. We conducted our

12

experiments using two flash crowd sizes of L = 50 and L = 300 clients, re-

spectively. In order to minimize the resource utilization of PlanetLab nodes,

we used a homogeneous configuration with an application level cap of 160

Kbps for the client’s uplink capacity, which is the default setting for BT. The

content size was set to 50 MB.

Waves of Arrivals Experiments: We synthesized extreme swarm dy-

namics on PlanetLab, with the goal of studying Cyclops under stress: in

practice, we created a scenario in which availability problems would hinder

the content distribution process, requiring Cyclops to intervene more often

than in a real swarm. The dynamics consisted of three successive bursts

of client arrivals: a first burst of 100 clients arrive in a 10-minute span and

leave after completing their download (within 50 minutes of arrival); a second

burst of 100 clients join the swarm just before the mass exodus of the first

wave of users. This process is then repeated for a third burst of arrivals. The

interval between the mass exodus from one wave and the burst of arrivals

from the next wave is set up in such a way that there would not be sufficient

time for content pieces to propagate fully from the clients of one wave to the

next (which should cause the swarm monitor’s feedback signal to trigger the

Cyclops content server to rev up its contribution to the swarm). As before,

the client’s uplink capacity was capped at 160 Kbps, and the content size

was set to 50 MB.

Live Internet Experiments: We conducted experiments to evaluate

our system under realistic CDN operating conditions, including web-driven

arrival and departure processes for users drawn from a diverse set of ISPs and

with diverse software settings. To do so, we distributed a non-copyrighted

13

movie packed in a 350MB file. We created two distinct torrent meta-files (one

for distribution using Cyclops and the other for distribution using open-

loop-BT), and we publicized both simultaneously on popular content search

web-sites. In these experiments, both the Cyclops and the open-loop-BT

content servers had no cap on their uplink capacity (beyond what is possible

through a large EC2 instance), and needless to say, we had no control on the

settings (or even the BT variants) of the clients.

We note that, due to their very nature, live Internet experiments cannot

be repeated: as such, they should be regarded as illustrative deployment

scenarios involving real Internet users that exhibit un-controlled and un-

conditioned behavior.

Performance Metrics: In all of our experiments, we considered two

main performance metrics. From the content server perspective, we mea-

sured the aggregate volume of data uploaded during an experiment, i.e., the

server bandwidth utilization. Since content servers are under our control, we

can measure their bandwidth utilization using local log files. From the client

side, we measured the content delivery times. For PlanetLab experiments, we

did that by collecting application-level logs from the clients. For live experi-

ments, where we do not have access to client logs, we measured the content

delivery times using our swarm monitor, which aggregates information pro-

vided by OF nodes. The accuracy of this approach was validated using the

PlanetLab experiments: we compared the download times computed using

individual log files (of PlanetLab clients) to those obtained from OF nodes,

and verified the match between the empirical cumulative distribution func-

tions of download times for the two methodologies. Furthermore, to assert

14

the statistical significance of our results, our PlanetLab experiments were

performed five times for each configuration.

5. Experimental Results

5.1. Flash Crowd Experiments

End-users’ performance in downloading content is expressed in terms

of individual download times. Figure 3 reports the most important per-

centiles (25th, 50th and 75th) of the empirical cumulative distribution func-

tion (ECDF) of download times.

 0

 10

 20

 30

 40

 50

BT CYCLOPS BT CYCLOPS

T
im

e
[m

in
]

L = 50 peers L = 300 peers

Figure 3: Flash Crowd: content download times (file size: 50MB).

As a general trend, we observe that the median download time of open-

loop-BT swarms is lower than that ofCyclops swarms, with the gap reduced

in larger swarms. The reason lies in the fact that an open-loop-BT seed keeps

feeding the swarm during the whole experiment, resulting in a larger fraction

of users receiving data from the content server itself (which is faster than the

user), and hence the shorter content delivery time. Furthermore, we note

that aside from visible but relatively small variations, the download time for

Cyclops clients was less sensitive to the swarm size.

