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We develop principled methods for the automatic induction (discovery) of genetic
regulatory network models from multiple data sources and data modalities. Models
of regulatory networks are represented as Bayesian networks, allowing the models
to compactly and robustly capture probabilistic multivariate statistical dependen-
cies between the various cellular factors in these networks. We build on previous
Bayesian network validation results by extending the validation framework to the
context of model induction, leveraging heuristic simulated annealing search algo-
rithms and posterior model averaging. Using expression data in isolation yields
results inconsistent with location data so we incorporate genomic location data to
guide the model induction process. We combine these two data modalities by al-
lowing location data to influence the model prior and expression data to influence
the model likelihood. We demonstrate the utility of this approach by discover-
ing genetic regulatory models of thirty-three variables involved in S. cerevisiae
pheromone response. The models we automatically generate are consistent with
the current understanding regarding this regulatory network, but also suggest new
directions for future experimental investigation.

1 Introduction

While genomic expression data has proven tremendously useful in providing
insights into cellular regulatory networks, other valuable sources of data are
increasingly becoming available to aid in this process. The wide range of data
modalities presents a significant challenge, but also an opportunity since prin-
cipled fusion of these diverse information sources will help reveal synergistic
insights not readily apparent when sources are examined individually. We
approach the information fusion challenge by developing principled methods
for the automatic induction (discovery) of genetic regulatory network models
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from both genomic location and expression data. In our modeling frame-
work, models of regulatory networks are represented as Bayesian networks,
allowing the models to compactly and robustly capture probabilistic multi-
variate statistical dependencies between the various cellular factors in these
networks.1,2,3,4 Here we extend our previously developed model validation
framework based on Bayesian networks1 to the context of model induction.
We discover models by using a heuristic search algorithm based on simulated
annealing to visit high-scoring regions of the model posterior and then using
posterior model averaging to compute likely statistical dependencies between
model variables. We combine genomic location and expression data to guide
the model induction process by permitting the former to influence the model
prior and the latter the model likelihood.

In this paper, we apply our methodology to examine the regulatory net-
work responsible for controlling the expression of various genes that code for
proteins involved in Saccharomyces cerevisiae pheromone response pathways.
The protein Ste12 is the ultimate target of the pheromone response signaling
pathway and binds DNA as a transcriptional activator for a number of other
genes. Data from genomic location analysis indicates which intergenic regions
in the yeast genome are bound by Ste12, both in the presence and absence
of pheromone.5 Because pheromone response and mating pathways play an
essential role in the sexual reproduction of yeast and because we have access
to location data regarding the binding locations of Ste12 within the yeast
genome, this is a natural choice of regulatory network to examine.

We begin in Section 2 by considering various model induction methodolo-
gies. In Section 3 we discuss the collection and preparation of data for model
induction in the context of pheromone response. We present various results
of our model induction approach in Section 4, including the impact of us-
ing data from genomic location analysis to add edge constraints representing
prior information. We conclude in Section 5 with a discussion of the results
presented in this paper and offer some directions for future work.

2 Model induction

Methods for the induction of Bayesian network models from observational
data generally fall into two classes: constructive methods based on the exam-
ination of conditional independence constraints that hold over the empirical
probability distributions on the variables represented in the data, and search
methods that seek to maximize some scoring function that describes the abil-
ity of the network to explain the observed data. We concentrate here exclu-
sively on the latter although recent work6 suggests that the two methods are
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equivalent under reasonable assumptions. In a search context, the Bayesian
scoring metric (BSM) is an especially common choice for the scoring function,
although other choices can be made if the BSM is difficult to compute exactly.

We consider heuristic rather than exhaustive search strategies, since the
identification of the highest-scoring model under the BSM for a given set
of data is known to be NP-complete.7 Commonly used local heuristic search
algorithms include greedy hill-climbing, greedy random, Metropolis,8 and sim-
ulated annealing; the last three are successive generalizations of one another.
We have implemented these search algorithms and have observed in this par-
ticular context that simulated annealing consistently finds the highest scoring
models among these algorithms. For reasons of limited space and simplified
exposition, we therefore concentrate here only on the simulated annealing
algorithm and results generated through its use.

