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A new method was developed for revealing of composite clusters of cis-elements in promoters of 
eukaryotic genes that are functionally related or coexpressed. A software system “ClusterScan” 
have been created that enables: (i) to train system on representative samples of promoters to reveal 
cis-elements that tend to cluster; (ii) to train system on a number of samples of functionally related 
promoters to identify functionally coupled transcription factors; (iii) to provide tools for searching 
of this clusters in genomic sequences to identify and functionally characterize regulatory regions in 
genome. A number of training samples of different functional and structural groups of promoters 
were analysed. Search for composite clusters in human chromosomes 21 and 22 reveals a number 
of interesting examples.  Finally, a decision tree system was constructed to classify promoters of 
several functionally related gene groups. The decision tree system enables to identify new 
promoters and computationally predict their possible function. 

1. Introduction  

Besides the fact that genomes of eukaryotic organisms contain rather limited 
number of genes (Ng) [1], the number of different intracellular molecular states 
(Ns) is enormously huge (Ns >>Ng). In multicellular organisms these are states of 
cellular ontogenesis in different tissues, organs and cell types, a number of 
developmental stages and cell cycle phases, the huge amount of influences of 
different external and internal signals. Every state is characterized and precisely 
organized by differential expression of specific sets of genes. Therefore it becomes 
obvious that most of the genes in genome are expressed in various cellular states 
(gene expression pattern), and it is a combination of active genes that is state 
specific (gene expression profile). For the majority of genes, transcription 
regulation plays the most important role in regulation of gene expression. 
Combinatorial regulation of transcription is organized through binding of a 
multiplicity of transcription factors (TFs) to their target sites (cis-elements) in 
regulatory regions. Corresponding TFs interact with each other and with particular 
components of the basal transcription complex as well as with 
coactivators/corepressors, histone acetylases/deacetylases, therefore making up 
function-specific multiprotein complexes. These multi-protein complexes are often 
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referred to as enhncesomes [1]. Functionally related genes involved in the same 
molecular-genetic, biochemical, or physiological process are often regulated 
coordinately by specific combinations of transcription factors.  On the level of 
DNA, the blueprint of such common mechanisms of regulation may be seen as 
specific combinations of TF binding sites located in a close proximity to each 
other. We call such structures as “composite clusters”. We are aiming to reveal a 
variety of such composite clusters in regulatory regions of eukaryotic genes. 
Different composite clusters could serve as good benchmarks for identification of 
new promoters and other regulatory regions in genomes and for functional 
characterization of the expression of the corresponding new genes as for 
understanding molecular mechanisms of their regulation. The goal is to find 
efficient means for automatic annotation of genomic regulatory sequences. 

Last years, several computational approaches have appeared addressing the 
problem of combinatorial regulation of transcription. Specific TF binding site 
combinations were used for identification of muscle-specific promoters [2,3] for 
liver-enriched genes [4] and for yeast genes [5]. Recently, we have shown that 
search for specific combinations of two TF sites - composite elements - is a very 
effective tool for predicting gene expression patterns. We have demonstrated this 
approach for promoters of genes highly induced upon immune response [6]. 
Promoters of genes regulated during cell cycle could be recognized by combination 
of E2F binding sites with a dozen of oligonucleotide motifs [7].  A number of 
known examples of composite elements is collected in COMPEL database [8]. This 
data together with computationally predicted composite structure provide a key for 
annotation of regulatory regions in genomes.  

Annotation of gene regulatory regions requires computational approaches that 
work with high sensitivity and specificity. One possible way to increase specificity 
is to develop methods that are trained on groups of co-regulated promoters rather 
than all promoters. Specific combinations of cis-elements for the vast variety of 
gene functional groups have to be determined to develop methods for automatic 
annotation of regulatory genomic sequences. 