15

Table 1: Flash Crowd: average server load (file size: 50MB)

BT Cyclops

L = 50 12.2 1

L = 300 15.36 1

The above explanation is further confirmed by the results in Table 1,

which reports the average bandwidth utilization expressed in volume of data

served by both the Cyclops and the open-loop-BT content servers, normal-

ized by content size. An open-loop-BT seed injects the swarm with 10–15

times the size of the original content, whereas Cyclops feeds the swarm only

when necessary, which given the static nature of this experiment is once.

These results corroborate the intuition discussed in Section 2. A content

server that can gauge the marginal utility of its contribution to a swarm can

settle in the vicinity of an operating point in which an additional expense of

server bandwidth resources has a marginal effect on the swarm performance.

5.2. Waves of Arrivals

Figure 4 shows the key percentiles of the empirical cumulative distribu-

tion function (ECDF) for the delivery times experienced by clients in the

successive waves of arrivals. In this case, the difference between the delivery

times achieved by Cyclops and the open-loop-BT content servers is small:

the median value of the distribution indicates an advantage of roughly 15%

in favor of the latter.

Table 2 shows the average volume of data served by both schemes, as

16

 0

 10

 20

 30

 40

 50

BT CYCLOPS

T
im

e
 [

m
in

]

Figure 4: Waves of Arrivals: content download times (file size: 50MB).

well as information on traffic overhead (namely, volume of control messages

involving bandwidth resources). For Cyclops, we show the aggregate over-

head incurred by the content server and the swarm monitor. For complete-

ness, we report the feedback traffic exchanged between the content server

and OF node, noting that these messages are exchanged within the confines

of the cloud and hence do not entail additional costs.

The data in Table 2 corroborates our conclusion that Cyclops achieves

low server bandwidth utilization, even when the system is artificially stressed

by complex client dynamics.

Next we examine the evolution in time of the feedback signal (namely,

system-wide piece availability) generated by the Cyclops swarm monitor

and the content server state transitions it triggers. Let M be the number

of pieces into which a file is divided, and let I(i, t), i = 1, . . . ,M be the

indicator function for piece i at time t, i.e., I(i, t) = 1 if there is at least

one copy of piece i at time t, otherwise I(i, t) = 0. The availability feedback

signal A(t) at time t is computed as:

A(t) =

∑

i I(i, t)

M
(1)

17

Table 2: Waves of Arrivals: server load & overhead (file size: 50MB)

BT Cyclops

Normalized server load 39.86 1.5

Outgoing overhead 55 KB 52 KB

Incoming overhead 2560 KB 716 KB

Feedback overhead – 145 KB

Figure 5 shows the time-series for the swarm size, the availability feedback

signal, and the content server state transitions induced by this signal. It

shows that as soon as the feedback signal indicates piece starvation (i.e.,

availability is less than 1), the content server switches to the serving state

and feeds the swarm. Piece availability is zero when the swarm bootstraps,

and drops whenever clients holding the unique copy of a particular piece

depart from the system. The content server switches from the idle state

to the serving state only when necessary to restore piece availability to 1.

Note that in this experiment we have purposefully created an extreme case

of swarm dynamics: in a real swarm, user behavior is not as synchronous.

5.3. Live Internet Experiments

In the set of experiments we present in this Section, we do not control

the client arrival and departure processes, but rather we let these processes

reflect the popularity of the content we disseminate. Furthermore, clients

participating in our swarms exhibit realistic uplink and downlink capacities,

unlike our PlanetLab experiments in which all clients have the same uplink

18

30

80

130

180

S
w

ar
m

0.2

0.4

0.6

0.8

1

A
v
ai

la
b
il

it
y

Idle

Serv

0 20 40 60 80 100 120 140 160C
Y

C
L

O
P

S
 s

ta
te

Time [min]

Figure 5: Waves of arrivals: availability over time.

capacity.