The simulated annealing algorithm is so named because it operates in a
manner analogous to the physical process of annealing. During the search
process, the Metropolis algorithm is run as a subroutine at various tempera-
tures T . The prevailing temperature and the score difference between graphs
determine the transition probability within Metropolis, with higher tempera-
tures indicating more permissive transitions. Initially, the temperature is set
very high (allowing almost all changes to be made), but is gradually reduced
according to some schedule until it reaches zero, at which point the Metropolis
subroutine is equivalent to the greedy random algorithm. The schedule that
the temperature is constrained to follow can be varied to produce different
kinds of search algorithms. The schedule we employ allows for “reannealing”
after the temperature becomes sufficiently low.

We extend our simulated annealing algorithm to search for models with
constraints specifying which edges are required to be present and which are
required to be absent. This allows for the incorporation of prior information
about edges in the graph since this kind of constrained search algorithm is
equivalent to an unconstrained search algorithm with a nonuniform prior over
structures that gives zero weight to models that either include edges required
to be absent or do not include edges required to be present. In this way, data
from other sources (such as location data) can be easily incorporated.

We do not use our algorithm to isolate a single model because model se-
lection tends to over-fit the data by selecting the single maximum a posteriori
model and ignoring completely other models that score nearly as well. A
more principled Bayesian approach is to compute probabilities of features of
interest by averaging over the posterior model distribution. For example, if
we are interested in determining whether the data D supports the inclusion
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of an edge in graph S between two variables X and Y , we compute:

p(EXY |D) =
∑

S

p(EXY |D, S) · p(S|D) (1)

=
∑

S

1XY (S) · eBSM(S) (2)

where EXY represents an edge from variable X to variable Y , 1XY (S) is an
indicator function that is 1 if and only if graph S includes EXY as an edge,
and BSM(S) is the Bayesian scoring metric for graph S. However, this sum is
difficult to compute because the space of graphs S is enormous. Fortunately,
it is possible to approximate this sum since the vast bulk of its mass lies
among the highest scoring models.a For example, if we restrict our attention
to the N highest scoring models, and index these by the variable i, we have:

p(EXY |D) ≈

N∑
i=1

1XY (Si) · eBSM(Si)

N∑
i=1

eBSM(Si)

(3)

Using model averaging in this way reduces the risk of over-fitting the data
by considering a multitude of models when computing the probabilities of
features of interest.

3 Data preparation

3.1 Expression data

A set of 320 samples of unsynchronized Saccharomyces cerevisiae populations
of varying genotype were observed under a diversity of experimental condi-
tions. The set of samples ranges widely but consists primarily of observations
of various wild-type and mutant strains made under a variety of environmental
conditions including exposure to different nutritive media as well as exposure
to stresses like heat, oxidative species, excessive acidity, and excessive alka-
linity. Whole-genome expression data for each of these 320 observations was
collected using four low-density 50-micron Affymetrix Ye6100 GeneChips per
observation (roughly a quarter of the genome can be measured on each chip).

aThe exponential factor in the sum has the effect of drowning out all but the highest scoring
models, even though these highest scoring models are relatively infrequent.
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The reported “average difference” values from these 1280 Affymetrix
GeneChips were normalized using maximum a posteriori normalization meth-
ods based on exogenous spiked controls.9 The output of this process was a
6135× 320 matrix of normalized log expression values, one row for each gene
in the yeast genome and one column for each experimental observation.

From the 6135 genes of the S. cerevisiae genome, 32 were selected ei-
ther on the basis of their participation in the pheromone response signaling
cascade or as being known to affect other aspects of the mating response in
yeast. Descriptions of the roles of the genes and proteins that were selected
are presented in Table 1 and compiled from information from a variety of
sources.10,11

Table 1. Descriptions of the 32 genes selected for model induction. The color mnemonics are
used later in Figure 2: genes expressed only in MATa cells are magenta, genes expressed only
in MATα cells are red, genes whose promoters are bound by Ste12 are blue, genes coding
for components of the G-protein complex are green, genes coding for core components of the
signaling cascade complex are yellow (except FUS3 which is already blue), genes coding for
auxiliary components of the signaling cascade are orange, and genes coding for components
of the SWI-SNF complex are aqua.