We have developed a method for revealing of composite clusters of cis-
elements in promoters of eukaryotic genes that are functionally related or 
coexpressed. A software system “ClusterScan” have been created that enables: (i) 
to train system on representative samples of promoters to reveal cis-elements that 
tend to cluster; (ii) to train system on a number of samples of functionally related 
promoters to identify functionally coupled transcription factors; (iii) to provide 
tools for searching of this clusters in genomic sequences to identify and 
functionally characterize regulatory regions in genome. A number of training 
samples of different functional and structural groups of promoters were analysed. 
Search for composite clusters in human chromosomes 21 and 22 reveals a number 
of potential cell cycle regulated sequences.  Finally, a decision tree system was 
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constructed to classify promoters of several functionally related gene groups. The 
decision tree system enables to predict an expression pattern of a new potential 
promoter by classifying it to the one of these promoter groups.   

 

2  Method  

2.1 Revealing of composite clusters of TF binding sites.  

It is known that most of TF target sites are located in 5’ regions of genes. We 
assume that binding sites for transcription factors that bind together to a regulatory 
region of a gene tend to be co-localized in a relatively short region inside the 5’ 
regulatory region in order to provide possibility for protein-protein interactions 
between these factors. Therefore, it is expected that such sites for many different 
factors will make clusters in 5’ regulatory regions that we call: “composite 
clusters” (CC) .  Presence of such composite clusters in genomic sequence might be 
a good indication of regulatory regions of genes.  

We have developed a method for identifying composite clusters of binding 
sites that are specific for promoter sequences. The method first analyses structure 
of promoter sequences from a training set of promoters trying to reveal clusters of 
transcription factor binding sites.  For that, the whole library of weight matrices 
collected in TRANSFAC database [9] were considered. The method is based on 
genetic algorithm. It selects matrices and optimises cut-off values for every 
considered matrix in order to maximize the number of clusters in the training set 
of promoter sequences in contrast to a control set of non-promoter sequences.  

Let’s M  is the set of all weight matrices from TRANSFAC. The following 
parameters are used for revealing composite clusters: K – a subset of weight 
matrices selected from the set M; )(k

offcutq −  (k∈K)  - cut-off values of the matrix score 

(a site s considered to be present in a given position of the sequence if the score of 
the matrix k at this position exceeds the cut-off value )()( )( k

offcut
k qsq −> ); maxd – 

the maximal distance between adjacent binding sites in a cluster. For example, 
when mind = 20bp, the algorithm considers only those clusters where distances 
between adjacent sites shorter then 20bp. The borders of the clusters are defined by 
sites that separated from the neighbour sites by the distance longer then maxd.  For 

a fixed set λ  of mentioned above parameters we can search for all clusters in 
every promoter sequence x. Then, we calculate the following function, that we call 
“cluster score”: 
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where n – is the number of found clusters in the sequence x; number_of_sites(i) 
– number of sites in the i-th cluster; density_of_sites(i)= 
number_of_sites(i)/length_of_cluster(i) – density of sites in the i-th cluster.  

  To reveal the best parameter set λ best that exposes clusters in the promoters 
we apply a genetic algorithm (GA-1) that selects the subset K and optimises the 

values of the parameters mind and 
)(k

offcutq − . We use the following fitness function:  
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In this fitness function we calculate difference between average values of the 

cluster score of the positive sample (Y) and negative sample (Z). The training set 
of promoters is the positive sample Y. As the negative sample Z we use a set of 
exon sequences. R(m) – is a function constructed similar to the Akaike Information 
Criteria [10] that decreases fitness of the models while the number of weight 
matrices increases. This criterion rescues the model to be over-fitted by getting the 
high number of free parameters.  

2.2 Revealing of functionally coupled transcription factor sets  

To analyse in more details the structure of found composite clusters we consider 
the following basic model of the composite promoter structure. Every eukaryotic 
promoter (or, more generally, a transcription regulatory region) contains numerous 
binding sites for different transcription factors that are organized in a number of 
functionally coupled subsets of factors – “functional sets” (FS). Every FS consists 
of a group of transcription factors that work together in one regulatory process by 
synergy or in antagonism through binding to their target sites that located in a 
close proximity to each other in regulatory regions of genes.  Such FSs provide a 
framework for building up a specific complex of interacting TFs that supply a 
distinct regulatory function. Many examples of the simplest FSs consisting of two 
TFs with two adjacent binding sites are collected in the database of composite 
elements COMPEL [8]. Such FSs may provide gene induction in response to a 
complex condition, e.g. tissue-specific response to a certain extracellular signals.  
More complex FSs consisting of several interacting factors and may contain DNA 
signals of complex origin, such as TATA and GC boxes, Inr element and others. A 
family of functionally related promoters shares FSs that contain “obligatory” 
factors with target sites found practically in all promoters of the set and defining 
the “main” function of these promoters and “facultative” sites that may vary from 