For Cyclops, out of a total of 7633 users we tracked, 3509 obtained the

full content. All other users departed before finishing the download process.

For the open-loop-BT content server, 2486 out of a total of 5044 users com-

pleted the content download. Despite the diversity in the user base for each

experiment, we stress the relevance of a live Internet content distribution:

our goal is to show that Cyclops copes well with an heterogeneous environ-

ment, with un-controlled clients and that it offers measurable benefits in an

illustrative cloud-based scenario.

Figure 6 depicts the instantaneous number of users for both swarms. In

our experiments, after the transients of the first few hours have subsided, the

user arrival and departure rates within each swarm equalized, with approxi-

19

mately 35-40 users joining each swarm per minute.

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000

sw
ar

m
 s

iz
e

[p
ee

rs
]

Time [minutes]

BT
CYCLOPS

Figure 6: Live Experiment: Swarm size over time.

Figure 7 shows the content delivery times (with the most important per-

centiles) achieved by all users that were able to complete the download. These

results indicate that, in our experiments, the median delivery time achieved

by both content servers is very similar. For the Cyclops content server, the

ECDF indicates longer tails: this is mainly due to a larger swarm size, which

included clients with poor Internet connectivity. From the end-users’ per-

spective, the difference in the download performance when they are served

by Cyclops or by open-loop-BT is negligible.

 0

 50

 100

 150

 200

 250

BT CYCLOPS

T
im

e
 [

m
in

]

Figure 7: Live Experiment: content download times (file size: 357.5 MB).

20

The content server bandwidth utilization, the associated volume of data

and related costs supported by content servers underscore the superiority

of Cyclops. Table 3 indicates that the Cyclops content server served a

total of 731.6 MB of content data, while the open-loop-BT seed injected a

whopping 133.03 GB of content data! Table 3 also reports the overhead

traffic, as defined in the previous Section.

These results support our conclusion that the framework discussed in

Section 2 and the particular instance we presented in this work are viable

candidates for real Internet content distribution systems. Note that both

experiments lasted 38 hours, and that the swarm sizes allowed us to assume

equivalent uplink capacity distributions for users in each torrent.

Since we deployed our content servers on Amazon EC2 instances, we were

able to quantify the economic value of our proposed scheme: For the experi-

ment we carried out, the total cost (including overheads) for distributing the

same content when using a legacy BT seed is roughly 180 times higher that

of a Cyclops content server.

6. Additional Considerations

We now discuss several points that complement the work presented in

this paper.

Dealing with alternative objectives and feedback signals: The

framework proposed in this work is general enough to allow many possible

combinations of objectives and feedback signals. For example, an alternative

objective may be to ensure some minimal level of service based on a feedback

regarding the average content delivery time. The swarm monitor described

21

Table 3: Live Experiment: service statistics (file size: 357.5 MB)

BT Cyclops

Total number of users
5044 7633

observed in the swarm

Normalized server load 381.04 2.05

Outgoing overhead 6.5 MB 0.2 MB

Incoming overhead 160.8 MB 24.6 MB

Cost of delivery $ 23.73 $ 0.13

in Section 3 can readily measure the average content delivery times, using the

same swarm signaling traffic we discussed earlier. Indeed, clients advertise

whenever they receive a new content piece, information that can be simply

used to compute the average download rate of the swarm. Based on this in-

formation, the content server can choose the appropriate level of bandwidth

(i.e., the cost it incurs) to complement the serving capacity λ of the swarm,

with the constraint of remaining in the vicinity of the quiescent operating

point discussed in Section 2. With reference to Fig. 1, this approach corre-

sponds to a content server selecting to contribute bandwidth resources that

move across the various operating regions obtained for different values of λ.

