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Annotating the tremendous amount of sequence information being generated requires accurate
automated methods for recognizing homology.  Although sequence similarity is only one of many
indicators of evolutionary homology, it is often the only one used.  Here we find that
supplementing sequence similarity with information from biomedical literature is successful in
increasing the accuracy of homology search results.  We modified the PSI-BLAST algorithm to
use literature similarity in each iteration of its database search.  The modified algorithm is
evaluated and compared to standard PSI-BLAST in searching for homologous proteins.  The
performance of the modified algorithm achieved 32% recall with 95% precision, while the original
one achieved 33% recall with 84% precision; the literature similarity requirement preserved the
sensitive characteristic of the PSI-BLAST algorithm while improving the precision.

1. Introduction

The sequence information generated by genome sequencing projects offers
opportunities for understanding biology at an unprecedented fine level of detail.  At
the same time, the biomedical literature provides a record of high level biological
phenomena as observed and reported over many decades.  There is an opportunity
to combine the power of the genome sequence information with the published
biological record to accelerate progress and gain insight.  Here we show that
including literature to tailor homology searches against sequence databases can
improve performance.

The concept of homology between two protein or nucleotide sequences is often
used to infer that two genes or their protein products are related by evolution.
Divergence between the two entities may have occurred when two species evolved
from a single ancestor (orthologs) or when gene duplication occurs within a species
(paralogs).  We usually expect that homologous sequences have common
functional roles in enzymatic activity, cellular functions, or overall cellular
processes, and may have common structural features, such as in their protein
tertiary structure or active site mechanisms.  Since attributing structure, function,
or process to a protein sequence experimentally can be expensive in time and
effort, biologists look to other sequences that share similarity to predict homology
and then infer these features.  This approach has been used widely for structure
prediction, function prediction, and genome annotation [1-7].
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Well-known approaches to assess sequence similarity include dynamic
programming [8,9] and BLAST [10].  The dynamic programming approaches find
the alignment between any two sequences that generates the most optimal score
based on user-specified parameters.  The BLAST approach is an approximation of
an optimal algorithm and was designed to search databases rapidly for sequences
that align significantly well to a query sequence.  Thus, it is often used for
applications that require high performance, such as genome annotation.

PSI-BLAST (Position Specific Iterated BLAST) is an iterative version of
BLAST designed to increase the sensitivity of searches [11].  In the first iteration,
a BLAST search obtains significantly similar sequences that are used to create a
probabilistic sequence profile.  In subsequent iterations that profile is used to
search the database and to update the significant sequences (see Figure 1).  By
including more diverse sequences into the query, sensitivity is improved.  PSI-
BLAST approaches the problem of homology searching by assuming that the query
sequence is part of a larger family of sequences; the aim of iterative profile
refinement is to ascertain the underlying common structure of the unknown family
and discover its members.

As PSI-BLAST iterates, it includes a more diverse array of sequences, and the
possibility of including a sequence that is not properly considered a homolog of the
original query sequence increases.  Thus, any errors introduced into the profile can
be magnified, eventually diluting the signal from the original sequence; this
situation has been called “profile drift”.  In these situations the algorithm fails to
converge or converges to an imperfect solution.

PSI-BLAST considers only sequence similarity and no other biological
knowledge, such as the scientific literature associated with the sequences.  For
example, if a query sequence is similar to many cell cycle proteins, a reasonable
refinement may be to consider only those proteins involved in the cell cycle.
Including more information may result in a search that is relatively resistant to
contamination.  Our adaptation of PSI-BLAST removes sequences that lack
sufficient literature similarity in each of the iterations.  Evidence that literature
scores are useful for protein structure and functional analysis has previously been
presented in [5,12,13].

2.  Method

The code for the modified PSI-BLAST algorithm was implemented in the Python
programming language [14] using the Biopython toolkit (www.biopython.org) on a
Sun E450 platform.  All experiments were performed on protein sequences
obtained from SWISS-PROT Release 39 (May 2000) [15].  SWISS-PROT 39 is a
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human-curated database of 86,593 protein sequences and contains cross-references
to databases including Protein Data Bank (PDB) [16] and MEDLINE [17].

To validate our approach we created a database of sequences that are
associated with at least a minimal amount of biological literature.  Next, we
defined a gold standard of homologous families of sequences.  Finally, to assess
performance we ran sequence homology searches with PSI-BLAST, varying the
parameters used for profile construction.

Figure 1.  An illustration of PSI-BLAST and our modification.  A sequence is used in the initial query to
BLAST search the database for similar sequences (1), a multiple alignment is then used to construct a profile
to search the database again (2).  Our modification (3) involves screening the sequences that constitute the
multiple alignment for literature similarity; the sequences for which the associated literature is least
concordant with that of the original sequence used in (1) are eliminated from the profile.

