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Visualization of results for high performance computing pose special problems due to the
complexity and the volume of data these systems manipulate. We present an approach for
visualization of c-DNA microarray gene expression data in metabolic and regulatory pathways
using multi-resolution animation at different levels of detail. We describe three scoring
functions to characterize pathways at the transcriptional level based on gene expression,
coregulation and cascade effect. We also assess the significance of each pathway score on the
basis of their biological connotation.

1   Introduction

1.1.  Microarrays and Gene Expression

DNA and other microarray technologies are on their way to becoming standard tools
of modern life sciences research[6]. A DNA microarray experiment shows the
expression levels of thousands of genes at a single time point. This has given
scientists the ability to get a snapshot view of genome-wide expression patterns. The
vast quantity of data generated by genomic expression arrays affords researchers a
significant opportunity to transform biology, medicine, and pharmacology using
systematic computational methods. The availability of genomic (and eventually
proteomic) expression data promises to have a profound impact on the
understanding of basic cellular processes, the diagnosis and treatment of disease,
and the efficacy of designing and delivering targeted therapeutics. Particularly
relevant to these objectives is the development of a deeper understanding of the
various mechanisms by which cells control and regulate the transcription of their
genes.



1.2.  Pathways

Living organisms behave as complex systems that are flexible and adaptive to their
surroundings. At the cellular level, organisms function through intricate networks of
chemical reactions and interacting molecules. These networks or biochemical
pathways may be considered as the wiring diagrams[12] for the complete biological
system of an organism. The best characterized among them are metabolic pathways,
the biological networks that involve enzymatic reactions of chemical compounds.
Regulatory pathways are another class of pathways that represent protein-protein
interactions. Pathways are the key to understanding how an organism reacts to
perturbations in its environment (e.g. heat shock, chemical or hormone stimulus) or
internal changes (e.g. disease, development, etc.)

1.3.  Pathways and Gene Expression

With the advent of microarrays, it is hoped that knowledge of genome-wide
expression levels will speed up the understanding of biological systems. Microarrays
can serve as an efficient tool to study the expression levels of genes involved in
pathways. The effect of induction and repression of target genes on metabolic and
regulatory pathways is particularly important in drug development. In this paper, we
present a method for using genomic expression data to elucidate and visualize the
effect of different stimuli on these genetic networks.

Typical automatic analysis of microarray expression data is performed by
clustering the expression profiles: using pair-wise measures such as correlation[1,7]
and mutual information[2]; using more multivariate methods like principal
components[18] and Fourier analysis[20]. Clustering methods are based on the
microarray expression data and subsequent efforts are made to correlate clusters
with pathways[22]. Several authors have suggested methods for synthesizing
pathways using gene expression data: linear models[5], Boolean networks[16] and
Bayesian networks[9]. However, it is difficult to evaluate such reversed engineered
pathways in view of known metabolic and regulatory pathways. This has led to
efforts being made to map reconstructed pathways onto known pathways[8, 22].

In this paper, we present a method for scoring of putative pathways. The scores
are defined to measure the impact of gene expression levels from a series of
microarray experiments on metabolic and regulatory pathways. We also present an
animated visualization technique that allows the user to observe the complex
changes that occur in pathways as tracked by the changing expression levels in a
series of microarray experiments. All methods have been implemented in a stand-
alone JAVA application.



2    Methods

2.1 Expression Data

In this paper, we consider series of microarray experiments, which measure genome-
wide expression levels, as observed over time or over increasing levels of different
stimuli like temperature, radiation, drug dosage etc. Well-known examples of such
series of microarray experiments include:

• Yeast – diauxic shift microarray data[4], yeast sporulation data[3], yeast
response to various environmental changes[7], yeast cell cycle data[20]

• E.coli – heat shock microarray time series[19]
• Human – response of human fibroblasts to serum[11]

For each microarray experiment series, let G  be the set of genes investigated in a
series of T experiments. For each gene gχ G, we regard the expression data as a
mapping from g to an ordered series of numbers, Xt,g (t=1,2,…,T). In this, Xt,g
denotes the expression ratio of the gene g in the t-th microarray experiment of the
series. The expression ratio is calculated as:

                                                   Xt,g = Lt,g/ L0,g        
(1)

where Lt,g is the actual expression level for the gene g in the t-th microarray
experiment and L0,g is the expression level of the gene g in the reference sample.
That means L0,g is the unperturbed case.

