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“Exploration and search” is a typical task for autonomous robots performing in rescue
missions, specifically addressing the problem of exploring the environment and at the
same time searching for interesting features within the environment. In this paper, we
model this problem as a multi-objective exploration and search problem and present a
prototype system, featuring a strategic level, which can be used to adapt the task of ex-
ploration and search to specific rescue missions. Specifically, we make use of high-level
representation of the robot plans through a Petri Net formalism that allows representing
in a coherent framework decisions, loops, interrupts due to unexpected events or action
failures, concurrent actions, and action synchronization. While autonomous exploration
has been investigated in the past, we specifically focus on the problem of searching in-
teresting features in the environment during the map building process. We discuss per-
formance evaluation of exploration and search strategies for rescue robots, by using an
effective performance metric, and present evaluation of our system through a set of
experiments. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

In recent years increasing attention has been devoted
to rescue robotics, both from the research community
and from rescue operators. Robots can consistently
help human operators in dangerous tasks during res-
cue operations in several ways. Indeed, one of the
main services that mobile robots can provide to res-

cue operators is to work as remote sensing devices re-
porting information from dangerous places that hu-
man operators cannot easily and/or safely reach.

A consistent part of rescue robotic research is fo-
cused on providing robots with high mobility capa-
bilities and complex sensing devices. Such kinds of
robots are usually designed to be teleoperated during
the rescue mission and the knowledge about the mis-
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sion scenario is gathered by the human operator
through the displayed output of the sensors �e.g.,
camera images�. Performance evaluation for these
kinds of rescue robots is consequently focused on the
ability to drive the robot through terrains of measur-
able complexity �e.g., random stepfields �Jacoff &
Messina 2006��, while taking into account operation
constrains, such as lack of visibility of the robot in ac-
tion, or control by single operator. Communication in
this case must be guaranteed at all times, otherwise
the robots become out of control.

Another branch of rescue robotics focuses instead
on providing mobile bases with a certain degree of
autonomy. Autonomous and semi-autonomous ro-
bots can process acquired data and build a high-level
representation of the surrounding environment. In
this mode, robots can act in the environment �e.g.,
navigate� through a limited interaction with the hu-
man operator. This also allows a human operator to
easily control multiple robots by providing high level
commands �e.g., “explore this area,” “reach this
point,” etc.�. Moreover, in case of temporary network
breakdown, the mobile robotic platforms can con-
tinue the execution of the ongoing task and return to
a predefined base position.

In this work, we consider autonomous explora-
tion and search in an indoor unstructured environ-
ment. The goal is to explore and map the environ-
ment, while searching for mission relevant
information that should be reported to the human op-
erators. Such a search task is typically targeted to-
wards detection and analysis of “interesting” fea-
tures: human victims, temperature, presence of gas or
any other substance, etc. Moreover, the relevant fea-
tures should be located inside the environment,
therefore the robot has to build a map of the explored
area and localize itself inside the map. In the follow-
ing, we refer to the above task as “exploration and
search”. The expected output for “exploration and
search” is a 2D map of the planar environment, an-
notated with interesting features �e.g., victims�. We
also assume the environment to be static.

More specifically, we focus on multi-objective ex-
ploration and search. In fact, in rescue missions, het-
erogeneous sensing devices are often used for the
map building system and for the victim detection sys-
tem, and the two processes have different and, some-
times, conflicting goals. For example, the map build-
ing process must be accurate and fast: a laser can
accurately acquire information from a long distance
�up to 80 m�. On the other hand, victim detection can

be very demanding from a computational point of
view and it requires a very short range of operation.

Autonomous exploration has been deeply inves-
tigated in the mobile robot literature �Latombe, 1991;
Stachniss, Grisetti, & Burgard, 2005; Yamauchi, 1997;
Jin, Liao, Polycarpou, & Minai, 2004�. Most ap-
proaches, however, do not consider the problem of
searching for interesting features inside the environ-
ment, while doing the exploration. On the other
hand, several approaches have been proposed for
searching the environment, using coverage tech-
niques �see �Choset, 2001� for a survey� or
aggregation-based techniques �DasGupta, Hespanha,
Riehl, & Sontag, 2006�. However, such approaches
generally assume to operate in a known environment
and do not address uncertainty in robot actions and
perceptions.

The aim of the present paper is to present a novel
approach to the multi-objective exploration and
search problem based on an explicit high-level rep-
resentation of the robot plans and to assess its per-
formance through a systematic evaluation.

Our approach is based on a strategic level com-
ponent, which is in charge of monitoring and driving
the search and exploration process. Specifically, we
model the strategic level using a formalism called Pe-
tri Net Plans �PNP� �Ziparo & Iocchi, 2006�, which is
based on Petri Nets �Peterson, 1981; Murata, 1989�, a
graphical modeling language for representing dy-
namic systems. The PNP formalism allows for an ef-
fective representation of concurrent processes, sens-
ing actions, as well as interrupts and failures, which
are needed to promptly react to new events and to
handle the faults due to the high uncertainty of the
information available. The introduction of a strategic
level allows for an effective and flexible solution to
the multi-objective exploration problem, as opposed
to approaches based on the optimization of a
weighted function �e.g., �Stachniss et al., 2005��.