Gene Color Mnemonic Function of Corresponding Protein
STE2 magenta transmembrane receptor peptide (present only in MATa strains)
STE3 red transmembrane receptor peptide (present only in MATα strains)
GPA1 green component of the heterotrimeric G-protein (Gα)
STE4 green component of the heterotrimeric G-protein (Gβ)
STE18 green component of the heterotrimeric G-protein (Gγ)
FUS3 blue mitogen-activated protein kinase (MAPK)
STE7 yellow MAPK kinase (MAPKK)
STE11 yellow MAPKK kinase (MAPKKK)
STE5 yellow scaffolding peptide holding together Fus3, Ste7, and Ste11 in a large complex
STE12 blue transcriptional activator
KSS1 orange alternative MAPK for pheromone response (in some dispute)
STE20 orange p21-activated protein kinase (PAK)
STE50 orange unknown function but necessary for proper function of Ste11
MFA1 magenta a-factor mating pheromone (present only in MATa strains)
MFA2 magenta a-factor mating pheromone (present only in MATa strains)
MFALPHA1 red α-factor mating pheromone (present only in MATα strains)
MFALPHA2 red α-factor mating pheromone (present only in MATα strains)
STE6 magenta responsible for the export of a-factor from MATa cells (present only in MATa strains)
FAR1 blue substrate of Fus3 that leads to G1 arrest; known to bind to STE4 as part of complex

of proteins necessary for establishing cell polarity required for shmoo formation
after mating signal has been received

FUS1 blue required for cell fusion during mating
AGA1 blue anchor subunit of a-agglutinin complex; mediates attachment of Aga2 to cell surface
AGA2 magenta binding subunit of a-agglutinin complex; involved in cell-cell adhesion during

mating by binding Sag1 (present only in MATa strains)
SAG1 red binding subunit of α-agglutinin complex; involved in cell-cell adhesion during

mating by binding Aga2 (present only in MATα strains; also known as Agα1)
BAR1 magenta protease degrading α-factor (present only in MATa strains)
SST2 involved in desensitization to mating pheromone exposure
KAR3 essential for nuclear migration step of karyogamy
TEC1 transcriptional activator believed to bind cooperatively with Ste12 (more active

during induction of filamentous or invasive growth response)
MCM1 transcription factor believed to bind cooperatively with Ste12 (more active

during induction of pheromone response)
SIN3 implicated in induction or repression of numerous genes in pheromone response pathway
TUP1 implicated in repression of numerous genes in pheromone response pathway
SNF2 aqua implicated in induction of numerous genes in pheromone response pathway

(component of SWI-SNF global transcription activator complex)
SWI1 aqua implicated in induction of numerous genes in pheromone response pathway

(component of SWI-SNF global transcription activator complex)
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The normalized levels of expression for these 32 genes were extracted from
the 6135 × 320 normalization output matrix to yield a matrix of data with
32 rows and 320 columns, one row for each gene and one column for each
observation. This data was then log-transformed and discretized using dis-
cretization level coalescence methods which incrementally reduce the number
of discretization levels for each gene while preserving as much total mutual
information between genes as possible.2 In this case, each gene was discretized
to have four levels of discretization while preserving over 98% of the original
total mutual information between pairs of genes.

In addition to the 32 variables representing levels of gene expression,
an additional variable named mating type was considered. The variable
mating type represents the mating type of the various haploid strains of yeast
used in the 320 observations and can take one of two values, corresponding to
the MATa and MATα mating types of yeast. The inclusion of this variable is
necessary because, e.g., the MFA1 and MFA2 genes responsible for producing
the mating pheromone a-factor are expressed only in MATa strains of yeast.
The data used as input for model induction was thus a matrix of 33 rows and
320 columns, 32 rows representing the discretized levels of log expression for
32 genes involved in pheromone response and one row representing the mating
type of the strain in each experiment, either MATa or MATα.

