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We are investigating the rules that govern protein-DNA interactions, using a sta-
tistical mechanics based formalism that is related to the Boltzmann Machine of

the neural net literature. Our approach is data-driven, in which probabilistic algo-

rithms are used to model protein-DNA interactions, given SELEX and/or phage

data as input. In the current report, we trained the network using SELEX data,

under the \one-to-one" model of interactions (i.e. one amino acid contacts one

base). The trained network was able to successfully identify the wild-type binding

sites of EGR and MIG protein families. The predictions using our method are

the same or better than that of methods existing in the literature. However our
methodology o�ers the potential to capitalise in quantitative detail, as well as to

be used to explore more general model of interactions, given availability of data.

1 Introduction

Unraveling the general rules behind the recognition of speci�c DNA sequences
by particular proteins has become a great challenge in computational biology.
Many important biological processes depend on such accurate identi�cation:
DNA replication, methylation, and cell defense are among them. However, the
most extensively studied such process is gene transcription, which is one of the
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principal mechanisms of gene regulation. It is very important for the response
of single celled organisms to environmental changes and essential for proper
growth and development in multicellular organisms. It is mainly controlled
by proteins that bind particular DNA target sequences, typically within the
vicinity of the promoter region of the gene. These proteins a�ect the rate
of transcription either positively (activators) or negatively (repressors), often
through the action of complexes involving additional proteins.

Although the target sequences are relatively short, and therefore, abundant
in the genome, DNA binding proteins are able to recognise them with high
speci�city. Much has been learned about these interactions in the past two
decades 18. There are now many protein-DNA complexes whose structures
have been determined by X-ray crystallography. In addition, new techniques
have allowed the determination of the preferred binding sites for many di�erent
proteins, wild type and mutants. Selection techniques, both in vivo and in

vitro, have been applied to obtain either high aÆnity binding sites for particular
proteins or high aÆnity proteins for particular DNA sites (e.g. 2;3).

1.1 The search for a \Protein-DNA Recognition Code"

The search for the \Protein-DNA Recognition Code" has been a long time
pursuit. Such a code would allow one to predict the binding site for a protein by
knowing its sequence (and inferring its structure by homology to other proteins
of that family) or vice versa. Moreover, having a recognition code would allow
for the design of proteins that bind particular sequences and would open new
horizons in manipulating gene expression.

In 1976, Seeman et al22 proposed a rational protein-DNA recognition code
based on the surface features of the amino acids and the bases. However, by
the time a few protein-DNA complexes had been crystallized it was clear that
such a simple code was not realistic. A 1988 Nature paper entitled \Protein-
DNA interaction. No code for recognition" 16 showed that there is no simple,
deterministic recognition code, as in the genetic code. But even the genetic
code is deterministic in only one direction: given a codon we know with cer-
tainty the corresponding amino acid, but given the amino acid we only know
the frequencies of various codons. The protein-DNA recognition code is clearly
probabilistic in both directions. There are clear preferences for given amino
acids to interact with particular base pairs and vice versa 17;5;12;15;24.

We are using a data-driven approach to incorporate these preferences into
a well de�ned probabilistic code. Previous attempts for determining such a
\recognition code" include the exploitation of DNA-protein co-crystal struc-
tural data 15 as well as the development of a qualitative model 4;24. However,
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the �rst of these approaches is limited by the small size of the data set (53
examples); whereas the second one is bound to the \one-to-one" model of
interactions and the binary representation of the data (see also Sec. 4.2).

1.2 EGR protein family: a brief overview

In recent years a number of protein families has been used for the study of
protein-DNA interactions, but the best studied so far is the family of Early
Growth Response factors (EGR). EGR genes are early-response genes, �rst
identi�ed in mammals7. In later years they were also cloned (fully or partially)
from a variety of other organisms, including zebra�sh and Xenopus laevis. All
of those genes contain three highly conserved zinc �nger regions, a domain
common to many eukaryotic transcription factors. The structure of the three
Zn-�ngers of the protein bound to its consensus DNA sequence was initially
solved crystallographically at 2.1 �A 19 and consequently re�ned to 1.6 �A 6. The
target site is now believed to be 10 bp long and each �nger contacts 4 of these
bases (with one base overlap in the target site of each �nger)6. The topology of
the molecules in the solved crystal structure showed that each of four \critical"
amino acids in every �nger could contact a base on the target site (Figure 1).
It was also found that the three �ngers bind the DNA in a modular fashion,
independently of each other 2;20.