The powerful formalism used for the strategic
level allows specifying complex strategies that can
address and resolve the conflicting goals of the dif-
ferent subsystems, while easily incorporating pos-
sible a priori knowledge about missions and environ-
ments into the system. For example, consider the case
where a rescue system enters a building knowing that
most of the people inside it were concentrated in one
room �without knowing the exact map of the building
and, therefore, without knowing how to reach such a
room�. The system should quickly explore the build-
ing as soon as a relevant number of people is de-
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tected, then the mapping process should have less
priority and the system should focus on precisely as-
sessing the status of the found people. Such an explo-
ration strategy is very hard to encode writing down
a function to optimize, while it can be easily ex-
pressed using our strategic level.

The evaluation of the system is based on quan-
titative experiments in different operative scenarios
using a Pioneer 3-AT mobile base equipped with a
Laser Range Finder and a pan-tilt sensor unit includ-
ing a stereo camera and a thermo sensor. A 3D simu-
lator of Rescue Scenarios �USARSim1� has also been
used in the experiments. The aim of the experiments
is to show that the introduction of a strategic level al-
lows for a high flexibility of the system in defining
different strategies for rescue missions and it allows
for an easy integration of available a priori knowl-
edge about the operational scenario.

The metric used to evaluate the system takes into
account at the same time the need for being easily ap-
plicable on real systems and the requirement of being
totally objective �i.e., not requiring the definition of
arbitrary weighting factors to account for different
types of information to gather from the environment�.
Consequently, differently from other metrics �for ex-
ample, those used in RoboCup Rescue competitions�,
we propose a metric based on a set of functions, each
one measuring the ability of the system to discover
information of a particular kind, without trying to
merge these results into a single value by weighting
the importance of each feature. This metric does not
directly compare two systems/strategies when it is
not evident that one outperforms the other, i.e., where
the result would be situation dependent. In these
cases, evaluation done by human operators seems
best suited.

The paper is organized as follows. In the next sec-
tion we present related work and compare our solu-
tion with previous work. Section 3 describes our pro-
posal for multi-objective exploration and search;
Section 4 describes our robotic system and implemen-
tation details about the software modules that imple-
ment mapping, localization, navigation, and victim
detection. Section 5 describes the experimental set-
ting and performance evaluation of the proposed sys-
tem. Finally, Section 6 draws the conclusions.

2. RELATED WORK

The exploration and search problem in rescue mis-
sions is the main focus of the RoboCup Rescue
competitions,2 and therefore all the participant teams
have to deal with this problem and have imple-
mented specific solutions. In case of tele-operated ro-
bots, the multi-objective exploration and search is
solved by the human operator, who decides the ac-
tivities of the robot. The teams that have imple-
mented autonomous behaviors usually adopt a strat-
egy that prefers victim analysis to map exploration,
also according to the specific score system used in the
competitions. Therefore, to the best of our knowl-
edge, a formalization of the problem as a multi-
objective search task and a systematic analysis of the
developed solutions have not been presented. In ad-
dition, there are several works in the literature ad-
dressing exploration and search problems, but not
considering some relevant issues encountered in res-
cue missions.

The exploration problem is usually seen as an op-
timization problem, in which the expected total time
of the exploration or a related value has to be opti-
mized �e.g., the information gain has to be maxi-
mized, the total travel cost minimized, etc.�. Several
approaches address the problem by defining utility
functions for the choice of the next position to travel
to. In these utility functions, one has to consider both
the costs of the actions and their information gains.
Typically, one can take into account the minimization
of the total time along with other features, such as
map precision, and include them in the utility func-
tion. For example, Yamauchi �Yamauchi, 1997� pro-
poses a frontier based exploration, where the robot
chooses the next point to reach based on its distance
from the available frontiers. A frontier is a part of the
environment, which divides explored from unex-
plored space. Following such an approach, the robot
tries to minimize the total exploration time.
González-Baños and Latombe in �González-Baños &
Latombe, 2002� propose an extension of the next best
view �NBV� method applied to the exploration task.
The proposed approach extends previous techniques
�e.g., �Pito, 1996�� developed for computer vision,
considering issues specific to mobile robots �e.g., lo-
calization and obstacle avoidance�.

While the task of exploring an unknown environ-
ment with the goal of building a map can be suitably

1http://usarsim.sf.net 2www.rescuesystem.org/robocuprescue/
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modelled as an optimization problem, as presented
above, exploration and search usually entails a multi-
objective optimization �Coello, 1999�. Several ap-
proaches address the problem by defining a single
utility function, which depends on several param-
eters to optimize. For example, Stachniss et al. �Stach-
niss et al., 2005� propose an approach that combines
mapping, localization, and exploration. Their method
evaluates the cost and information gain of the actions
that the robot has to perform and combines them
with a weighted function to be maximized. The work
by Mathews and Durrant-Whyte �Mathews &
Durrant-Whyte, 2006� addresses a similar problem.
The authors focus on the control of multiple plat-
forms involved in an information gathering task. The
goal of the approach is to find the optimal joint ac-
tions for the mobile platforms in order to minimize
the entropy of the probability distribution over the
system state. The authors apply their approach to a
distributed indoor mapping scenario. In both the lat-
ter two approaches, the actions are addressed mostly
for the construction of a precise and accurate map
and do not consider other kinds of interesting fea-
tures to be analyzed and reported on the map.