Dealing with alternative ways to collect feedback signals: The

swarm monitor described in Section 3 is achieved using a set of OF nodes

22

that connect to all users. We show in Section 5 that the cost of this so-

lution, in terms of overheads, is not significant. Nevertheless, maintaining

many connections may pose some challenges. An alternative solution is to

use periodic sampling of the swarm state: The OF nodes, instead of connect-

ing to all the users in the swarm, periodically obtain a subset of users from

the tracker and connect temporarily to this subset to collect the information

about pieces owned by the users. Using sampling statistics, it is possible

to infer system-wide piece availability, subject to preset levels of confidence.

Clearly, the larger the sampling set, the more precise the availability infor-

mation: In practice, approximating data availability may yield higher server

load, since pieces may not be detected even if they are in the swarm.

Dealing with multiple content servers: In this paper, we conducted

experiments in which a single content server is deployed. There are many

obvious reasons to consider a more general scenario involving multiple con-

tent servers. For example, a CDN operator may wish to use Cyclops on

edge servers positioned in multiple locations so as to serve clients efficiently:

in this scenario, end-users might be directed to their geographically closest

Cyclops content server. Traffic locality to mitigate the impact on ISPs eco-

nomics, calls for a technique to create distinct swarms. This can be achieved

with techniques proposed in the literature without requiring any modification

to the design of Cyclops. Alternatively, multiple Cyclops servers could

be combined to contribute to the same swarm. In this case, such content

servers would have to coordinate what content pieces they serve and when to

avoid inefficiencies. Our current implementation does not have provisions for

avoiding the overlap between the serving sets compiled by different content

23

servers. That said, standard distributed algorithms could be easily used to

manage such situations for production-scale systems.

Dealing with Cloud services cost models: In this work we have illus-

trated the benefits, in terms of bandwidth consumption, of our approach for

an instance of a “cloud-based” content delivery service. Despite Cyclops is

an appropriate approach to general peer-assisted content delivery networks,

here we discuss more on cloud-based services. Since we focused on a simple

objective, i.e., to keep a swarm alive, Cyclops exhibits an intermittent be-

havior : the system leaves the idle state only when the swarm risks starvation.

Under this operational mode, it is natural to question whether this behavior

matches current cost models that apply to resources rented in the Cloud. For

example, the granularity for paying an Amazon’s Elastic Computing Cloud

(EC2) instance is one hour. As such, although bandwidth resources are not

used nor payed for when Cyclops is in the idle state (probing traffic aside),

the virtual machine is payed independently of the bandwidth consumption.

With respect to the above discussion, we stress that the experimental

setting we used in this work is not intended to be deployed in production.

Ideally, our system is suitable for a deployment with the Amazon Simple

Storage Service (S3) and its CDN extension (called CloudFront). Alterna-

tively, our approach is suitable for more elaborate scenarios in which multiple

contents are distributed via multiple instances of Cyclops that coexist in

the same virtual machine. In such case, the unit cost of the virtual machine

can be amortized by having Cyclops content servers coordinate: when one

Cyclops instance is idle, another instance can be in the serving state, if nec-

essary. Note that such coordination is not trivial: the intermittent behavior

24

of Cyclops is a result of swarm dynamics, which cannot be controlled. It is

outside the scope of this work to extend the Cyclops architecture to cope

with such additional complexity.

For the cost of distributing the content, it is worth noticing that the

proposed evaluation does not take into account possible volume discounts,

which may decrease the difference between a pure CDN and our solution. In

any case, we believe that the impact of this aspect should be minimal.

Dealing with adversarial workloads: Denial of Service (DoS) attacks

as well as other improper behavior of end-users aiming to exploit swarm

resources is a concern that has to be considered when embracing a peer-

assisted CDN solution such as ours. Although this is an important problem

to address, here we focus on deliberate attacks by a client (or a set of colluding

clients) targeting the specifics of our Cyclops framework. Other types of

attacks typical of P2P systems, such as Sybil or Eclipse attacks, can be solved

using the techniques already presented in the literature[23]. We recognize two

possible adversarial exploits, where the aim is to pollute the feedback signal

computed by the Cyclops swarm monitor.