3.2 Location data

Data from genomic location analysis, gathered using a chromatin immuno-
precipitation assay, revealed the genes in the yeast genome whose upstream
regions were bound by Ste12 under both presence and absence of pheromone.
Of the 32 pheromone response genes in this paper, STE12, FUS1, FUS3,
AGA1, and FAR1 promoters are all bound by Ste12, the first three being
bound significantly both before and after the addition of pheromone, and the
latter two being bound significantly only after the addition of pheromone. A
description of the assay and a more detailed presentation of the results can
be found in the paper by Ren, et al.5

4 Model averaging results

The implementation of our search algorithm is written in C and is capable of
searching about 200,000-250,000 (not necessarily unique) models per minute
on a 400MHz Pentium II Linux workstation. Although the code keeps a
small hash-table of the scores of recently visited models, it is not especially
optimized and could likely be sped up.
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We used our search implementation to visit high-scoring regions of the
model posterior and present the results of two of those runs here. In the first
run, we traversed the model space without constraints on the graph edges.
In the second run, we incorporated the available location data by requiring
edges from STE12 to FUS1, FUS3, AGA1, and FAR1. The top left and
right histograms in Figure 1 show the distributions of scores for all models
visited during the unconstrained and constrained simulated annealing runs,
respectively. For comparison, the bottom histogram in Figure 1 shows the
distribution of scores for all models visited when we perform a lengthy random
walk through the space of models, accepting every proposed local change
(equivalent to infinite-temperature Metropolis). From this figure, we see that
the simulated annealing algorithm is quite effective in gradually concentrating
its efforts on extremely high scoring models.

After gathering the five hundred highest scoring models that were visited
during each run of the search algorithm, we computed the probability of edges
being present by using the weighted average approximation shown in Equa-
tion 3 (with N = 500). Results of this computation for the unconstrained
and constrained searches are presented in Tables 2 and 3, respectively. The
estimated probability of an edge can be exactly 1 if (and only if) the edge
appears in all 500 highest scoring models.

We then compiled a composite network for each of these that consists of
all edges with estimated posterior probability over 0.5. These networks are
shown in Figure 2. Graph nodes have been augmented with color information
to indicate the different groups of variables with known relationships in the
literature, as indicated in Table 1 and below. Graph edges have also been
augmented with color information: solid black edges have posterior probabil-
ity of 1, solid blue edges have probability between 1 and 0.99, dashed blue
edges have probability between 0.99 and 0.75, and dotted blue edges have
probability between 0.75 and 0.5. The strength of an edge does not indicate
how significantly a parent node contributes to the ability to explain the child
node but rather an approximate measure of how likely a parent node is to
contribute to the ability to explain the child node.

In both of the networks presented in Figures 2, we observe a number
of interesting properties. In each case, the mating type variable is at the
root of the graph, and contributes to the ability to predict the state of a
large number of variables, which is to be expected. The links are generally
quite strong indicating that their presence was fairly consistent among the
500 highest scoring models. Almost all the links between mating type and
genes known to be expressed only in MATa or MATα strains occur with
posterior probability above 0.99. Moreover, in both networks there exists a
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Figure 1. Histograms of scores for all models visited during simulated annealing runs (fre-
quency versus log posterior probability of model). The top left and right histograms are
for the unconstrained and constrained simulated annealing runs, respectively. For compar-
ison, the bottom histogram was generated by a random walk through the space of models,
accepting every proposed local change.

directly-connected subgraph consisting of genes expressed only in MATa cells
(magenta) and a directly-connected subgraph consisting of genes expressed
only in MATα cells (red). In each case the subgraph has the mating type
variable as a direct ancestor with strong predictive power, as expected.

The heterotrimeric G-protein complex components GPA1, STE4, and
STE18 (green) form a directly-connected component in the constrained graph
but only GPA1 and STE18 are connected in the unconstrained graph. In-
deed, even the link between GPA1 and STE4 in the constrained graph is
fairly weak. On the other hand, SWI1 and SNF2 (aqua) are weakly adjacent
in the unconstrained graph, but not adjacent in the constrained graph, though
in both cases they are close descendants of TUP1. STE11 and STE5, two of
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Figure 2. Bayesian network models learned by model averaging over the 500 highest scoring
models visited during the unconstrained and constrained simulated annealing search runs,
respectively. Edges are included in the figure if and only if their posterior probability
exceeds 0.5. Node and edge color descriptions are included in the text.
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Table 2. Posterior probabilities of edges being present in the unconstrained search as esti-
mated by a weighted average over the 500 highest scoring models.