On the other hand, Amigoni and Gallo �Amigoni
& Gallo, 2005� address the multi-objective nature of
the exploration problem, by considering a Pareto ef-
ficient approach: instead of finding an optimal solu-
tion for a weighted function, they suggest to find a
solution that is good enough for all the measures to
be optimized.

Also, the work by Jin et al. �Jin et al., 2004� ex-
plicitly addresses the trade-off between search and
response to interesting targets. The work focuses on
a team of UAVs searching for moving targets. Some
of the targets are known beforehand and others ap-
pear dynamically. UAVs should thus search for pos-
sible new targets, while at the same time act in re-
sponse to already found ones. This trade-off is
addressed using a hybrid algorithm that switches be-
tween an instantaneous task assignment technique,
which considers only the current world state in the
task assignment process, and a predictive task assign-
ment technique, which tries to predict future states of
the targets. The authors show that the hybrid algo-
rithm successfully addresses the mentioned trade-off;
however, the approach seems to be strongly depen-
dent on the reference scenario. In particular, the de-
termination of the threshold for switching between

the two task assignment techniques is performed us-
ing an heuristic based on the results obtained in pre-
vious simulations.

The problem of searching an object for a searcher
with limited perceptions, but with a priori probability
distribution of the target position, is addressed by
DasGupta et al. �DasGupta et al., 2006�. This problem
amounts to defining a path that maximizes the prob-
ability of finding the target. The authors use an
aggregation-based technique to approximate the
problem and solve it in polynomial time. However,
the results apply only to a scenario where the map is
given beforehand, and a probability function of the
target position is known.

All the approaches mentioned above implement
multi-objective exploration either as a numeric opti-
mization process or with a task-specific solution. The
use of an explicit high-level representation of the in-
formation and of the plan to be executed has not been
addressed.

On the other hand, multi-objective optimization
can be addressed by making use of Markov Decision
Processes �MDP, POMDP� �Pineau & Gordon, 2005�.
Markov Decision Processes allow for high-level rep-
resentation of actions and strategies and for devising
optimal policies �i.e., sequences of actions� to be ex-
ecuted, maximizing a reward function defined over
the domain. Such approaches, however, are highly
computationally demanding, especially for complex
environments, where several actions and states have
to be modeled. These approaches can address multi-
objective problems only by including each objective
reward �using weighting factors� in the global reward
function. Moreover, in this paper, we are not inter-
ested in determining optimal policies, but in provid-
ing a flexible and efficient way of implementing ex-
ploration and search strategies.

In this paper, we adopt an approach to multi-
objective exploration based on an explicit high-level
representation of the strategy to be implemented dur-
ing the mission. The use of Petri Net Plans allows for
an expressive representation language and an effi-
cient implementation. In addition, the ability of rep-
resenting in a qualitative way the knowledge ac-
quired during the mission, the decision conditions
that are used to implement a multi-objective strategy,
and a priori knowledge about the rescue mission is
fundamental for an effective implementation of au-
tonomous rescue robots. Such a high-level represen-
tation has the following advantages over a numerical
optimization technique: �1� it does not require the
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definition of empirical numerical values to guide the
exploration and search task; �2� it allows for an easy
characterization of the strategy to be adopted in a
given scenario; �3� it allows for an easy injection of a
priori knowledge about the mission, which is usually
given in qualitative terms.

3. HIGH-LEVEL REPRESENTATION OF
MULTI-OBJECTIVE EXPLORATION AND
SEARCH STRATEGIES

Autonomous robots performing exploration and
search tasks must be able not only to build a map of
the environment and to localize themselves with re-
spect to it �SLAM�, but also to decide the sequences
of movements needed to explore, in an optimal way,
the whole environment.

It is useful to characterize exploration as a next-
best-view �NBV� problem �González-Baños &
Latombe, 2002�, i.e., computing a sequence of sensing
positions based on the data acquired at previous lo-
cations. An optimal NBV algorithm moves the robot
to positions, where it can achieve the maximum in-
formation gain �given the current knowledge of the
environment�. The algorithm structure is given by the
following steps:

1. select or choose the next view point;
2. navigate or move the sensor to that view

point;
3. acquire information from the sensor;
4. integrate this information with the global

knowledge of the object/environment.

This process does not take into account multi-
objective searches. When the exploration task and
the search tasks are performed simultaneously, it
is often convenient to interrupt the action to reach
a given target if a better �e.g., more promising,
closer� one is detected during navigation. For ex-
ample, in a rescue mission, it is possible to notice
a victim while reaching the next frontier for ex-
ploration and map building. In this case, we
would like the robot to get information about the
victim as soon as possible, possibly before reach-
ing the current frontier target. The NBV strategy,
as stated above, does not implement such behav-
ior, since decisions are taken only when the cur-
rent target has been reached.
Moreover, the obvious approach of reconsidering

the choice of the next target at each cycle �or with very
high frequency� can be unfeasible due to the compu-
tation cost and the uncertainty in robot perception
that may cause instability of behavior and conse-
quent loss of performance. Moreover, one needs to
face unexpected navigation failures that, in a rescue
mission, can often happen.