2.2 KEGG: The Pathway Database

The KEGG (Kyoto Encyclopedia of Genes and Genomes) database provides a
catalog of metabolic and regulatory pathways that may be considered wiring-
diagrams of genes and molecules[18]. In addition, it provides up-to-date links from
the gene catalogs generated by genome sequencing projects. More than diagrams,
the KEGG database also provides direct links from the genes to the gene products
(enzymes and other proteins) involved in the biochemical pathways. This feature of
KEGG is particularly useful in mapping gene expression data to known metabolic
and regulatory pathways.

In the case of a series of microarray experiments, visualizing the course of a
pathway is highly informative and essential in understanding how the pathway is
affected over the sequence of experiments. While visualization is essential to
understanding each individual pathway, it is also necessary to provide the user some
indication of the relative importance of the more than 100 different pathways in the
KEGG database. In this paper, we describe three kinds of pathway scores, which are
based on “activity”, “coregulation” and “cascade” effects in pathways.



Method Outline
The methods described in this paper allow scoring and visualization of the putative
pathways in the KEGG database according to the gene expression levels in a
microarray experiment series. The method can be summarized as follows:

• Given the input
o Gene expression data from a microarray experiment series
o Putative pathways of the KEGG database

• Answer the questions
o Which pathways are most affected during the course of the

experiments?
o What is the nature of the effect? (Details such as which genes in a

pathway are most affected, are the genes over-expressed or under-
expressed, which reactions are disrupted etc.)

• By providing the output
o Pathway scores – these quantify “activity”, “coregulation”, and

“cascade” effects in pathways as measured by the gene expression
levels from the microarray experimental data.

o Pathway animated view – these show the effects on individual
pathways over the course of a microarray experiment series.

3 Pathway Scoring

The pathway scoring methods described below measure the changes in metabolic
and regulatory pathways as indicated by genome-wide gene expression levels. A
high level of gene expression indicates that the cell required the particular protein
coded by the gene and hence the expression of the gene has been induced. Thus,
significant induction in the genes of a pathway shows that the pathway is being used
more extensively than at the reference time point. Similarly, significant repression in
the genes involved in a pathway shows that the pathway has been de-activated. By
measuring the gene expression through a series of microarray experiments, it is thus
possible to measure the effect on biochemical pathways as the cell is subjected to
different stimuli. In this paper, we describe three kinds of pathway scores which
progressively try to capture the complexity of biochemical pathways in living cells:

• The Activity score for a pathway gives a summary measure of the extent to
which a pathway is perturbed from the reference state. This score will rank
those pathways higher in which more genes were over-expressed or under-
expressed with reference to reference state.

• The Coregulation score gives an indication of co-expression of the genes
in a pathway under the given experimental conditions. It assigns higher
scores to pathways whose genes show similar patterns of expression.



• The Cascade score takes into account the structure of a pathway as well as
measuring activity and coregulation. It gives a measure of the extent to
which a metabolic pathway is affected by analyzing the microarray data
along reaction chains. If the first enzyme in a series of reactions is, say,
over produced, this should be accompanied by an increase in production of
the subsequent enzymes in the reaction chain. A high score is given to such
over-expressed or under-expressed chains of reactions.

Since it is important to assess the relative importance of pathways rather than
the absolute scores, each type of score is further normalized on a scale of 0-100 as
follows: Relative Score = [Score/Max. Score]x100, where Max. Score is the
maximum score (of the same type) among all putative pathways in KEGG.

Another important normalization required for the scoring functions is based on
the number of enzymes in a pathway for a given organism. For example, in case of a
pathway like prostaglandin and leukotriene metabolism is probably defunct in yeast
as only two of the enzymes in this pathway are known to be present in yeast and they
are entirely disconnected. Such defunct pathways should be differentiated from valid
pathways while scoring, and their score should not be given importance. For a
metabolic pathway P, the “validity factor normalization” with respect to the
organism under investigation is defined as follows:
                                        VForg (P)  =  1, if  Porg/Pref >= 0.3                                   (2)

                                    = Porg/Pref , if Porg/Pref < 0.3,   where
Porg : number of enzymatic reactions in the organism specific version of P
Pref : number of enzymatic reactions present in the reference version of P as
provided by the KEGG database, it is the unperturbed case.
(Enzymatic reactions are uniquely identified by the substrate-product-enzyme
combination). Thus, if only a few enzymes in a particular metabolic pathway are
known to exist in an organism, the pathway will be given a low score by discounting
the original score by the “validity factor”. The threshold of 0.3 was used for Porg/Pref
in defining the validity factor, as it was found to be empirically suitable.