  

promoter to promoter and modulate the function in a specific manner. Such FSs 
being revealed as common for a promoter sample may be good benchmarks for 
promoter classification.  

We describe a FS - µ, characteristic for a group of functionally related 
promoters, by the following set of parameters: P a set of different TF weight 
matrices that compose the µ   (including “obligatory” and “facultative” matrices). 

A certain cut-off value 
)( p

offcutq −  and importance value 
)( pφ are assigned to every 

weight matrix p (p∈P) in µ.  For every promoter sequence x we calculate the 
following function, that we call a “functional score”:  
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where )()(
0 xq p  is the score of the best site found in the sequence x by the 

matrix p ( 0)(
0 =pq , if no sites were found with score )( p

offcutqq −> ). 

Optimisation of the parameters of the “functional score” is done by a 
modification of genetic algorithm (GA-2) similar to the one described in the 
previous section. In this case, the positive samples (Y) were sets of functionally 
related promoters. As the negative sample (Z) we use a full set of promoters (EPD 
database) where Y promoters are excluded.  

2.3 Decision tree for classification of promoters  

To classify promoters we build a decision tree (T) in the similar way as in [11]. The 
bottom nodes (i) of the tree (leafs) contain L different promoter classes. The 
internal nodes (j) of the tree represent different types of FSs - µ(j). To classify a 

promoter sequence x the functional score )(_ )( xscoreFS iµ  is calculated 

according to the equation (2) at every node as the sequence is passed to the tree. 
Cut-off values FS_scorecut-off are assigned to every internal node. If 

)(_ )( xscoreFS iµ
 > FS_scorecut-off the sequence is passed to the left downstream 

node otherwise to the right downstream node. Finally, the sequence is classified to 
the one of the L promoter classes.  

The decision tree was built by a variant of the genetic algorithm (GA-3), that 
optimizes the structure of the decision tree and cut-off values of the corresponding 
functions. The algorithm selects the components of µ (j) at every node of the tree. 
The fitness function π is calculated on the basis of misclassification rate of decision 
tree T : 
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Here, )(i
realN  – is the number of promoters of the class (i) in the training set,  

)(i
predictN  – is the number of correctly classified promoters of the class (i) , R – is 

the same function as in (2) calculated on the total number of weight matrices m(j) 
used in the decision tree. 

3  Results 

 3.1 Composite clusters in promoter sequences of mammalian genes.  

We extracted promoter sequences of mammalian genes from EPD database. The 
considered region was from –500 to +99 relative to the start of transcription. 349 
promoters were extracted. We applied GA-1 method and revealed a set of matrices 
that exposes clusters in the promoters of this group. The following 25 matrices 
were selected by the algorithm: V$MSX1_01, V$PAX8_B, V$CDXA_01, 
V$GEN_INI3_B, V$P300_01, V$BARBIE_01, V$E2F_2Q6, V$E2F1_Q6, 
V$SP1_01, V$AP1_Q6, V$AP1_Q4, V$PAX4_04, V$NFKB_Q6, V$FOXD3_01, 
V$USF_Q6, V$LDSPOLYA_B, V$OCT1_07, V$HNF3B_01, V$STAT_01, 
V$E2F_Q4, V$ETS1_B, V$OCT1_02, V$MYCMAX_02, V$SRF_C, 
V$VMAF_01.  The maximal distance between adjacent sites maxd = 23bp. The 
average size of the clusters in promoter regions was 2.8 sites per cluster and in 
exon sequence 0.2 sites per cluster. It means that practically no clusters composed 
by these sites were observed in exon sequences, whereas in many promoters these 
sites make clusters of 3–5 sites.  