In this section we present a highly flexible mecha-
nism for realizing the decision level of an autono-
mous robot involved in a multi-objective exploration
and search task. In particular, we describe an ap-
proach that provides a very flexible way to decide �1�
when it is necessary to reconsider decisions and �2�
how to choose among different targets.

The basic structure of our exploration and search
strategy is inspired by the general NBV algorithm
structure and is divided into two steps: �1� detection,
evaluation, and selection of target candidates and �2�
navigation towards the chosen target. However, ef-
fective implementations of complex exploration and
search strategies are achieved by exploiting the high
flexibility of the high-level strategic component that
allows for explicitly modelling interrupt conditions
and reactions to navigation failures.

To this end, we have chosen to explicitly model
the strategic level, by developing a Plan Executor
Module, based on Petri Net Plans. Petri Net Plans ex-
ploit Petri Net ability of representing concurrent ex-
ecution of discrete state systems and are thus more
powerful representations based on finite state ma-
chines. In particular, PNP allows for the representa-
tion of different kinds of actions �ordinary and sens-
ing actions� as well as many standard control
structures: conditional execution, loops, concurrent
execution, interrupts, communication and synchroni-
zation actions for multi-agent systems, etc.

The use of PNP provides the developer with a
simple to use high-level formalism for defining com-
plex behaviors, with graphical tools for writing and
debugging plans, with verification tools to check con-
sistency of the plans with respect to the intended be-
haviors, and with simulations of plan execution that
are used to test its correct behavior. These are impor-
tant advantages with respect to hard coding the robot
behaviors, which speeds up development time, in-
creasing implementation correctness and system re-
liability.

While a detailed presentation of the Petri Net
Plan formalism is outside the scope of the present pa-
per �see �Ziparo & Iocchi, 2006� for details�, we pro-
vide intuitions of the PNP structures and we present
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examples of multi-objective exploration and search
strategies developed with such a formalism.

One instance of such plans is depicted in Figure
1. All the actions begin with a start transition, have an
execution state exec, and terminate with an end, a
fail, or an interrupt transition. The token contained in
the place P1 indicates the initial marking, represent-
ing the beginning of the execution. This token is then
propagated in the network places as specified by the
transitions, which can be fired when the input places
are active, i.e., when they contain at least one token,
and the attached conditions �written between square
brackets� are true.

The plan begins with a computeTargets action.
This action performs three activities: �1� it computes
map frontiers, �2� it evaluates candidate features to be
analyzed, and �3� it chooses one of them as the next
target position. The next action, getTargetType, is
used as a conditional construct to guide the plan ac-
cording to the target type. If it has been chosen to go
to a possible victim, the subplan navigateToCandidat-
eVictim is performed, otherwise the subplan navi-
gateAndSearch is executed. In this plan, an interrupt
transition is present in the execution step of navigate-
AndSearch. This is controlled by the condition
newVictimFound and it is used to switch from the
navigateAndSearch behavior to the navigateToCan-
didateVictim one. In other words, it allows for imple-
menting a strategy where victim analysis is preferred
to map exploration.

The subplan navigateToCandidateVictim, shown

in Figure 2, starts two parallel actions, pantiltSearch
and navigate, using the fork operator before their ac-
tivation. While the robot navigates to the chosen tar-
get, the pan-tilt unit will move searching for new in-
teresting places �using analysis of data coming from
the thermo and stereo sensors, which is explained in
the next sections�. When the robot approaches the vic-
tim, the pantiltSearch action is stopped and the stereo
sensor is pointed towards the candidate victim �ac-
tion pantiltPoint�. When the target position is reached,
both navigate and pantiltPoint actions are stopped:
this allows for a more stable acquisition of data and
for using all the computational power required by the
complex analysis of 3D points extracted with the ste-
reo sensor �action analyzeVictim�. The subplan termi-
nates either after the victim analysis action or in the
presence of navigation failures. In this latter case, ac-
tion synchronization is used to interrupt also the pan-
tilt search action. Notice that, when this subplan ter-
minates, the main plan will loop to compute a new
target and go to it.

4. SYSTEM DESCRIPTION

In this section, we briefly explain some implementa-
tion details of our robotic system for autonomous
search and exploration. Our system has been vali-
dated through a set of experiments performed both in
simulation and in real rescue arenas. It is worth point-
ing out that we use the same software modules and

Figure 1. One of the plans used in the experiments, called “Victims First.”
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the same strategic plans both in the simulated and in
the real scenarios. We modeled our world in the
simulated environment to be identical to the real one;
in this way, the comparison between the behavior in
both environments is straightforward. In the follow-
ing subsections we provide an overview of the sys-
tem and the components that are necessary to per-
form a search and rescue mission. Moreover, we
detail important issues regarding the modeling of our
rescue scenario in USARSim.