3.1 Activity Score

Consider a pathway P and let the set of genes involved in the pathway be denoted by
GP. The activity score for the pathway P with respect to a user-defined threshold � is
defined as follows using (1) and (2):

                         Activity Score(P,�) =  VF  × � �
∈ =pGg
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I(g,t)   =  1 if Xt,g > �1 or Xt,g < 1/�2; 0 otherwise.



Thus, according to activity score, pathways will be scored higher if there are
more genes that are over-expressed above a given threshold value �1 or under-
expressed below a given threshold value 1/�2. The thresholds represent the minimum
fold-deviation, with respect to the reference sample, that is considered meaningful.
Similar activity scores have been previously used[21] where the threshold is
determined based on the data. However, due to inherent noise in the experimental
data, it is difficult to validate and interpret the resulting scores when the threshold is
data dependent.
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Consider a pathway P and let the set of genes involved in the pathway be
denoted by GP and NP = |GP|. The slope coregulation score for a pathway P is
defined as follows using (1) and (2):   

Slope Coregulation Score(P)  = VF ×  �
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 At – At-1 represents the fold change in the experimental condition for the microarray
experiment series. For example, in case of  microarray time series data, this
represents the time lapse between experiments t and  t-1; in case of microarray
experiments performed over increasing temperature levels, this represents the
change in temperature between experiments t and  t-1, etc.

         

3.3   Cascade Score

Using coregulation scores, pathways in which the genes have similar expression
patterns will be ranked higher. However, this does not account for a) genes whose
expression levels do not show much deviation from the expression level at the
reference time point; b) the structure of the pathway. The first problem can be

Fig 2a. Time progress of Ribosomal proteins
which have a coregulation score of 100  -
highest among all pathways.  (Diauxic shift).

Fig2b. Time progress of the glycolysis pathway
which have a coregulation score of 25 - highest
among metabolic pathways  (Diauxic shift).



resolved by combining activity and coregulation scores, as was done in a combined
scoring function described in [21]. The combined scoring function still does not take
into account the structure and ordering of reactions in metabolic pathways.

Here, we define a cascade score that accounts for both these features in scoring
pathways. This method of scoring is particularly useful to find out in which pathway
a reaction chain is active or shutdown for the particular experiment. The cascade
score is valid only for metabolic pathways, as it requires a network of linked
reactions. It is computed as follows:

• Step 1: Create a list of all enzymatic reactions in the pathway. Discard all
reactions in which the gene (corresponding to the enzyme) does not show
any significant fold-deviations from the reference expression level.

• Step 2: Form all possible reaction chains (paths in a graph). Score each
chain based on the coregulation of enzyme pairs as they occur in the chain.
The edge weight W for an edge between two genes h and g is given by:

W (g � h) = #(h=1|g=1) / #(g=1), where g=1 means g is active.
• Step 3: Find the chain with the highest score – assign the score for the

chain as the cascade score for the pathway.
Details of the method for calculating cascade score are given in [15].
The table below gives the results for the three scoring methods for different

yeast microarray experiment series.
Table 1. Top pathways based on scoring functions :

Microarray
Experiment
Series

Activity Score Coregulation Score Cascade Score

Regulatory Metabolic Regulatory Metabolic

Diauxic
Shift[4]