In the first, an adversary may seek to consume as much server bandwidth

as possible. This can be done by inducing the content server to detect piece

starvation (when none truly exists), thus causing the server to wastefully

inject content. Since Cyclops swarm monitor tracks all clients in a swarm,

such an attack would require a colluding set of malicious users of a size

approximately equal to the whole swarm size, which can be safely assumed

impractical.

In the second, a set of colluding users may engage in a DoS-like attack to

25

hinder content distribution, by inducing the content server to conclude that

the swarm is healthy (when the contrary is true). This causes starvation

of legitimate clients. This can be solved by letting the swarm monitor to

compute the average download rate of the swarm. Based on this informa-

tion, in case of content starvation, the swarm monitor may trigger an alarm,

indicating, for instance, the less replicated pieces.

An alternative issue related to our scheme is the single point of failure

represented by the server: if the server becomes unavailable, the content

may disappear. In this case, any solution based on server replication (e.g.,

in a hot-standby configuration, or with multiple online servers as discussed

before) would be sufficient to solve this problem.

7. Related work

Peer-Assistance: Peer assisted content distribution have been the sub-

ject of many recent studies. Of these, the work of Huang, Wang, and Ross

[12] could be seen as similar in nature to the work presented in this paper.

In that work, the authors advocate the use of peer-assisted content distri-

bution by evaluating the potential gain from peer-assisted video distribution

using real-world traces of two large CDN companies, Akamai and Limelight

(the underlying architecture of both of which they characterized). Their

approach uses the model in [11] to obtain bounds on the server load and

download times, should swarming among end-users be allowed. They also

quantify the potential reduction in ISP peering traffic, resulting from traffic

localization. In the same vein, our work is based on an analytical model

that gives key insights as to the benefits of peer-assisted content distribution

26

(although, our focus is on bulk as opposed to video transfers). Beyond a

“proof of concept” using a tractable mathematical formulation, we go one

step further by presenting practical feedback-control content injection poli-

cies that aim to satisfy performance objectives while minimizing provider’s

costs. Our implementation is evaluated in realistic contexts, and our re-

sults go beyond a purely theoretic estimation of the benefits of peer-assisted

content distribution.

Liu et al. [19] propose a peer-assisted file distribution system (FS2You)

which has a similar architecture to our system. Besides the fact that FS2You

and Cyclops have been designed approximately at the same time, our sys-

tem is based on BitTorrent protocol, which is readily available to many

clients, while FS2You requires the installation of a proprietary client.

Frugal Seeding: To the best of our knowledge, the only work that has

a similar objective to ours – in terms of reducing the load/cost on a con-

tent source, albeit in a very different setting – is Sanderson and Zappala’s

work [22]. In that work, once the seed has determined a subset of pieces

that should be injected in a swarm, it will satisfy any number of requests

for those pieces. As a consequence, their technique does not offer the same

level of control on the seed workload as the policies we study in this work.

Indeed, we observe that for experiments carried out in similar settings, our

content servers inject orders of magnitude less traffic than what was docu-

mented in [22]. Additionally, our system does not require any parameter to

be empirically set.

Chen et al. [7] study the “SuperSeeding” mode introduced by an alter-

native BT client to help peers with slow Internet connections perform initial

27

content seeding. The objectives of “SuperSeeding” are different from ours.

Moreover, a number of problems due to multiple peers using “SuperSeed-

ing” have been reported. The work in [3] proposes a “Smartseed” policy,

which advocates serving just one copy of each piece. Besides the fact that

Smartseed does not take into account dynamic scenarios, it requires the mod-

ification of clients, while our system involves changes only to the server with

no modification to the client.