Modified PSI-BLAST approach

For each homology search, PSI-BLAST was run against the SWISS-PROT
database for a maximum of ten iterations with the profile inclusion criteria that the
e-value significance of a hit must be at least 0.001.  To prevent trivial sequence
similarities, we filtered both the query and database sequences for low-complexity
regions with SEG using the recommended parameters (12 1.8 2.0) [18].

Our modification to PSI-BLAST involved throwing out sequences that have
poor literature similarity to the query sequence.  After each iteration of the search,
we ranked the significant hits according to a literature similarity score and
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discarded the lowest scoring fraction, thereby excluding them from the profile
(Figure 1).

Collecting Sequence Information and Literature

To obtain literature pertaining to a sequence, we used the information indexed
from its SWISS-PROT record.  First, we collected the description, comments, and
keywords in the record.  Next, we retrieved the record’s MEDLINE cross-
references and downloaded the citation and its MeSH headings, subheadings, and
abstracts.  We defined the literature of a sequence as the concatenation of these
unstructured texts.

Once we collected literature for each sequence, we created a list of domain
specific stop words.  These are words that contain little information for
distinguishing the sequences.  We defined stop words as those words that appear
with less than 3 sequences or more than 85,000 sequences.  We found 80,479 stop
words out of a total of 147,639 words in the corpus.  This simple method for
identifying stop words has previously been shown to be effective in similar tasks
[19].

Calculating Document Similarity

The similarity between the literature of two sequences was calculated using a
vector cosine measure [20].  In this model documents are represented as a vector in
which each dimension represents the number of times a word appeared in a
document.  Documents were tokenized using all non-alphanumeric characters as
delimiters.  Words are then any lowercased token that is not a stop word.

The similarity between two documents is the cosine of the angle between their
word vectors:

                                          (1)

where A and B are the word vectors of two documents.  Documents with similar
word content yield scores close to 1, while those with different words yield scores
close to 0.  The lengths of the documents are not relevant to the similarity, as the
cosine measure normalizes the vectors.

Defining a Gold Standard for Validation

To validate our approach we created families of homologous protein sequences to
use as a gold standard.  Homology families should contain sequences that are
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related by evolution, rather than just by sequence similarity.  Since this is difficult
to define, we choose a definition based on the Structural Classification of Proteins
Database (SCOP), release 1.50 (February 2000) [21].  SCOP is a manually
constructed hierarchical categorization of proteins based on structure and function.
Since biological relatedness is implied at the superfamily level, we defined a
homology family as the set of SWISS-PROT sequences that reference structures in
the same SCOP superfamily.  All SWISS-PROT sequences that map into a single
SCOP superfamily via PDB were selected for the gold standard.

Choice of Test Set

Our test set consisted of one query sequence per family.  Candidate sequences were
selected from the gold standard based on two criteria: 1) they must contain at least
four MEDLINE references with abstracts and 2) they must be in families with at
least five members.  For each family we selected the most divergent candidate
sequence to be in our test set.  We identified this sequence as the one that detects
the least number of homologous sequences in a BLAST search.  If multiple
sequences are equally divergent, one was chosen randomly.

Validation

We conducted four homology searches for each test sequence.  One search used the
standard PSI-BLAST. Three searches used a PSI-BLAST modified to account for
literature similarity with various degrees of stringency; we dropped sequences with
the lowest 5%, 10%, and 20% of literature similarity per iteration.

3.  Results

Figure 2 shows a comparison of the performance of PSI-BLAST to the various
modified PSI-BLAST approaches.  Recall is the number of homologous sequences
surpassing a fixed e-value cutoff divided by the total number of homologous
sequences.  At a fixed recall, precision is the number of homologous sequences
detected divided by the total number of sequences detected.  The modified PSI-
BLAST was more precise than the original at any recall.  In addition, the precision
did not decay as rapidly as recall was increased.
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Figure 2.  Using Text Comparison Improves Homology Search Results.  Results of homology search for 54
training sequences from different families.  Precision is interpolated to insure that the curves are monotonic.
The solid bold line represents the unmodified PSI-BLAST algorithm; other lines represent modified PSI-
BLAST algorithm that drops the sequences with the lowest 5%, 10%, and 20% of literature similarity.