4.1. Robotic System

Our robot is a wheeled mobile robotic base, Pioneer
3-AT, equipped with a laser range finder. An on-
board computational unit is responsible to run all
the software modules needed by the robot. Since
moving the robot can be very time consuming, the
sensors used for feature detection �a stereo-camera
and a nontouch thermo sensor� are mounted on a
pan-tilt unit. In this way, while the robot is moving,
these sensors can point towards targets that are not
in front of the robot.

The possible targets to be explored are com-
puted using three different algorithms, which aim at
reaching three different �and concurrent� goals:

• The first goal is to build the map of the en-
vironment using laser range finder data;
therefore, the first algorithm computes fron-
tiers between free explored space and un-
known portions of the map using a wave-
front expansionlike algorithm �Latombe,

1991�. The algorithm allows to compute fron-
tiers incrementally; as pointed out in �Yamau-
chi, 1997�, since frontiers move, while the ro-
bot acquires new information about the
environment, the method will eventually
guide the robot to explore all the accessible
environment �though there is a possible
Zeno-like Paradox, that prevents the map to
be fully explored, this is very unlikely to hap-
pen�.

• The second goal is to find “interesting” fea-
tures in the environment: in our implemen-
tation, we assume that the interesting fea-
tures are always intercepted by a laser scan.
Therefore, we need to search for victims only
along the obstacles detected by the laser
range finder, thus avoiding unnecessary
search in open spaces.

• A search algorithm scans the areas given by
the method above and returns a list of pos-
sible features. These need to be analyzed in
order to be confirmed or declared false posi-
tives. This analysis is computationally inten-
sive and requires the robot to stand still: this
list of possible features represents the third
set of candidate targets.

In addition, the search and exploration sub-
system relies on other modules, which are common
among robotic systems and represent the low-level
components that allow the robot to realize the deci-
sions taken by the strategic level. These modules are

Figure 2. The subplan navigateToCandidateVictim.
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integrated in a framework that enables concurrent
processes and communication among them �details
can be found in �Farinelli, Grisetti, & Iocchi, 2006��.
In the following we provide a brief description of
the most important software modules.

• The SLAM Module deals with map building
and localization at the same time. We use a
scan matching algorithm for on-line localiza-
tion in conjunction with an occupancy grid
for map building. The map built using such
an approach is locally consistent and the er-
ror accumulated is small enough to allow for
safe navigation, good quality maps, and
quite precise victim localization.

• The Navigation Module enables the robot to
reach a target position; a coarse “topological”
path-planner computes a path and a lower-
level module is in charge of maneuvering the
robot to follow the provided path �see �Calisi,
Farinelli, Iocchi, & Nardi, 2005� for details�.
The lower level module uses two modalities:
an accurate motion planner based on Ran-
domized Kinodynamic Trees �see �LaValle &
Kuffner, 1999�� to maneuver the robot in clut-
tered space, and a fast reactive navigation
module based on the Vector Field Histogram
that is able to steer the robot at high speed
when far from obstacles.

• The Human Body Detection Module �HBD�
performs two processing steps. The first step
is fast, but not accurate, and is used to iden-
tify interesting places where a human body
could be located. The main sensor used in
this step is a nontouch temperature sensor.
The second step uses temperature informa-
tion, stereo vision, and a human body model
database �see �Bahadori Ghouchani, 2006� for
details�. It is very computationally intensive
and slow, but provides good accuracy. For
this reason, it should be activated only in
those areas that are declared interesting in the
first step; moreover, its range of operation is
short �between 0.5 and 1.5 m�.

4.2. Simulated Robotic System

The experiments in the simulated scenario are per-
formed using USARSim, a 3D simulation environ-
ment based on a game engine. This framework al-

lows for a realistic modeling of robots, sensors, and
actuators, as well as complex, unstructured, dy-
namic environments. Recently, it has been used to
measure the performance of robotic platforms and
multi-robot systems in USAR �Urban Search And
Rescue� scenarios �Wang, Lewis, & Gennari, 2003;
Balakirsky, Scrapper, Carpin, & Lewis, 2006�.

In USARSim, we can use exactly the same soft-
ware modules used in the real robot �SLAM, Navi-
gation, etc.� by replacing the interfaces to the real
sensors �drivers�, with interfaces to the simulator.

The simulation environment provides models of
our mobile base and of the pan-tilt unit. It also in-
cludes models of laser range finders, odometry, and
sonar sensors. The only missing device is the non-
touch temperature sensor. However, we are not in-
terested in using the simulator to test and evaluate
the HBD system; we rather want the simulated sys-
tem to have similar behaviors with respect to the
real robot when executing the exploration process.
To this end, in the simulator, we have used RFID
tags located near victims and put an RFID reader on
the robot. When the RFID tag is detected by the
reader, the robot receives data similar to the ones
provided by the thermo sensor on the real robot, i.e.,
a position in the environment were a possible victim
was detected. For the second step �i.e., victim confir-
mation�, we replace it with the request to the simu-
lated robot of approaching the victim and taking a
snapshot of the scene.

5. EXPERIMENTS

A set of experiments has been performed in order to
show and analyze the effectiveness of using the high-
level strategic module. More specifically, we have
evaluated the ability of introducing some qualitative
a priori knowledge about the mission in the system.
In the following of this section, we first present the
performance metric used to evaluate the different
strategies and then show the results in four different
scenarios.