Models and Bounds: The literature is rich with analytical models

that dissect many aspects of P2P content distribution. In [14] and [24], the

authors derive lower bounds for the minimum content distribution time of a

swarm-based P2P application: we build upon those works, but focus instead

on the relation between the content server upload rate and the download rate

achieved by peers. The work in [21] belongs to the family of fluid models

of BitTorrent-like applications: however, in this model it is the number of

peers (as opposed to traffic) in the system that is taken as fluid. The authors

in [21] develop a differential equation for the fluid model, from which they

determine the performance of the dynamic system. We also model content

replication in a dynamic setting, but instead consider the number of piece

replicas as the dynamic variable modeled using a Markov process.

Bandwidth Allocation in P2P Systems: While the study of alter-

native mechanisms that improve the bandwidth allocation in P2P systems

is orthogonal to our work, results from such studies could clearly have posi-

tive implications on content server utilization. In [20], the authors design a

content distribution system with the objective of maximizing the download

rate of all participants in a managed swarm. The system design in [20] is

28

based on a wire protocol that induces peer participation (using virtual cur-

rency) to achieve a global system optimization. In our work, we focus on a

different objective: we try and address the question of whether it is possible

to optimize the bandwidth utilization by content servers, without negatively

impacting the performance perceived by clients. We note that the model

we use in this work can also explain, though in more general terms, the key

intuition behind the Antfarm work [20].

The problem of devising efficient uplink allocation algorithms for swarm-

based P2P bulk data transfers is addressed in [15]. Instead of using em-

pirically set parameters, as done in BT, to determine the amount of uplink

capacity dedicated to each remote connection, they cast uplink allocation as

a fractional knapsack problem, and design a simple heuristic utility function

to decide the amount of bandwidth a peer should dedicate to each remote

connection. The focus of their work is on a cooperative P2P setting, in which

peers are assumed to fully abide to the prescribed algorithms.

8. Conclusion

In this paper, we have demonstrated that peer-assisted content distri-

bution could be leveraged to supplant as opposed to supplement the content

provider’s resources for purposes of efficient and scalable content distribution,

without negatively impacting the performance perceived by clients. Our ap-

proach is based on a feedback-controlled swarm feeding mechanism, which we

have modeled analytically and evaluated empirically using Cyclops – a full-

fledged service that we have implemented and deployed both in controlled

and un-controlled environments.

29

Our extensive experimental results – including the live distribution of

content to thousands of real Internet users – show that Cyclops achieves

enormous cost savings for the content provider (as high as two orders of mag-

nitude when compared to non-feedback-controlled BitTorrent-based services)

without noticeably impacting the performance perceived by end-users. We

were able to show that the mechanisms we developed as part of this work

have a clear impact on content distribution economics, including significant

reduction of costs for content providers, and much more efficient resource

utilization for content hosts and distributors.

Our on-going work is focused on exploring alternative objectives and al-

ternative feedback signaling processes in Cyclops, as well as extensions that

take into account multiple (possibly competing) content servers involved in

the distribution of content from multiple sources.

Appendix A.

In this Section we develop a model that relates bandwidth utilization by

a content server in the CDN to the average delivery time perceived by a set

of swarming users (clients).

Appendix A.1. Model

We consider a dynamic environment, where clients join a swarm, down-

load the content, and eventually leave the system. The number of clients in

the swarm is not known a priori, but it can be characterized by arrival and

departure rates. These rates may fluctuate drastically and such fluctuations

are typical for “hot” viral Internet content, which gets published, gains sig-

nificant popularity fairly quickly, but eventually dies off over time. In this

30

work, we assume that for the content download timescale (say minutes) they

remain constant, allowing the system to reach a steady state in which the

arrival and departure rates equalize, and consequently the average number

of clients in the swarm is constant.

Let N be the steady-state average number of clients in the swarm, and

let the content be divided into M independent pieces. If M ≫ 1 then a client

holds M/2 pieces on average. For analytical tractability, we do not model

network bottlenecks or losses.