2 Data

2.1 Data Sources: SELEX and Phage Display Experiments

There are three types of interaction data currently available in the literature.
The �rst is SELEX data, where a particular protein is used to �sh out oligonu-
cleotide target sequences from a randomised pool 2. The second type is data
derived from phage-display experiments, where the DNA target site is �xed
and the protein is randomised 3. Both kinds of experiments allow one to select
the variable part (DNA target sites or binding proteins) that has high relative
aÆnity to the �xed part (proteins or DNA respectively). However, usually
several di�erent sequences are obtained from these experiments and we do not
know their relative aÆnities, or even if these are the only high aÆnity sites.
We can only infer that the observed sites are among the highest aÆnities sites
for that protein/DNA. A third type of data comes from experiments where
both the protein (wild-type or mutated) and the DNA target are �xed. These
data are not informative for our probabilistic approach.

We collected from the literature 876 examples of DNA bound by variants of
EGR proteins. 367 of these resulted from SELEX and 274 from phage-display
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Figure 1: \One-to-one" model of interaction. DNA binding model for the EGR pro-

tein family, according to the crystallographic studies. EGR proteins have three zinc �nger

domains, each of which contacts four bases in an antiparallel fashion. There is an one base

overlap in the target sequence between any two adjacent �ngers. The numbering of the amino
acids is with respect to the beginning of the alpha-helix. Amino acids -1, 3 and 6 contact

bases at positions 3, 2 and 1 respectively; whereas amino acid 2 contacts the complementary

base at position 4 (overlapping base).

experiments. In 235 cases both the protein and the DNA target were �xed.
In the present report, we focus on SELEX data from studies on EGR-

derived proteins. According to \one-to-one" model of interaction6, amino acids
at positions -1, 3 and 6 (with respect to the beginning of the �-helix) contact
bases at positions 3, 2 and 1 respectively; whereas amino acid at position 2
contacts the complementary base at position 4 (overlapping base between two
adjacent �ngers, as shown in Figure 1).

Zn-�ngers of this type (C2H2) are believed to function in a modular fash-
ion, independently of each other (except the overlapping base)2;20. We decided
to focus our analysis on the interactions of a single �nger. We created a dataset
of 1,101 training vectors, by pooling together all single �ngers from the 367
SELEX experiments. Since our approach is statistical by nature, we discarded
the 426 of those examples, that both the DNA and the protein was �xed in
all positions (see example, below). Thus, we ended up with 675 single �nger
vectors, which constituted our training set. In this set 115 di�erent \proteins"
(with respect to the four \critical" amino acids) had \selected" a total of 52
di�erent tetranucleotide targets (out of all possible 256).

As an example of the training set construction, consider the following
SELEX result (capital and small letter denotes randomisation and �xation of
the corresponding base and f1, f2 and f3 represent the sequences of the three
�ngers; \critical" positions -1, 2, 3 and 6 of each �nger appear in bold).

50gcgGTGgcgt30 ��� f1srsdeltrhir � f2srvdaleahrr � f3arsderkrhtk

From this particular experiment, two training vectors were obtained: 'gcgG�
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rder' (�nger-3) and 'GTGg � rdaa' (�nger-2). Finger-1 ('gcgt � rder') was
excluded from the training set, since all four bases of its DNA target are
�xed. Finally, under the \one-to-one" model (Figure 1), only a small subset
of all possible interactions between bases and amino acids was considered. For
example, for the vector 'GTGg � rdaa', the allowed interactions were: �rst G
to second Ala, T to �rst Ala and second G to Arg.

