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A SOFM Approach to Predicting HIV Drug Resistance
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The self-organizing feature map (SOFM or SOM) neural network approach has
been applied to a number of life sciences problems. In this paper, we apply SOFMs
in predicting the resistance of the HIV virus to Saquinavir, an approved protease
inhibitor. We show that a SOFM predicts resistance to Saquinavir with reasonable
success based solely on the amino acid sequence of the HIV protease mutation. The
best single network provided 69% coverage and 68% accuracy. We then combine a
number of networks into various majority voting schemes. All of the combinations
showed improved performance over the best single network, with an average of
85% coverage and 78% accuracy. Future research objectives are suggested based
on these results.

1 Introduction

1.1  OQOverview

The human immunodeficiency virus (HIV-1), the causative agent of acquired
immune deficiency syndrome (AIDS), has been the subject of extensive re-
search in recent years. A good, although somewhat dated introduction to
AIDS research is provided by Watson, et. all

HIV-1 infection has been approached via many treatment pathways. One
of the first was the use of Azidothymidine (AZT) to inhibit the synthesis of
the HIV provirus in vivo. Unfortunately, the HIV virus was able to mutate
in order to resist AZT, eventually overcoming its therapeutic benefits. Two
other popular methods of treating the HIV virus are by attacking the reverse
transcriptase responsible for synthesizing the DNA provirus from the retroviral
RNA, and by inhibiting the HIV protease responsible for splicing the primary
polyproteins produced by the HIV virus into the active proteins necessary for
its replication. Both of these approaches also eventually fail due to mutation
of the viral genome, leading to protease inhibitor resistant viral strains. Most
current therapies involve combinations of drugs aimed at inhibition of both the
reverse transcriptase and the protease.

Artificial neural network (ANN) based self-organizing maps were developed
by Kohonen? SOFM algorithms belong to the unsupervised learning, competi-
tive network class of ANNs. An input vector is introduced to the network, after
which a winning neuron is determined and the weight vectors of all neurons
within a specified neighborhood of the winning neuron are updated? In this
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way, SOFMs are useful for clustering related patterns together. When patterns
in the training set are labelled, clusters containing these labelled patterns can
then be used to identify unknown patterns.

This laboratory has previously applied SOFM clustering to the HIV drug
resistance problem? Resistance to the protease inhibitor Indinavir was studied
first by applying supervised learning techniques to protein structural data for
various HIV protease mutants to predict Indinavir IC90 values. Only limited
success was obtained, primarily due to an insufficient number of mutations
with corresponding Indinavir IC90 values available from the literature with
which to train the classifier. An SOFM was used to segment the same data
into clusters of Indinavir-resistant mutants and non-resistant mutants based
on structural features. We were able to divide all reported HIV mutants into
several categories based on their 3-dimensional molecular structures and the
pattern of contacts between the mutant protease and Indinavir. Our classifier
shows reasonable prediction performance, being able to predict the drug re-
sistance of previously unseen mutants with an accuracy of between 60% and
70%. We believe that this performance can be greatly improved once more
data becomes available. The results support the hypothesis that structural
features of the HIV protease can be used in antiviral drug treatment selection
and drug design.

The goal of this research is to build a SOFM to predict the resistance of
known mutations of HIV protease to Saquinavir, a protease inhibitor related
to Indinavir that is also approved for use in the treatment of HIV infection.
No attempt is made to understand the mechanism or reasons why certain
mutation are or are not resistant to Saquinavir, only to predict such resistance
based solely on the amino acid sequence of HIV protease mutants, a small
number of which have reported Saquinavir IC90 values. Our hope is that this
early work will ultimately enable clinicians to prescribe HIV treatments based
on drug resistance predictions.