Ribosome Oxidative
Phosphoryl-
ation

Electron
Transport
System - II

Reductive
Carboxylate
cycle

TCA cycle

Alpha Factor Cell cycle Riboflavin Cell cycle Riboflavin Purine
Metabolism

Elutriation Cell cycle Pentose
Phosphate

Cell cycle Porphyrin and
chrolophyll
metabolism

Glyoxylate
and
dicarbonate
metabolism

Sporulation Ribosome Oxidative
Phosphoryl-
ation

Proteasome Terpenoid
Biosynthesis

Vitamin
metabolism

Heat Shock Ribosome Purine
Metabolism

Proteasome Galactose Fatty acid
biosynthesis

The above table gives an idea of how the different analysis can give different
results and how the scores point the affected pathways that are related with the
experiment data. Consider the diauxic shift experiment, in [4] it is shown to be



related with ribosome and TCA cycle pathways. Diauxic shift is known to be related
with Oxidative Phosphorylation and Electron Transport System-II. Co-regulation of
the Electron Transport System-II becomes evident due to significant activity of the
Oxidative Phosphorylation pathway. Figure 1b clearly shows  reductive carboxylate
(CO2 fixation) pathway  getting activated during diauxic shift response.

4   Multiresolution, Animated Visualization of Pathways

As mentioned earlier, KEGG contains information on a large number of putative
pathways. The pathway scores are useful in directing the user to the “right” pathway
in the context of a microarray experiment series. However, visualization of the
pathways is necessary to show a user the details of pathway effects as measured by
changes in gene expression levels in response to stimuli. The visualization technique
of [14] requires a single absolute level for each member of the set of genes, which is
a severe limitation. Also identification of affected pathways based on color rather
than numerical value is prone to errors. Our technique removes these inadequacies.

4.1  Pointing the User in the Right Direction – Multiresolution Viewing

The metabolic pathways in KEGG are classified hierarchically at three levels of
detail i.e. three resolutions. Resolution 1 is a coarse grained representation of the
complete network of metabolic pathways. Resolution 2 provides medium grade
resolution is terms of functionality like carbohydrate metabolism, nucleotide
metabolism, etc. and contains pathways related to that function. The finest resolution
is resolution 3, which shows the reaction network as well as the compounds and the
enzymes involved. KEGG also organizes its regulatory pathways into groups at
resolution 2 based on broad functionality.

The (activity, coregulation, cascade) score for a pathway group at the resolution
2 level is simply the average of the corresponding scores of the pathways belonging
to that group. The scores at the resolution 2 level are normalized on a scale of 0-100,
with the highest pathway being given a score of 100.

The user is directed using the relevant summary pathway scores at each of the
coarser resolutions (resolution 1 and 2). Clickable maps allow the user to navigate
easily through the pathways. Example of this multiresolution view is shown in figure
3 and figure 4. Figure 3 shows the resolution 2 view for energy metabolism that had
the highest activity score among all pathway groups in resolution 1.

4.2   Directing the User to Impact - Animated Visualization



At any resolution 3 pathway, the user is presented with several choices for viewing
the expression data for all the genes involved in the pathway. One such choice is an
animated view:

• For a single microarray experiment, the organism specific pathway map
from KEGG is colored. The enzyme boxes are colored based on their
expression level (red indicating induction and blue indicating repression).

• For a microarray experiment series, the user can use a “next” button to
view the experiments in sequence, allowing a visual monitoring of the
pathway changes.

Fig 4 shows the resolution 3 view for the citrate cycle pathway at the last time point
of the diauxic shift microarray experiment series[4]. The user can use the previous
and next buttons to observe this pathway at each time point.

5    Results and Discussion

While the potential utility of expression data is immense, some obstacles will need
to be overcome before significant progress can be realized. First, data from
expression arrays is inherently noisy. Second, gene expression is regulated in a
complex and seemingly combinatorial manner. Third, our knowledge regarding
genetic regulatory networks is extremely limited. Never the less, gene expression
data from microarrays are very useful for understanding biochemical pathways, their
progress with time and their response to experimental stimuli.

The scoring and visualization methods used here give a natural way for using
genome-wide expression data in understanding how biological systems function.
However, current methods can be improved if protein microarrays become widely
available. This is because current DNA microarray technology measures mRNA
expression levels, which are only an indication of the level of activity of the final
protein, also the mapping from gene to proteins/enzymes is many to many, which
can result in misleading scores. Directions for future work include analysis and
visualization for microarray experimental data that corresponds to two or more
classes[1, 21].
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Fig 3. Second Resolution grouping of pathways belonging to Nucleotide Metabolism. The activity, co-
regulation and cascade effect scores are also shown

Fig  4.  Finest Resolution (Resolution 3) for Citrate Cycle. The enzymes are colored according to their
activity at time instant 7 of the Diauxic shift experiment [1].