2.2 Data representation

The data can be represented as two sparsely encoded vectors (xN and yA),
which consist of the binary nature of the representation of the target DNA and
the \critical" amino acids respectively. For the binary representation of the
four bases we use the following vectors:

A = N1 = (1000); C = N2 = (0100); G = N3 = (0010); T = N4 = (0001)

Using this notation, a four base long string at positions i = 1 to 4 is
represented as a string of vectors at the four positions, N�

i . Similarly, there is
another set of twenty such vectors for the representation of the amino acids.

The amino acids are assumed to interact with the DNA in a mode that is
provided by a \contact matrix", C. Matrix C consists of binary values: if base
at position i contributes to the aÆnity of interaction by contacting amino acid
at position j then Cij = 1, otherwise it is 0.

3 The Algorithm

Problem: Given a �xed and a variable counterpart (e.g. protein a and DNA
respectively), �nd out which of the combinations of the variable counterpart
have high speci�city to the �xed one.

3.1 The model

We assume that an e�ective potential, E, of the following form exists, which
describes the binding of protein to DNA:

E(xN;y A) =
X

ij��

CijT
��
ij xN

�
i yA

�
j +
X

i�

H�
i xN

�
i +
X

j�

J
�
j yA

�
j (1)

aThe term \protein", here, simply refers to those amino acids that contact the DNA (or

we assume they do so).
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Here E(xN;y A) is the e�ective energy of binding of the nucleotide se-
quence xN to amino acid sequence yA. On the right side of the equation, xN
and yA are decomposed into the individual residues (the �s and �s) and posi-
tions (the is and js) that make up the sequences, so as to speci�cally include

the additive contributions from each possible base-amino acid contact. T
��
ij

represents an additive contribution to the energy resulting from a nucleotide,
�, to amino acid contact, �, at position pair (i; j) (see Figure 2B). For com-

pleteness we include H�
i and J

�
j , which represent possible position dependent

contributions to the energy, independent of interaction (for bases and amino
acids, respectively). Cij is the \contact matrix" we referred to before. By
modifying the Cij matrix we can explore various models that allow di�erent
subsets of interactions.

It is easy to extend this form to include more complicated interactions.
For example, non-additive di-nucleotide interactions with residues can be rep-
resented in an extended form of Tij matrix. However, in the present study we
focus on the above form, where we assume that each nucleotide-residue contact
makes an additive contribution, according to the \one-to-one" model.

3.2 Speci�city

Consideration of the binding of protein to DNA occurring within the cell 1;9

prompts the form of the algorithms we use to analyse the available sequence
data. Previous work 9, employed the idea of speci�city in sequence analysis
of protein-DNA binding interactions. Assume that nucleotide sequences exist
with some reference probability, Pref (xN). Then, following Berg and von
Hippel1, we write the probability that a protein will bind to a typical sequence
in the set of sequences described by the reference distribution as:

P (xN jyA) =
Pref (xN)exp(�E(xN;y A))P
zN

Pref (zN)exp(�E(zN;y A))
(2)

where E is an assumed e�ective potential of interaction, taken from Equation
1; and

P
zN

denotes a sum over all possible nucleotide sequences. The fraction
of time that the protein will be bound to one of the nucleotide sequences (there
can be multiple sequence copies with varying multiplicities for each sequence)
is the speci�city, denoted by K:

K(xN jyA) =
P (xN jyA)

Pref (xN)
(3)

and the reference probability, Pref (xN) will be that determined by the
nucleotide frequencies for this experiment.
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Given a set of SELEX generated sequence data the overall speci�city is
just the product over the data items of each individual speci�city and thus we
can write:

logKtotal =
X

xy

logK(xN jyA) (4)

The
P

xy is over all of the base-amino acid sequence combinations in the
database. Similar expressions can be written for the speci�city involved in
a phage display experiment.

3.3 Maximising Likelihood

Assuming that the sequences were selected for optimal speci�city, the param-
eters T ,H ,J can be determined by maximising the log probability (or the log
speci�city) for all the data as a function of these parameters. This process is
called parameter �tting .