1.2 Related Work

Self-organizing maps have been used successfully in a wide variety of life science
applications. Kaartinen et.al. have successfully used a SOFM to discriminate
between human blood plasma lipoprotein lipids (LDL and HDL cholesterol,
triglycerides) and furthermore to cluster plasma samples into different lipopro-
tein lipid risk profiles® Makipaa et. al. have applied SOFMs to the clustering
and subsequent classification of blood glucose data from insulin-dependent di-
abetic patientsS Santos-Andre and Roque da Silva combined a SOFM with
a multi-layer perceptron to provide radiologists with a ”second opinion” in
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the diagnosis of breast cancer” Christodoulou and Pattichis have developed
medical diagnostic systems for the assessment of electromyographic (EMG)
signals necessary for the diagnosis and monitoring of patients with neuromus-
cular disorders, and carotid plaques based on ultrasound images of patients
with pulmonary disease. The systems were comprised of multiple SOFM clas-
sifiers whose results were combined using majority voting and SOFM-derived
confidence measures®? Finally, Golub et. al. were able to distinguish between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) from

SOFM clustering of gene expression monitoring data.”

2 Experimental Detail

2.1 Data Preparation

Ouly thirty-two patterns (HIV Protease mutants) were found in the literature
with reported IC90 drug resistance values!! These patterns were supplemented
with 910 reported HIV protease mutants obtained from the Los Alamos Na-
tional Laboratory HIV Sequence Database (http://hiv-web.lanl.gov/), along
with the wild type HIV protease sequence.

Netprep, a command line Java program, was written to convert the amino
acid sequence of a protein or peptide segment (a string of alpha characters)
into normalized numeric patterns suitable for input to a neural network. The
input to Netprep is a file containing one peptide sequence per line, with each
residue separated by a comma. The first pattern in the file is the wild type.
For each residue, all of the patterns are compared to the wild type. Patterns
that match the wild type at that residue are assigned a value of zero. Residues
that differ from the wild type are ordered by frequency of occurrence. They
are then assigned a value between 0 and 1 based on dividing (0,1] into n equal
increments, where n is the number of different mutations from the wild type for
that residue. For instance, if the wild type is V, and there are four mutations
across all of the input patterns, say N, L, I, and A, N may be assigned a value
of 1, L a value of .75, T a value of .5, and A a value of .25. Once these numeric
assignments are made, each pattern is normalized and written to an output
file.

The researcher may optionally specify at runtime a percentage of the pat-
terns to withhold from training. All the patterns are processed as described
above, after which the appropriate number of patterns to be withheld are ran-
domly selected and output to a separate holdout file. The remaining patterns
are used as input to the neural network. For the research described in this
paper, ten percent of the 911 unclassified patterns were withheld. The 32
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patterns with resistance values were all used, as described in the next section.
We were interested not in predicting the resistance of a particular mutant,
but rather in classifying a mutant as having high, medium, or low resistance to
saquinavir. We defined low resistance for a mutant as having less than a four-
fold resistance to saquinavir as compared to the resistance of the wild type.
High resistance was defined as greater than ten-fold resistance to saquinavir
as compared to the resistance of the wild type. Having defined these cutoffs,
twelve of the 32 patterns with IC90 values were classified as having low re-
sistance, three with medium resistance (between 4- and 10-fold resistance),
and the remaining patterns classified as exhibiting high resistance. The actual
range of resistance values was from 0.33-fold to 269.33-fold (see Table 1°).

2.2  Training

A leave-one-out cross-validation strategy was used due to the scarcity of classi-
fied patterns. Thirty-one of the 32 patterns with resistance values were added
to 800+ patterns remaining after holdout on the data set obtained from Los
Alamos. The patterns with resistance values allowed us to identify clusters of
mutants as high, medium or low resistance to saquinavir. Clusters with con-
flicting assignments were classified as 'mixed’, and those with no assignment
were classified as 'none’.