3.2 Functionally coupled transcription factor sets.  

Seven sets of promoters were obtained from different sources: promoters for cell-
cycle related genes (43 promoters) and brain enriched genes (45 promoters) 
(collected in this work on the base of literature search), muscle-specific (25 
promoters) and immune cell specific genes (24 promoters) [6], erythroid specific 
genes (10 promoters) (http:/www.bionet.nsc.ru), liver enriched genes (39 
promoters) and housekeeping genes (26 promoters) (EPD rel.62). The promoter 
sequences of the length 600 bp (from –500 to +99 relative start of transcription) 
were extracted from EMBL database.  We have selected these sets since they 
represent the most distinct functional classes of promoters 



  

Applying the GA-2 method we have revealed functional sets of transcription 
factors specific for the promoter classes described above (see Table 1).  

One can see, that matrices for a number of class-specific factors (such as E2F, 
NF-AT, MyoD, ..) were taken by the method as “obligatory” (high importance 
values were assigned).  These matrices were included only in one class-specific 
functional set. Other matrices for some of the ubiquitous factors (such as SP-1, 
SRF, AP-1…) have been included in many FSs. These factors appeared to play an 
important role in many types of promoters.   

In Fig. 1 we show two distributions of the functional score for cell cycle 
promoters versus exon sequences. One can see that high values of the score are the 
characteristic feature of the most cell cycle related promoters. 
 
 
Table 1. Functional sets of transcription factors specific for different promoter 
classes. Values of the matrix relative importance are shown in brackets in the front 
of each TF name. 
Promoter  
class 

TF factors selected J(λ) – 
score 

Cell-cycle related E2F (1.00), TATA (0.95),  CREB (0.88), Sp-1 (0.81)      7.2 
Brain enriched BRLF1 (0.192),  ATF (0.038),  CREB (0.450), Sp-1 (0.592),     

HFH2 (1.00) 
3.8 

Muscle-specific Tal-1 (0.50), YY-1 (1.0),  Oct-1 (0.40),  MyoD (0.80), SRF (1.0),  
PAX5 (0.80) 

5.2 

Immune cell 
specific 

COMP1 (0.024), STAF (0.017), NF-kB (1.30), NF-AT (0.957), 

Brn-2 (0.059) 
6.6 

Erythroid specific n-myc (0.31) , GR (0.08),  AP-4 (1.00), RREB-1 (0.08), v-Maf 

(.08) 
2.0 

Liver enriched   RORalpha1 (1.00), Sp-1 (0.03), SREBP-1 (1.00), HNF-1 (0.54), 

ER (0.07), GATA-1 (0.03) 
2.6 

Housekeeping Egr-2 (0.15), AhR/Arnt (0.72), ZID (0.94), Elk-1 (0.79), NRF-2 

(0.54),  CREB (.62) 
7.2 
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Fig. 1 Histograms of the functional score values in the cell-cycle related promoters 
(black) and exon sequences (white). The score is given along the x – axis. The 
functional score is calculated on the bases of set of factors specific for cell cycle 
promoters that are shown in the Table 1 (first column). In the histogram we show 
the percentage of the sequences in each set that exhibit the given value of “cell 
cycle functional score”. 
 
 

3.3 Decision tree classifier of promoters.  

A decision tree classifier of the 7 classes of promoters was build by using of the 
weight matrices found in the previous step. The bottom nodes of the tree contain 7 
different promoter classes. The training set of 212 promoters described above was 
used for optimising the decision tree structure with the help of GA-3. The topology 
of the one of the decision tree obtained in the analysis is shown in Figure 2.  

The following set of TF binding sites appeared to be the most effective for 
classification of the mentioned sets of promoters: E2F, Oct-1, NF-AT, MyoD, SRF 
and ER. 