In our case, the model was trained by adjusting the weights according
to the steepest ascents procedure, with which any objective function can
be maximized by iteratively incrementing each free parameter by an amount
proportional to its gradient with respect to the parameters. This process has
a very simple interpretation for our log speci�city objective function. It can
be written as the sum of the averages as calculated by frequency counting in
the given data set and the (negative of) the expectation as computed within
the distribution. Hence the steepest ascent process will reach a �xed point (i.e.

zero gradient) when the expectations as calculated within the distribution match

the frequencies as calculated within the given data set. This intuitive result is
basically the Boltzmann machine algorithm for neural network training 8, an
observation which results in some additional insights into the algorithm we
propose, but won't detail here.

4 Results and Discussion

We used four di�erent data sets to test our model: one was the training set itself
(\self-test"), two others were obtained from more recent publications on the
EGR protein family 23;24 and the fourth consisted of data on MIG proteins 14.
MIG are also Zn-�nger proteins of the same type (C2H2), although unrelated
to EGR outside the Zn-�nger domains.
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4.1 Self-test

We examined how well the model predicts its own training set. If the model is
internally consistent, then the combinations used on its training phase ought,
in general, to have high probability rank. Of course, we don't expect that all of
the training set combinations will be ranked the highest. In a SELEX exper-
iment, many DNA targets may be selected, but they cannot all be predicted
to be of the highest rank, although they should be near the top. Moreover,
the stochastic nature of the experimental procedure will not always select the
sequences with the highest probability. The ones selected, though, should have
probability near to the highest.

Thus, for each of the 115 �ngers of the training set (in fact: tetra-peptides;
see also Sect. 2.1), we ranked all possible 256 tetra-nucleotide targets according
to our model's predicted speci�city. We found that 80% of the DNA targets of
the training set rank in the top 1% of the list of all possible targets (of their
associated �nger). This is a reasonably good result which we expect to become
better when phage display data is included during training and when larger
sets become available for training.

4.2 Predicting SELEX binding sites on EGR-derived proteins

Wolfe et al. 24 performed a number of SELEX experiments using EGR-
derived proteins. These proteins were originally optimised to bind DNA target
sites normally recognised by NRE, TATA, and p53 proteins (named NREZF ,
TATAZF and p53ZF respectively). The data from these SELEX experiments
were not included in our training data set.

We compared the predictions of the model for the three �ngers of NREZF ,
TATAZF and p53ZF proteins with the predictions of the qualitative model
Wolfe et al. proposed in their paper. This qualitative model can be viewed as
another form of our quantitative, but with binary values and considering the
\one-to-one" model of interaction only (Figure 2A). We found that in general,
both models agree as to the preferred sites for each protein and usually the
predictions match the observations. In a couple of cases, our model made the
same predictions as theirs and neither matched the SELEX data (see Table 1).
These examples probably indicate a limitation of the simple additive model
that both employ and are worth exploring in more detail experimentally. In
two cases their model made no prediction (\N") whereas ours made one that
is consistent with the data. There is no case where the qualitative model does
better than ours.
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Figure 2: Schematic view of the two models: (A) qualitative and (B) quantitative. The

boxed areas of the quantitative model correspond to the \one-to-one" model of interaction.

The qualitative model could also be viewed as a quantitative with binary values only.

4.3 Quantitative Predictions on Relative AÆnity

We compared our predictions to some quantitative data that were reported in
23. Among other experiments, they measured the change in aÆnity between
two di�erent binding sites for a number of protein variants (summarised on
Table 1, p. 2762 of their paper). They report 9 such di�erences; but because
our training data did not include an example of Lys in amino acid position 3, we
can only compare our predictions to 8 of their measurements. Their observed
di�erences in aÆnity range from essentially no change to over 160-fold. If we
calculate the expected change in aÆnity for those pairs, based on our model,
the range is not as large as the measured one; but there is a strong correlation
between the two (r=0.80). Moreover, in every case a change resulted in large
di�erences in aÆnity, i.e. 30-160 fold, the predictions had large di�erences
too. Similarly, changes that had minor e�ects on aÆnity, less than 5 fold, were
predicted to have little or no e�ect.