From To Posterior Probability From To Posterior Probability
MATING TYPE MFA1 1.0000000 MATING TYPE STE4 0.9310940
STE6 TUP1 1.0000000 MATING TYPE SAG1 0.9191640
MATING TYPE TUP1 1.0000000 MATING TYPE STE50 0.8662340
FAR1 FUS1 1.0000000 MFA1 MFA2 0.6304400
TUP1 SWI1 1.0000000 SWI1 STE7 0.6292930
MATING TYPE SWI1 1.0000000 STE18 STE11 0.6159960
MATING TYPE MFALPHA1 1.0000000 SWI1 SNF2 0.5659030
MATING TYPE SNF2 1.0000000 MATING TYPE STE20 0.5551610
TUP1 SIN3 1.0000000 SNF2 STE20 0.5533950
MATING TYPE SIN3 1.0000000 STE20 SNF2 0.4340970
FAR1 AGA1 1.0000000 TUP1 STE20 0.4154630
MATING TYPE AGA1 1.0000000 STE50 STE11 0.3824810
MATING TYPE MFA2 1.0000000 STE2 MFA2 0.3695600
TUP1 MCM1 1.0000000 MATING TYPE STE12 0.2741810
MATING TYPE SST2 1.0000000 MATING TYPE KSS1 0.1964160
FAR1 TEC1 1.0000000 STE5 STE7 0.1710230
GPA1 STE18 1.0000000 STE50 STE7 0.1708470
MATING TYPE STE18 1.0000000 MATING TYPE MFALPHA2 0.0708669
STE6 FAR1 1.0000000 MFALPHA2 MFALPHA1 0.0596000
MATING TYPE FAR1 1.0000000 STE3 MFALPHA2 0.0596000
STE6 BAR1 1.0000000 GPA1 STE4 0.0594723
MATING TYPE BAR1 1.0000000 MFALPHA1 MFA1 0.0569844
FAR1 STE12 1.0000000 MFA1 FUS3 0.0339687
TUP1 KSS1 1.0000000 SWI1 STE20 0.0311423
MFA1 STE2 0.9998720 FUS3 MFA1 0.0255037
STE4 STE5 0.9998720 STE11 STE7 0.0090948
AGA1 SST2 0.9998720 MATING TYPE STE11 0.0017818
STE2 STE6 0.9998720 STE2 MFALPHA1 0.0016013
STE3 SAG1 0.9998720 SNF2 STE11 0.0015236
FAR1 GPA1 0.9998720 MFA1 MFALPHA1 0.0005666
MFA1 AGA2 0.9998720 AGA2 MFALPHA1 0.0003554
TUP1 STE50 0.9997690 STE11 KAR3 0.0002888
STE20 KAR3 0.9997110 STE6 STE2 0.0001277
MATING TYPE STE3 0.9995500 AGA2 MFA1 0.0001277
MATING TYPE GPA1 0.9994340 GPA1 STE5 0.0001277
MATING TYPE STE2 0.9979080 FAR1 SST2 0.0001277
MATING TYPE FUS3 0.9965830 SAG1 STE3 0.0001277
MATING TYPE STE6 0.9955280 SST2 SAG1 0.0001277
MATING TYPE FUS1 0.9937100 STE4 GPA1 0.0001277
MATING TYPE AGA2 0.9850980 STE2 AGA2 0.0001277
MATING TYPE STE7 0.9753010 AGA2 FUS3 0.0001277
FAR1 STE4 0.9405280 STE20 STE50 0.0001235
MFALPHA2 STE3 0.9404000 STE12 FUS3 0.0000620
MFALPHA1 MFALPHA2 0.9404000 STE18 STE50 0.0000619
GPA1 FUS3 0.9404000 MATING TYPE TEC1 0.0000519
MFA2 MFALPHA1 0.9349580

the core elements of the primary signaling cascade complex (yellow), are seen
as descendants of G-protein complex genes, indicating statistical dependence
that may be the result of common or serial regulatory control. STE7 occurs
elsewhere, however. Auxiliary signaling cascade genes (orange) are always
descendants of TUP1, sometimes directly and sometimes more indirectly, but
STE50 and KSS1 are siblings in both cases. In general, the auxiliary cascade
elements do not tend to cluster with the core elements, suggesting that the
regulation of their transcript levels may occur by a different mechanism than
those of the genes in the core signal transduction complex.