Consider a birth-death Markov chain whose state sk represents k, the

number of replicas of a single (arbitrary) piece of content. Note that one can

envision an identical, independently evolving Markov chain for each one of

the M pieces that make up the content. For a generic state sk, there are

two possible transitions: (1) either the piece is replicated, resulting in a piece

birth, and thus a transition from state sk to state sk+1, or (2) a client holding

a replica of the piece leaves the swarm and is replaced by a new client that

does not have the piece, resulting in a piece death, and thus a transition from

state sk to state sk−1.

Let αk indicate the average rate at which the content server injects a piece

in the swarm at state sk. Let λ denote the piece replenishment rate resulting

from client contributions: λ is computed by dividing the aggregate upload

capacity of all N clients by the total number of pieces M . Both αk and λ

are expressed in pieces per second.

For sake of simplicity, we assume a random piece replication strategy: in

contrast to more sophisticated replication strategies[4], random piece selec-

tion simplifies analysis and provides conservative performance bounds. Thus,

31

the probability of choosing to replicate the particular piece (modeled by the

Markov chain) out of the M/2 pieces available at the client, is 2/M . The

probability that no client will choose to replicate that piece is (1 − 2/M)k,

since k is the number of clients holding the piece in state sk. This yields a

probability of 1− (1− 2/M)k for going from state sk to state sk+1.

To compute the transition rate from state sk to state sk+1 we must also

account for the rate αk at which the content server independently injects the

piece into the swarm. This yields a transition rate of λ ·(1−(1−2/M)k)+αk.

Notice that state s0 is a special state in which only the content server can

inject the piece. Thus, the transition rate from state s0 to state s1 is equal

to the server upload rate α0.

Let µ denote the client departure rate (measured in clients per second).

The probability of a death out of state sk is the probability that any one

of the k clients holding the piece leaves the swarm. The probability that a

given departure is by one of these k users is k/N . Thus, the transition rate

from state sk to state sk−1 is given by µk/N .

In summary, the transition rates from state sk to state sk′, denoted by

sk,k′, can be expressed as follows:

sk,k′=











































α0 if k=0 and k′=1

λ·(1−(1−2/M)k)+αk if k′=k+1, 0<k<N

µk/N if k′=k−1, 0<k≤N

0 otherwise

(A.1)

Note that, since the Markov chain is finite (N + 1 states), the steady state

solution exists.

32

We now compute the probability π0 to be in state s0. For simplicity, we

consider the case in which the content server uploads a piece at an average

rate αk = α, ∀k, irrespectively of its state; by solving the Markov chain we

get:

π0 =

[

1 +
α

µ
N (1 + Φ)

]

−1

(A.2)

where

Φ =

N
∑

k=2

(

N

µ

)k−1
1

k!

k−1
∏

i=1

[

λ

(

1−

(

1−
2

M

)i
)

+ α

]

We now proceed to finding the relationship between the average server

rate α and the mean download time. Each client obtains 1/N of the swarm’s

upload capacity, which is M(λ + α). Since the content is composed of M

pieces, the mean download time can be computed as T = M/(M(λ+α)/N) =

N/(λ+α). This is true as long as the probability of being in state s0 is small

enough. If this probability increases, then we have an additional term for

the mean time spent in state s0: this can be computed by multiplying the

probability of state s0 (π0) by the time spent in state s0 (1/α). Hence, the

mean download time is bounded by:

T ≤
N

λ+ α
+

π0

α
, (A.3)

To illustrate the utility of this model, consider a swarm of N = 100

clients downloading content consisting of M = 2000 pieces, with a client

departure rate of µ = 0.5 clients per second, and a mean client upload rate

of λ = {1.5µ, 3µ, 6µ} pieces per second. Figure 1 in Section 2 shows the

average download time as a function of the server upload rate, as predicated

by Equation A.3.