4.4 Predicting S. cerevisiae MIG binding sites

S. cerevisiae has no EGR homologue. However, two yeast transcription fac-
tors (MIG1 and MIG2) contain Zn-�ngers that belong to the same class as
the ones of EGR proteins (C2H2). The Zn-�nger region of the two protein
families is highly similar (43.5% a.a. identity), although there is no conserva-
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Protein AA DNA pos. Qualitative Quantitative SELEX

p53ZF fing2 : R6 1 G G A
NREZF fing2 : D�1 3 C C n
p53ZF fing1 : E6 1 n AC C
NREZF fing3 : A6 1 n AC Ac

Table 1: Summary of the major discrepancies between the two prediction models, qualitative
and quantitative, with respect to the SELEX results, reported at Wolfe et al. The �rst two

rows show the cases that both qualitative and quantitative models made the same prediction,

which didn't match the SELEX results. The other two rows show the cases where the

qualitative model could not make any prediction. In both these cases our quantitative

model predict A or C for the �rst DNA position; in the �rst case the observed consensus is

C and in the second the consensus is A with C being the second most common base.

tion whatsoever in the rest of the proteins. Moreover, MIG proteins contain
two Zn-�ngers at the N-terminus, whereas EGR proteins contain three �ngers
at the C-terminus. Since they are, essentially, di�erent proteins with a com-
mon function (they all bind DNA and presumably, in the same fashion), they
constitute good candidates to test the prediction potentials of our method.

Mark Johnston and his colleagues performed SELEX experiments on the
wild type MIG proteins14. In these experiments, they used MIG1 and MIG2 to
select oligonucleotide targets from a randomised pool, biased for the SUC2-A
MIG1 target site. The SUC2-A site is 50�ATAAAAATGCGGGGAA�30 and
the oligonucleotide pool was biased to contain, in each position, 79% percent of
the \wild-type" nucleotide and 7% of each of the other three. Assuming that
MIG proteins bind the DNA in a fashion similar to EGR, our model predicts
that their preferred binding site should be 50 � GCGGGGG � 30, which is
exactly the result of their SELEX experiment. In addition, the model predicts
that the most variable base is the last one, which is also con�rmed by the
SELEX result. In the second position, C is predicted to be the second most
variable base, which agrees with the observed data. However, not everything
about the model is consistent with the data. For example, the model predicts
that the �rst position should be conserved the most, whereas in vivo studies
have shown that the protein is more tolerant of changes there.

5 Concluding remarks

In this paper, we presented a probabilistic method that addresses the problem
of DNA recognition by particular proteins. We developed a simple proba-
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bilistic, data driven algorithm, which can \learn" from SELEX and/or phage
display data, by optimising an objective function that is related to the speci�ci-
ty of the protein to DNA. Previous attempts to determine a set of \recognition
rules" of the protein-DNA interactions are limited by the number of data used
(53 co-crystal structures, as in 15) or the nature of the model itself (\quali-
tative" model, as in 24). Our method assumes additivity of the interactions
between bases and amino acids, although it can be easily expanded to include
non-additive interactions.

As a �rst approach, we used SELEX data from the EGR protein family,
collected from the literature, for the training according to \one-to-one" mod-
el of interactions. We tested our model, by comparing its predictions to the
training set itself and to data that were not included in it. In all cases, our
method performed the same or better than the currently available qualitative
model. Moreover, it can be easily expanded to explore more complex interac-
tion patterns. We also used our model to make some quantitative predictions
and compare them with aÆnity measurements from Segal et al 23. We found
that our predictions agreed with the observations (correlation factor r=0.80).
Such quantitative predictions are not possible with any of the models avail-
able in the literature, and are one of the primary advantages of our approach.
Using more data and joint training we expect to be able to make even more
accurate predictions. Finally, we explored the potentials of predicting binding
sites for yeast MIG1 and MIG2, two proteins with Zn-�nger domain structure,
similar to EGR. Our results con�rm the outcome of the SELEX experiment
for these proteins and thus indicates that they bind DNA in an antiparallel
fashion, analogous to EGR.