In both networks, TUP1 appears with a large number of children, consis-
tent with its role as a general repressor of RNA polymerase II transcription.
Both networks have MCM1 and SIN3 as children of TUP1; Tup1 and Mcm1
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Table 3. Posterior probabilities of edges being present in the constrained search as estimated
by a weighted average over the 500 highest scoring models. As the four edges required by
location analysis appear in all visited graphs, their posterior probability is 1 by definition.

From To Posterior Probability From To Posterior Probability
STE6 STE2 1.0000000 MATING TYPE GPA1 0.9979470
MATING TYPE STE2 1.0000000 MATING TYPE STE7 0.9959610
STE2 MFA1 1.0000000 SST2 FAR1 0.9956230
MATING TYPE MFA1 1.0000000 MATING TYPE AGA2 0.9915840
GPA1 STE5 1.0000000 MFA2 MFALPHA1 0.9911710
STE6 TUP1 1.0000000 MATING TYPE STE50 0.8627090
MATING TYPE TUP1 1.0000000 GPA1 STE4 0.7190930
STE12 FUS1 1.0000000 SWI1 STE7 0.6980530
TUP1 SWI1 1.0000000 MFA1 FUS3 0.3288450
MATING TYPE SWI1 1.0000000 FAR1 STE4 0.2809070
MATING TYPE MFALPHA1 1.0000000 MATING TYPE STE4 0.2809060
TUP1 SIN3 1.0000000 MATING TYPE KSS1 0.1904580
STE12 AGA1 1.0000000 STE50 STE7 0.1808790
MATING TYPE AGA1 1.0000000 AGA2 FUS3 0.1517050
MATING TYPE MFA2 1.0000000 STE5 STE7 0.0452417
TUP1 MCM1 1.0000000 STE11 STE7 0.0114721
AGA1 SST2 1.0000000 MATING TYPE MFALPHA2 0.0081962
MFALPHA2 STE3 1.0000000 MFA1 MFALPHA1 0.0044375
MATING TYPE STE6 1.0000000 MATING TYPE FAR1 0.0043766
FAR1 TEC1 1.0000000 STE2 MFALPHA1 0.0024661
GPA1 STE18 1.0000000 MATING TYPE STE5 0.0008114
MATING TYPE STE18 1.0000000 STE18 STE50 0.0004177
MFALPHA2 SAG1 1.0000000 AGA2 MFALPHA1 0.0003914
STE12 FAR1 1.0000000 MATING TYPE KAR3 0.0003614
STE6 BAR1 1.0000000 STE20 STE50 0.0003008
MATING TYPE STE12 1.0000000 SWI1 SNF2 0.0002817
TUP1 KSS1 1.0000000 SNF2 STE20 0.0002817
MFA1 AGA2 1.0000000 MATING TYPE STE20 0.0001019
STE12 FUS3 1.0000000 STE11 KAR3 0.0000791
MATING TYPE FUS3 1.0000000 STE6 MFALPHA1 0.0000523
MATING TYPE SNF2 0.9999970 STE4 GPA1 0.0000420
FAR1 STE6 0.9999950 MFA1 MFA2 0.0000371
MATING TYPE BAR1 0.9999950 STE7 STE50 0.0000239
MFALPHA1 MFALPHA2 0.9999950 MATING TYPE STE11 0.0000221
STE4 FUS1 0.9999860 MATING TYPE TEC1 0.0000164
MATING TYPE SIN3 0.9999840 STE50 STE11 0.0000148
STE18 STE11 0.9999790 FAR1 FUS1 0.0000138
STE2 MFA2 0.9999630 SNF2 STE7 0.0000085
FAR1 GPA1 0.9999580 MFALPHA2 MFALPHA1 0.0000050
MATING TYPE STE3 0.9998550 GPA1 STE6 0.0000050
STE20 SNF2 0.9997180 MFA2 MFALPHA2 0.0000050
TUP1 STE20 0.9997180 STE18 KAR3 0.0000038
STE20 KAR3 0.9995980 STE11 STE50 0.0000024
MATING TYPE SAG1 0.9994460 SNF2 STE11 0.0000020
TUP1 STE50 0.9983870 MFALPHA2 STE50 0.0000018
MATING TYPE SST2 0.9979600