5.1. Performance Metrics

An important aspect of the search and rescue tasks
described in this article is the definition of effective
metrics for measuring performance of autonomous
robotic systems. The goal is to choose the actions
that gain the maximum information in the minimum
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time �or minimum energy�, and performance metrics
can be divided in two groups: measure of time �or
energy� needed to acquire all the information from
the environment and measure of information ac-
quired with limited �time or energy� resources.

The first group considers a complete discovery
of all the information from the environment and
measures the time �or energy� needed to accomplish
such a task. This is a good and objective metric, but
it requires that the task is completely finished, and
cannot be used to evaluate partial execution of the
task. Notice that in many cases a complete discovery
of the information from the environment is not fea-
sible, due to time or resource constraints in large
environments �e.g., battery life�, or to the inability of
the robot to detect some features.

Another set of metrics determines a bound on
the resources available to the robot and measures
performance of the search task once the limit has
been reached. This bound can be given both in terms
of time and in the form of some kind of energy con-
sumed by the robot �that can be approximated by
limiting the total path the robot can drive along�.
This metric is easily applicable to real systems, since
it takes into account intrinsic limitations on system
resources, but it requires measuring how much in-
formation has been gathered from the environment
at a given point. This is not easy in the presence of
multiple objectives �e.g., map to be explored and vic-
tims to be found�, and in many cases �see, for ex-
ample, the evaluation function used within the Rob-
oCup Rescue competitions �Jacoff, Weiss, & Messina,
2003�3� the introduction of weighting factors that
make the measure not objective is needed.

In order to use an objective performance metric
that is applicable to real robotic systems, in the fol-
lowing we will consider several functions, one for
each feature that must be discovered and measured
from the environment.

More specifically, our performance metric is
given by a set of functions

V � ��vi�t��i = 1, . . . ,n� , �1�

one for each feature i to be measured from the envi-
ronment. Each function vi�t�→ �0,1� measures the
percentage of information related to feature i mea-
sured at time t. For example, in the case of map

building, vi�t� is the amount of explored map with
respect to the total size of the environment, while in
the case of victim detection it is the percentage accu-
racy in determining the number of discovered vic-
tims versus the total number of victims that are in
the environment. More specifically, for victim detec-
tion the evaluation function is

vi�t� = max

	0,1 −
�found _ victims − total _ victims�

total _ victims

 ,

where found_victims refers both to candidate and
confirmed victims. This function guarantees that vi
is always between 0 and 1 even in the presence of
false positives.

This metric has the advantage of being easily
applicable to real systems; moreover, it does not re-
quire the definition of weighting factors. However, it
does not allow for a direct comparison between dif-
ferent strategies or different systems, in cases where
all the single functions of one system/strategy do
not outperform the ones of the other.

5.2. Experimental Scenarios

Experiments have been performed in four different
scenarios that require different mission strategies to
accomplish the goal. In the following subsections we
describe each scenario and the particular strategy
implemented for it. Moreover, we discuss the perfor-
mance of our approach with respect to the particular
goal of the mission. All the experiments have been
performed in a limited time �10 min� and we mea-
sured the values of information vi�t� for the interest-
ing features: v1�t� measures the explored map, v2�t�
the candidate victims, v3�t� the confirmed victims,
v4�t� �used only in Scenario 2� the fire detection.

In Scenarios 2–4, qualitative a priori knowledge
about the mission is provided. This is taken into ac-
count in our approach by modifying the high-level
Petri Net Plan in order to better fit the desired be-
havior.

In Scenarios 1 and 2, the implemented strategies
are compared with a greedy policy �we call it “Sim-
plest”� that uses a utility function to decide the next
position to explore. This strategy can interrupt the
navigation to the current goal if another candidate
target, with a higher utility value, has been found.

3http://www.rescuesystem.org/robocuprescue/or
http://www.isd.mel.nist.gov/projects/USAR/competitions.htm
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The utility function computes the path distance to
the candidate targets and then multiplies this value
by a fixed weighting coefficient that characterizes the
importance of the target type.

Scenarios 3 and 4 are more complex, and the a
priori knowledge cannot be simply expressed by de-
fining a function to optimize. Therefore, in these sce-
narios, we show how the high-level representation
of the robot plan can be suitably modified in order to
take into account complex qualitative knowledge.

The experiments have been performed using
both our rescue robot operating in a test bed arena
and a simulated robot in USARSim. More specifi-
cally, the experiments of Scenarios 1 and 2 have been
performed both in the real and in the simulated en-
vironment, while the ones in Scenarios 3 and 4 have
been performed only in the simulation. For each ex-
periment, ten runs have been performed �both with
the real robot and in the simulator� starting from the
same initial configuration of the environment and of
the robot. Results reported below are averaged over
these ten runs.