The main limitation of our method, currently, appears to be the availability
of data. We are planning to update our database and expand the training to
include a combined SELEX and phage display data set. In addition, we are
going to collect more data on C2H2 Zn-�nger proteins and use them for a
better training. However, there are more aspects to be addressed. Does the
\additivity rule" hold? Are there interactions, other than the ones indicated
in the crystal structure, that contribute signi�cantly to speci�city? We believe
that the approach we presented here is on the right direction for a better
understanding of the rules that govern the highly speci�c recognition of the
DNA by proteins.

Acknowledgments

PVB wishes to thank Elena Rivas for useful discussion. The hospitality of
the Santa Fe Institute, where part of this research was performed, is also

Pacific Symposium on Biocomputing 6:115-126 (2001) 



gratefully acknowledged. This work was supported by NIH Grant HG00249
to GDS. ASL's research was supported by the Department of Energy under
contract W-7405-ENG-36.

References

1. Berg OG and von Hippel PH,J Mol Biol 193, 723 (1987)
2. Choo Y and Klug A,Proc Natl Acad Sci USA 91, 11163 (1994a)
3. Choo Y and Klug A,Proc Natl Acad Sci USA 91, 11168 (1994b)
4. Choo Y, Klug A,Curr Opin Biotechnol 6, 431 (1995)
5. Desjarlais JR, Berg JM,Proc Natl Acad Sci USA 89, 7345 (1992b)
6. Elrod-Erickson M, Rould MA, Nekludova L, Pabo, CO,Current Biology
4, 1171 (1996)

7. Gashler A and Sukhatme VP,Prog Nucleic Acid Res 50, 191 (1995)
8. Hertz J, Krogh A and Palmer RG, \Introduction to the theory of neural

computation". (Addison-Wesley Pub. Co., Redwood City, CA, 1991)
9. Heumann JM, Lapedes AS, Stormo GD,ISMB 2, 188 (1994)
10. Isalan M and Choo Y,J Mol Biol 285, 471 (2000)
11. Jamieson AC, Kim SH, Wells JA,Biochemistry 33, 5689 (1994)
12. Jamieson AC, Wang H, Kim SH,Proc Natl Acad Sci USA 93, 12834

(1996)
13. Klug A,J Mol Biol 293, 215 (1999)
14. Lut�yya LL, Iyer VR, DeRisi J, DeVit MJ, Brown PO, Johnston

M,Genetics 150, 1377 (1998)
15. Mandel-Gutfreund Y, Margalit H,Nucleic Acids Res 26, 2306 (1998)
16. Matthews BW,Nature 335, 294 (1988)
17. Nardelli J, Gibson TJ, Vesque C, Charnay P,Nature 349, 175 (1991)
18. Pabo CO, Sauer RT,Annu Rev Biochem 61, 1053 (1992)
19. Pavletich NP and Pabo CO,Science 252, 809 (1991)
20. Pomerantz JL, Sharp PA, Pabo CO,Science 267, 93 (1995)
21. Rebar EJ, Pabo CO,Science 263, 671 (1994)
22. Seeman NC, Rosenberg JM, Rich A,Proc Natl Acad Sci USA 73, 804

(1976)
23. Segal DJ, Drieter B, Beerli RR, Barbas 3rd CF,Proc Natl Acad Sci USA

96, 2758 (1999)
24. Wolfe SA, Greisman HA, Ramm EI, Pabo CO,J Mol Biol 285, 1917

(1999)
25. Wu H, Yang W-P, Barbas 3rd CF,Proc Natl Acad Sci USA 92, 344 (1995)

Pacific Symposium on Biocomputing 6:115-126 (2001) 