  

Percentage of the correct classification obtained by the tree is shown below 
each bottom node. One can see that cell cycle related and erythroid specific 
promoters are classified best (65 – 70% of correct classifications).  In contrast, 
promoters of housekeeping genes and brain-enriched genes are most difficult to 
classify (34% and 20% of correct classifications correspondingly). It is known that 
these two classes contain genes with very heterogeneous function and expression. 
More efforts should be paid for initial grouping of promoters into functionally 
unified classes.     

Fig. 2. A decision tree for classification of promoters into 7 functional classes. To 
classify a new promoter, the sequence (x) is passed down the tree beginning at the 
top. If the functional score: F(x) > Fcut-off the sequence is passed down to the left, 
otherwise to the right. The functions F(x) and cut-offs were optimised by GA-3. 

 
We have applied the developed promoter classifier for identification of new 

potential cell cycle regulation for a number of known genes retrieved from EMBL. 
In our previous work [6] we developed a new method for context-specific 
identification of binding sites for E2F transcription factors – the main regulators of 
cell cycle progression. This method was applied to reveal new E2F target genes. 
We scanned EMBL release 6.0, divisions: hum, rod, vrt, and mam. 4611 promoters 
have been have been retrieved and analysed. As a result, 313 promoters were 
identified as new potential E2F targets [7]. 
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 In the present work, the promoter classifier was applied to the selected 
promoters to find the most probable target genes. After passing through the 
decision tree 103 promoters were classified as potential cell cycle regulated 
promoters.  

 Some of these promoters were inspected experimentally in our previous 
work using in vivo formaldehyde cross-linking technique to confirm the identity of 
potential E2F target genes that have been suggested computationally [7]. Using 
antibodies against various members of the E2F family, the specific E2F binding to 
several promoters under study in asynchronously growing HeLa cells have been 
confirmed. The following promoters bearing predicted E2F binding sites were 
experimentally confirmed to be cell-cycle dependent: c-fos and junB; the gene 
encoding TGF-β which acts as an antiproliferative agent to a majority of cell types; 
ARF locus encoding protein that binds to and stabilizes p53 and thus functions in 
tumor suppression; mcm4 and mcm5 involved in the initiation of DNA replication; 
von Hippel-Lindau (VHL) tumor suppressor gene; and e2f-1. 

3.4 Search for composite clusters in human chromosomes and identification of new 
potential cell cycle related genes.  

We have applied the ClusterScan system for scanning chromosome sequences of 
human genome in order to reveal composite clusters benchmarking new potential 
regulatory regions. As an example, we search for clusters that are specific for cell 
cycle related genes. We have previously shown that promoters of cell cycle genes 
are characterized by high frequency of the E2F binding sites [7]. The majority of 
promoters of cell cycle genes are GC-rich and TATA-less. In some of these 
promoters E2F binding sites are located just at the transcriptional start site. These 
data suggest that basal promoters of the cell cycle regulated genes may be 
characterized by a specific arrangement of known and yet unknown DNA elements 
resulting in specific composite clusters. In the training set of 29 cell cycle-
dependent genes (no orthologs) we have revealed specific basal DNA elements by 
using Gibbs sampling program [12]. Within region [-45; -16] three motifs were 
revealed: TATA-like, GC box, and “CCT/ATT” motif. At the start site, [-15;+15], 
an E2F-like motif, an Inr-like pattern and the motif “CCC/A” were revealed. 
Downstream of the start site, within [+16; +45], a GAGA-like box was found.  For 
all these motifs positional weight matrices were constructed. All the revealed 
motifs together with the E2F weight matrix were used for searching composite 
clusters in the chromosomal sequences.  

Analysis of the human chromosome 21 resulted in 20 composite clusters. Of 
them, 7 clusters are located within annotated repeat families – SINE, LINE and 
LTR; 1 clusters within CpG islands; 2 within intron sequences of two genes; 4 
clusters are found just 5’ to the annotated mRNA start of genes with unknown 



  

function (see an example of such gene found in the chromosome 22, Fig.3); and 6 
clusters do not coincide with any annotation. 
 