As described below, experiments in simulated
scenarios are performed using two different maps
�one for Scenarios 1 and 2 and one for Scenarios 3
and 4� with two different robot starting poses and
victim configurations for each of them.4

5.2.1. Scenario 1

In the first scenario, the goal is to find as many vic-
tims as possible with no a priori knowledge on the
environment. For this scenario we have performed
experiments in the virtual and in the real environ-
ments, aiming at assessing the basic behaviors of the
system. The arena is built following the RoboCup
Rescue Yellow Arenas specifications: it is planar and
has a mazelike structure. The map used in the real
and the simulated environment is the same and it is
shown in Figure 3. In both cases there are three vic-
tims in an area of 7�5 m2. The robot goal is thus to
find and confirm all potential victims. The plan that
determines the strategy for this scenario is the one
already described in Section 3: the robot stops the
exploration as soon as a new potential victim has
been found and then it moves to a location suitable
for the confirmation step. We call this strategy “Vic-
tims First.”

The results of the experiments are shown in Fig-
ure 4, where we report, for each time step, the num-
ber of victims detected �both potential and con-
firmed�, the number of victims confirmed, and the
portion of the total map explored. As already men-
tioned, the reported values are averaged over a set
of ten experiments. The left graph is relative to ex-
periments in the real scenario and it can be com-
pared with the right one that shows the results in the
simulated environment. The results of the two sets
of experiments show a similar trend of the evalua-
tion functions, indicating a consistent behavior in

4Simulated scenarios, robot configurations, and results are avail-
able for experimental comparison of other approaches.

Figure 3. The robot in the simulated and real arenas used for the experiments in Scenarios 1 and 2.
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the two environments. In fact, it is possible to see
that victims are analyzed as soon as they are discov-
ered. Notice that, while the trend of the functions is
similar, their values present some differences that
are due to the different behavior of the simulator
with respect to the real environment.

This strategy has been also compared with the
“Simplest” one, where the importance factor to con-
firm a candidate victim is much higher than the oth-
ers �i.e., exploring other part of the environment and
finding other candidate victims�. The two strategies
have the same behavior, hence the graphs are very
similar to the above ones.

5.2.2. Scenario 2

In this scenario we introduce a new feature that rep-
resents the source of the incident �it can be the
source of a fire, a chemical agent, etc.�. There is only
one such feature and the priority of discovering it is
considered higher than finding the victims, since it
may still represent an active threat. For the simu-
lated experiments, we used a particular kind of
RFID to model this feature, while in the real experi-
ments a heat source with a very high temperature
�about 100 °C� is used. In the real system, fire detec-
tion is performed by the same software module that
is used for detecting potential victims, by using a
different interpretation of data coming from the
thermo sensor. In both cases, we assumed that a fur-
ther detection step to confirm this observation is not
needed.

The strategy implemented for this scenario
�called “Fire First”� is a slight variation of the one
mentioned in the previous subsection. We want the
robot to find the threat as soon as possible, avoiding
the time-consuming analysis of candidate victims
during the search. Therefore, potential victims are
not considered when computing the next target to
explore or search �in the computeTargets action of
Figure 1�, though we may still find new potential
victims. As soon as the fire has been found, the pri-
ority of the strategy changes and, afterwards, the ro-
bot can focus on analyzing potential victims �i.e.,
those previously found and new ones as soon as
they are detected�.

To this end, we changed the computeTargets ac-
tion by transforming it in a subplan that is shown in
Figure 5. Here a conditional action checks if the fire
has already been found and selects one of two dif-
ferent instances of the computeTargets action: the
first considers victims to be analyzed, while the sec-
ond does not.

The “Simplest” strategy for this scenario has
been configured by ordering the importance factors
of the features as follows: detecting fire has higher
priority than confirming victims and exploration.
The results of the set of experiments in the real en-
vironment are shown in Figure 6. The ones from the
simulated environment have a similar trend and are
thus omitted. The event of the discovery of the fire is
also included. In the single experiment, this value
can be 0 �fire not found� or 1 �fire found�, but since

Figure 4. Results of the experiments in Scenario 1: �left� results in the real scenario using the “Victim First” strategy,
�right� results of the same strategy in the simulated scenario.
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the graph shows the average over ten experiments,
intermediate values are present �for each “step” of
the function measuring fire discovery, we know that
at least one experiment found the fire at that time�.

The results of the experiments show that the
“Fire First” strategy handles effectively the priority
of the fire search: the robot never stops the naviga-
tion to perform the second time-consuming step of
the human body detection algorithm, before the fire

discovery. The main difference with respect to the
“Simplest” strategy is that, since it uses a fixed util-
ity function for the choice of the next target to ex-
plore, the system behaves like it is maintaining the
search of the threat as the primary goal of the mis-
sion, even after having found the threat. In other
words, with the “Simplest” strategy, the second step
of the victim analysis �and the consequent confirma-
tion� can be performed only when the whole envi-
ronment has been explored and all possible threats
and victims found, while this process can be initi-
ated immediately after the fire discovery by the “Fire
First” strategy. The outcome of this behavior is that
the “Fire First” strategy confirms a higher number of
victims. In this scenario, we can notice that a dy-
namic reallocation of the weights of the “Simplest”
strategy will result in a behavior similar to that of
the “Fire First.” Anyway, this solution does not al-
low for the flexibility of using the high-level repre-
sentation.