are known to interact in the cell12 and this result that the level of Tup1 is
helpful in predicting the level of Mcm1 suggests a possible regulatory rela-
tionship between the two. FAR1 is a parent of TEC1 and GPA1 in both
networks. Far1, Tec1, and Gpa1 are all known to be cell-cycle regulated and
all three are classified as being transcribed during early G1 phase.13 This re-
sult suggests that Far1 may play a role in regulating the expression of Tec1
and Gpa1, providing a possible mechanism for their previously observed G1

phase co-expression.
Though it is produced at higher levels in MATa cells, it is known that Aga1

is produced in both MATa and MATα cells.14 The graphs are each consistent
with this knowledge, including a frequent predictive edge from mating type
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to AGA1, but not clustering AGA1 with other mating type specific genes
(magenta and red) as it is likely regulated differently. In both graphs, AGA1
and SST2 are adjacent, consistent with the fact that the two are expressed
very similarly, both peaking at the M/G1 phase of the cell-cycle.15

5 Discussion

When we interpret automatically generated Bayesian networks, it should be
remembered that edges indicate a statistical dependence between the tran-
script levels of genes, but do not necessarily specify the form or presence of a
physical dependence. For example, a variable X can seem to be influencing
a variable Z if a critical intermediating variable Y remains unmodeled. As
another example, in both networks in Figure 2, a link appears between MFA2
and MFALPHA1. even though these mating factors are never both expressed
in haploid S. cerevisiae strains. However, cells expressing one are less likely,
statistically, to be expressing the other; hence the link. The weakness of the
link indicates that other variables such as mating type are frequently suc-
cessful in explaining away this statistical dependence. In general, multiple
biological mechanisms may map to the same set of statistical dependencies
and thus be hard to distinguish on the basis of statistical tests alone. More-
over, if there is not sufficient data to observe a system in a numberof different
configurations, we may not be able to uncover certain dependencies at all.

The composite network resulting from unconstrained search based only
on genomic expression data has a few apparent limitations. Most strikingly,
the search method is unable from expression data alone to learn the correct
regulatory relationships between Ste12 and its targets. By fusing expression
data with location data, the constrained search is able to consider statistical
dependencies in the expression data that are consistent with the physical
relationships already identified in the location data. In this way, location data
proves to be quite complementary to expression data: since it can help identify
network edges directly, location data dramatically decreases the amount of
expression data needed to discover regulatory networks by statistical methods.

When genomic location data suggests that particular edges should be
present, our algorithms currently modify the model prior so that graphs lack-
ing these suggested edges have zero weight. However, we know that location
data can be noisy. We can relax our assumption of zero weight, and instead
modify the model prior so that graphs lacking these suggested edges have
small but positive weight. This is permissible within our framework but adds
the extra complication that the relative weight of models lacking suggested
edges needs to be specified (presumably based on the degree of confidence in
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the location data). Values for this weight that are too high or low lead to the
under- or over-inclusion of suggested edges, respectively.

Additionally, it is possible that a protein may bind DNA but have no
impact on downstream gene regulation. Location data provides information
about physical relationships while expression data provides information about
statistical relationships; the two are not guaranteed to agree.

There remain a number of ways to extend this work in the future. Among
these are the use of search algorithms that more frequently visit high scoring
regions of the model search space, incorporation of data from other sources
besides expression and location data, leveraging time-series data and dynamic
Bayesian networks to model feedback processes, leveraging interventional data
to uncover causal processes, and adding the ability to discover annotated net-
work edges refining the type of relationship learned between model variables.1
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