33

For the particular settings used in Figure 1, the intermediate region is

given by α ∈ [10, 1000] piece/sec.

References

[1] Akamai, http://www.akamai.com, 2011.

[2] Amazon AWS, http://aws.amazon.com, 2011.

[3] A.R. Bharambe, C. Herley, V.N. Padmanabhan, Analyzing and improv-

ing a bittorrent networks performance mechanisms, in: Proc. of IEEE

INFOCOM.

[4] F. Bin, D.M. Chiu, J.C. Lui, Stochastic analysis and file availability

enhancement for bt-like file sharing systems, in: Proc. of IEEE IWQoS.

[5] BitTorrent, http://www.bittorrent.com, 2011.

[6] BitTorrent Protocol, http://en.wikipedia.org/wiki/BitTorrent_

(protocol), 2011.

[7] Z. Chen, Y. Chen, C. Lin, V. Nivargi, P. Cao, Experimental analysis of

super-seeding in bittorrent, in: Proc. of IEEE ICC.

[8] D.R. Choffnes, F.E. Bustamante, Taming the torrent: A practical ap-

proach to reducing cross-isp traffic in p2p systems, in: Proc. of ACM

SIGCOMM.

[9] R. Cuevas, N. Laoutaris, X. Yang, G. Siganos, P. Rodriguez, Deep Div-

ing into BitTorrent Locality, Technical Report, arxiv.org/abs/0907.

3874, Telefonica Research, 2009.

34

[10] Cyclops, http://www.eurecom.fr/~michiard/downloads/cyclops.

tar.gz, 2011.

[11] C. Huang, J. Li, K. Ross, Can internet vod be profitable?, in: Proc. of

ACM SIGCOMM.

[12] C. Huang, J. Li, A. Wang, K. Ross, Understanding hybrid cdn-p2p:

Why limelight needs its own red swoosh, in: Proc. of ACM NOSSDAV.

[13] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, D. Lewin,

Consistent hashing and random trees: distributed caching protocols for

relieving hot spots on the world wide web, in: Proc. of ACM STOC.

[14] R. Kumar, K. Ross, Optimal Peer-Assisted File Distribution: Single and

Multi-Class Problems, in: Proc. of IEEE HOTWEB.

[15] N. Laoutaris, D. Carra, P. Michardi, Uplink allocation beyond

choke/unchoke or how to divide and conquer best, in: Proc. of ACM

CONEXT.

[16] A. Legout, G. Urvoy-Keller, P. Michiardi, Rarest first and choke are

enough, in: Proc. of ACM IMC.

[17] Limelight, http://www.limelightnetworks.com, 2011.

[18] F. Liu, Y. Sun, B. Li, B. Li, Quota: Rationing server resources in peer-

assisted online hosting systems, in: Proc. of IEEE ICNP.

[19] F. Liu, Y. Sun, B. Li, B. Li, X. Zhang, FS2You: Peer-assisted semi-

persistent online hosting at a large scale, IEEE Transactions on Parallel

and Distributed Systems 21 (2010) 1442–1457.

35

[20] R.S. Peterson, E.G. Sirer, Antfarm: Efficient content distribution with

managed swarms, in: Proc. of USENIX NSDI.

[21] D. Qiu, R. Srikant, Modeling and performance analysis of bittorrent-like

peer-to-peer networks, in: Proc. of ACM SIGCOMM.

[22] B. Sanderson, D. Zappala, Reducing source load in bittorrent, in: Proc.

of IEEE ICCCN.

[23] M. Steiner, E.W. Biersack, T. En-Najjary, Exploiting kad: Possible uses

and misuses, Computer Communication Review 37 (2007).

[24] R. Sweha, A. Bestavros, J. Byers, Angels – In-Network Support for

Minimum Distribution Time in P2P Overlays, Technical Report BUCS-

TR-2009-003, Boston University, 2009.

36