5.2.3. Scenario 3

The goal here is to find as many victims as possible,
with a priori knowledge of their location. This can
be represented, for example, by a probability distri-
bution over a metrical map or by some topological
high-level statement �e.g., victims are mostly in the
third room on the left�. Although we have such in-
formation, we do not yet know the �metric� map of
the environment, which has to be built on-line.

Figure 5. The subplan computeTargets, used in Strategy
“Fire First.”

Figure 6. Results of the experiments in Scenario 2: on the left the strategy “Fire First,” on the right the “Simplest”
strategy, both in real environments.
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The plan-based strategy here is another varia-
tion of the “Victims First” strategy, where the action
computeTargets takes into account the probability
distribution in the decision of the next target to ex-
plore, giving more chances to candidate targets that
are in areas where the probability distribution is
higher. We call this strategy “Biased.”

Instead, the “Simplest” strategy cannot be used
as it is; it should be rewritten in order to take into
account the notion of probability distribution.

The simulated scenario represents an officelike
environment �see Figure 7�, with a long corridor and
five rooms. The a priori knowledge gives a higher
probability to find victims in one of the rooms and
the robot should concentrate its search in that room,
although it is possible to find other victims else-
where. In particular, we put four victims inside a
room and one in the corridor.

Results of this experiment performed in the
simulated environment are shown in Figure 8. In
this figure, the results are compared with the out-
come of the “Victims First” strategy in the same en-
vironment, in order to show how the a priori knowl-
edge about the victim location leads to a consistent
performance improvement, i.e., almost all the vic-
tims are confirmed by exploring only a portion of
the environment.

5.2.4. Scenario 4

In the last scenario, the a priori information about
the mission is the knowledge that victims are prob-
ably grouped in clusters. However, we do not know
anything about their locations in the map. The
implemented strategy, called “Go Away from Con-
firmed” follows the usual structure of the other ex-
periments, except that, when a victim is found and
confirmed, the computeTarget action will not con-
sider other potential victims that are in the same
area. This allows searching for other clusters as soon
as a victim �that can be considered as the represen-
tative of its cluster� has been detected and con-
firmed.

In this scenario, we use a map similar to that of
Scenario 3, in which we put five victims in one room
and another far away from them, so that we have
two clusters of victims.

Results in Figure 9 show that the strategy
pushes the robot to explore unknown areas as soon

Figure 7. The officelike environment used for Scenarios 3
and 4.

Figure 8. Results of the experiments in Scenario 3: on the left the strategy “Biased,” on the right the results of the
“Victims First.”

Calisi et al.: Multi-objective Exploration and Search for Autonomous Rescue Robots • 775

Journal of Field Robotics DOI 10.1002/rob



as it detects and confirms the first victim �remember
that since there are five victims, 20% means one vic-
tim�. In this case, we are not interested in the num-
ber of confirmed victims, but in finding and con-
firming both the clusters of victims in the room �by
finding and confirming one of them� and the victim
in the corridor, isolated from the rest. To show the
correct behavior of this strategy, we show also the
results of the “Victims First” strategy, which, follow-
ing correctly its goal, will confirm as many victims
as possible. Since the room with the four victims is
nearer than the isolated victim, this strategy discov-
ers and confirms, in all experiments, the four victims
in the room, but has not enough time to discover the
second cluster.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated multi-objective ex-
ploration and search in a rescue environment. Specifi-
cally, we focused our attention on autonomous robots
that can accomplish missions without direct control
from the operator. We have described a solution
based on a high-level framework for representing
plans. In this way, it is possible to implement explo-
ration and search strategies that depend on the fea-
tures of the operational scenario and on the objectives
of the mission and can be effectively applied by the
rescue robot.

Different experimental scenarios have been de-

vised to suitably evaluate the performance of explo-
ration and search strategies. Moreover, a comparison
of the proposed approach with methods based on
utility function optimization has been performed.
The reported results show that our formalism allows
for easy implementations of different strategies that
are effective in the considered rescue scenarios. More-
over, based on the experimental analysis, we argue
that a proper evaluation of the performance in multi-
objective search and exploration requires user ori-
ented criteria to assess the effectiveness of the pro-
posed methods.

As future work the approach could be extended
by addressing more complex scenarios, where some
of the assumptions made in the present work are not
applicable: for example, dynamic scenarios where
events occur during the mission �e.g., doors are
opened/closed�, 3D environments �e.g., multi-level
environments�, presence of moving victims, and ad-
ditional features to be measured from the environ-
ment. In our opinion, more complex scenarios should
further emphasize the features of the proposed ap-
proach.

Finally, the possibility to deploy teams of robots,
which seems particularly attractive from a practical
viewpoint, cannot simply be handled by summing
the results achieved individually by the robots. Both
the quality and the correctness of the information de-
pend on how results are combined. Specifically, the
overall result of search and exploration is clearly de-
pendent on whether and how the maps built by the

Figure 9. Results of the experiments in Scenario 4: on the left the strategy “Go Away from Confirmed,” on the right the
results of the “Victims First.”
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individual robots are merged. Moreover, the search
and exploration strategy is also influenced by the co-
operation method adopted by the team: the analysis
of the experiments and the use of more refined evalu-
ation metrics with teams of robots must therefore in-
clude an additional dimension to account for coop-
eration.
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