Fig.3 Prediction of a novel cell cycle regulated promoter in a fragment of the 
chromosome 22.  Human DNA sequence from clone RP1-102D24  on chromosome 
22 (AC: AL021391) is considered. a) a cluster of E2F sites at the potential  starts 
of transcription of two genes. b) a pick of the composite cluster score (CC_score) 
comprising  basal elements revealed in the training set of cell cycle related genes. 

 
In summary, the computer method presented here allows us to search for 

clusters of potential cis-regulatory elements and to reveal promoters that belong to 
several definite functional categories. Experimental verification of some of these 
promoters confirms the computational predictions. With the advent of the large-
scale sequencing projects, it becomes increasingly essential to develop 
computational methods enabling to analyse transcription regulatory regions of new 
genes and predict theire regulatory functions.  

Acknowledgments 

The authors are indebted to Vadim Ratner and Michael Zhang for fruitful 
discussion of the results. Parts of this work was supported by Siberian Branch of 
Russian Academy of Sciences, by grant of Volkswagen-Stiftung (I/75941) 

  

 43000    44000  45000  46000  47000  48000   

Novel Mitosis- specific Chromosome  
Segregation protein SMC1 LIKE 
protein 

b) 

a)   

Putative novel 
protein 



  

References 

1. Merika M. and Thanos D. Enhanceosomes. Curr. Opin. Genet. Dev. 11, 
205-208 (2001) 

2. Wasserman, W. W., Fickett, J. W. Identification of regulatory regions 
which confer muscle-specific gene expression. J. Mol. Biol. 278 , 167-181 
(1998) 

3. Frech, K., Quandt, K., Werner, T. Muscle actin genes: A first step 
towards computational classification of tissue specific promoters. In Silico 
Biology 1, 0005, http://www.bioinfo.de/isb/1998/01/0005/ (1998) 

4. Tronche, F., Ringeisen, F., Blumenfeld, M., Yaniv, M. & Pontoglio, M. 
Analysis of the distribution of binding sites for a tissue-specific 
transcription factor in the vertebrate genome. J. Mol. Biol. 266, 231-245 
(1997) 

5. Brazma, A., Vilo, J. & Ukkonen, E. Finding Transcription Factor Binding 
Site Combinations in the Yeast Genome. In Proceedings of the German 
Conference on Bioinformatics GCB’97, Kloster Irsee, Bavaria, Sept. 22-
24, 1997 (H.W.Mewes and D.Frishman eds.), (1997) 57-60 

6. Kel, A., Kel-Margoulis, O., Babenko, V., Wingender, E. " Recognition of 
NFATp/AP-1 Composite Elements within Genes Induced upon the 
Activation of Immune Cells” J. Mol. Biol. 288 , 353-376 (1999) 

7. Kel A.E, Kel-Margoulis O.V., Farnham P.J., Bartley S.M., Wingender E., 
and Zhang M.Q. Computer-assisted identification of cell cycle-related 
genes - new targets for E2F transcription factors. J. Mol. Biol. 309 , 99 – 
120 (2001) 

8. Kel-Margoulis,O.V., Romaschenko,A.G., Kolchanov,N.A., Wingender,E. 
and Kel,A.E. TRANSCompel: a database on composite regulatory 
elements providing combinatorial transcriptional regulation.  Nucleic 
Acids Res. 28,  311-315 (2000) 

9. Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., 
Meinhardt T.,  Pruss, M., Reuter, I., Schacherer, F. TRANSFAC: an 
integrated system for gene expression regulation. Nucleic Acids Res. 28,  
316-319 (2000) 

10. Akaike, H. IEEE Trans. Autom. Control 19, 761 723 (1974) 
11. Salzberg, S. Locating protein coding regions in human DNA using a 

decision tree algorithm J. Comput. Biol. 2 , 473-485 (1995) 
12. Kel-Margoulis O., Kel A. and Wingender E. Automatic annotation of the 

regulatory regions of cell cycle related genes on human chromosomes. // 
Proceedings of the conference, Genome sequencing and biology. Cold 
Spring Harbor Laboratory, May 9-13, 2001. P.139 

 
 