Table 1 lists all the families for which the outcome of PSI-BLAST was altered
by inclusion of our literature criteria; these are the families that account for the
differences in Figure 2.  For 46 of the 54 families that were tested, the outcome was
identical for the modified and the unmodified PSI-BLAST.  Out of the eight
queries remaining, five differed in convergence, while three differed in
performance. These eight families fall into three categories.  The first two families
in Table 1 converged to poor solutions with standard PSI-BLAST and failed to
converge for the modified PSI-BLAST.  The next three failed to converge for PSI-
BLAST, but converged to reasonably good solutions for modified PSI-BLAST.
The final three converged for both modified and standard PSI-BLAST; the
solutions are slightly better for the standard one.
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Table 1.  Homologous families for which performance differed between standard PSI-BLAST and modified
PSI-BLAST (drop 10% of sequences with poorest literature similarity).  Most of the 54 families have
identical performance for both algorithms and are not shown.  Superfamily is a SCOP homology family and
Query Sequence is its test sequence.  Words is the number of document words associated with the query
sequence.  # Seqs is the number of sequences in the family.  The final six columns describe the results of a
search with the query sequence.  Here, precision and recall were calculated for each individual family using
all the results from the homology search.

Convergence Precision Recall

Superfamily Query Sequence Words # Seqs PSI-
BLAST

Text
10%

PSI-
BLAST

Text
10%

PSI-
BLAST

Text
10%

EGF/Laminin C1R_HUMAN 1661 5 yes no 0.11 N/A 0.8 N/A

Acid proteases POL_HV2RO 1271 22 yes no 0.6 N/A 0.27 N/A

PLP-dependent
transferases

GLYC_RABIT 1052 21 no yes N/A 1 N/A 0.1

Thioredoxin-like CAQS_RABIT 1516 13 no yes N/A 1 N/A 0.38

Glucocorticoid
receptor-like
(DNA-binding
domain)

CYSR_CHICK 1738 10 no yes N/A 0.8 N/A 0.4

EF-hand SCP_NERDI 963 31 yes yes 0.92 0.92 0.74 0.71

Glycosyl-
transferases

CHLY_HEVBR 1007 20 yes yes 1 1 0.2 0.15

Snake toxin-like CD59_HUMAN 2435 23 yes yes 1 1 0.13 0.09

4.  Discussion

The figures demonstrate the major strength of our approach.  Inclusion of
biomedical literature into homology searching in some cases improved
performance and otherwise did not deteriorate it.  As greater precision was
achieved, recall was not as dramatically reduced as it was for the standard PSI-
BLAST.

For the protein family “Thioredoxin-like”, the PSI-BLAST homology search
with the “CAQS-RABIT” test sequence failed to converge. The modified PSI-
BLAST that accounted for literature similarity did converge on a precise solution;
it correctly detected 5 sequences.  In this case, removing sequences with low
literature similarity prevented profile drift and allowed the search to converge on a
correct solution.
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Alternatively, for the “EGF/Laminin” and “Acid proteases” families the
standard PSI-BLAST converged upon incorrect answers, indicating that drift
occurred.  In the modified PSI-BLAST, removing sequences with unrelated
literature slowed the drift, preventing it from converging in 10 iterations.  These
families suffered because non-homologous sequences had high similarity to family
sequences.  Although excluding these sequences did not prevent them from being
detected in the next round, it did prevent further drift in the profile.  Literature
similarity checking added an additional constraint against including erroneous
sequences.

However, the literature similarity constraint made no difference in the
performance of PSI-BLAST in the majority of the families.  Out of the 54 families,
only 5 of the searches benefited from the additional constraint, and only 2 of those
resulted in major improvements.  In the 3 cases in which the performances were
worse, they resulted in slightly lower recalls that can be attributed to a single
missed sequence in each family.

A limitation of any natural language processing approach to biological
problems is that areas for which the appropriate quantity of text is unavailable may
be difficult to study.  In the context of this work, for example, annotation of newly
discovered sequences are unlikely to benefit from the literature if the literature
simply does not provide any information about the related sequences.  In the
algorithm we tested, the literature of the original document is used to screen
additional sequences.  Instead, an adaptive method where the literature of the
original document is supplemented with the literature of the queried sequences
may be appropriate.  This would correspond to an assumption that the literature
gathered in subsequent iterations was sufficiently representative of the original
sequence, to allow it to be used to create a “literature profile.”  However, such an
approach might be subject to the same drift phenomena that limit PSI-BLAST!

Aside from homology searching, combining literature similarity with sequence
similarity has applications in any area in which sequence differences can be
supplemented with expert knowledge.  For example, single nucleotide
polymorphisms and other sequence level differences between individuals are now
being characterized and may soon be relevant clinically [22,23].  In exploring these
polymorphisms in the context of clinical data, it may be useful to look not only for
similarities at the genomic level, but also at the level of the patient record.  In this
setting, biomedical literature is replaced with an electronic medical record, and
comparisons are made between individual patient genomes.  For example, the
genomic sequence of a presenting patient can be queried against a patient database
of sequences and records.  Similar patients can be examined and studied to
understand the history of diagnosis and treatment, and to correlate these with
genomic variations.
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In conclusion, we have shown that the biological literature can be used to
improve the detection of sequence homology.  Simple natural language processing
techniques capture enough information from free text to improve the accuracy of
homology searches.
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