In all, 36 networks were trained a total of 32 times (one for each leave-one-
out pattern to be tested), for a total of 1152 runs. See Table 3 for a complete
listing of the networks. To summarize, networks with output matrices of 12x12,
10x10, 8x8, 6x6, 5x5, 4x4, and 3x3 were trained using initial learning rates
of 0.9-0.5 and initial neighborhoods corresponding to the dimensionality of
their output matrix (e.g., an initial neighborhood of 12 for the 12x12 matrix).
All networks except one trained using 10 iterations. The 10x10 matrix was
also trained using 50 iterations, an initial learning rate of 0.7, and an initial
neighborhood of 10. The results of this test were then compared to the same
conditions and 10 iterations to see if increasing the number of iterations would
improve the performance of the network.

3 Results and Discussion

3.1 Single Network Performance

Once each network was trained, the lone test pattern was run through the
network. If the pattern was assigned to a 'mixed’ cluster or to one with no

bAll mutations were obtained from Winters, et. alll, except as noted.
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Mutation ICyo(uM) | Fold resistance
Wild Type 0.03 1
L10I K14R N37D M461 F53L A7T1V - 8.08 269.33
G73S V771 L90M

L10I E35D M361 R41K 162V L63P — 6.00 200
A71V G73S 184V L90OM 193L

L10I 115V M361 G48V 154V 162V V82A 1.18 39.33
L10I 115V M361 G48V 154V 162V 0.92 30.67
K14R 115V N37D F53L A71V G73S L90OM 0.58 19.33
K14E M36V G48V L63P A71V T74S V82A 0.58 19.33
115V R41K L63P A71T G73S L90OM 0.37 12.33
G48V L63P T74A 0.80 26.67
K20I M36I L63P A71T G73S L90M 0.42 14
L10I E35D R41K 162V L63P A71V — 0.34 12.67
G73S 184V LI0M T93L

K14R R41K L63P V771 L90M I93L 0.21 7
L10I K20M L63P A71T V771 L90M I93L 0.20 6.67
N37D R57K D60E L63P A71V G73S — 0.20 6.67
L90M I93L

115V D30ON E35D M361 R41K L63P 0.03 1
L63P T74S L9OM 0.09 3
L63P L90OM 0.08 2.67
K14R R41K L63P V771 193L 0.07 2.33
L10V 162V G73S L90OM 0.07 2.33
L63P T74A V771 0.07 2.33
L63P LoOM 0.06 2
N37D L63P A71V G73S LI0OM I93L 0.06 2
L10I L63P A71T V77I 193L 0.06 2
115V E35D R41K L63P 0.06 2
K14R/K L63P 193I/L 0.06 2
K14E L63P A71V 0.06 2
115V 0.04 1.33
L63P 0.05 1.67
L10I L63T A71T 0.02 0.67
L63P A71V LOOM 0.02 0.67
L63A 0.01 0.33
G48V 154V LIOM!? 1.50 50
G48V 184V LI0OM!? 0.90 30

Table 1: Resistance values of HIV Protease mutants to Saquinavir. The fold resistance was
calculated as a ratio between the IC90 value of the mutant and the IC90 value of the wild
type.
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x | L M| H
L FP | FP
M | FN FP
H|FN | FN

Table 2: Truth table for determining false positives and false negatives. Actual classifications
are on the left, classifications predicted by the SOFM are across the top.

label, then the pattern was not classified. Otherwise, a predicted resistance
classification would be assigned based on the label of the cluster in which
the pattern was placed. We defined a false positive (FP) as a mutation that
was classified as being more resistant than it actually was based on its n-fold
resistance value. For instance a false positive condition exists if the mutant’s
IC90 value as reported causes the mutant to be defined as low resistance (i.e.,
the IC90 of the mutant is less than four-fold more resistant to saquinavir than
the wild type) and the network assigns to that mutant a label of medium or
high resistance. Conversely, if a mutant is reported as more resistant than the
label assigned by the network, a false negative (FN) condition exists. Table 2
summarizes this logic as a truth table.

For each network, the 32 test patterns are identified as correctly classified,
FP, FN, or not classified (if they are assigned to a 'mixed’ or unlabelled cluster).
Then the coverage and accuracy of the network is calculated. Coverage is
defined the ratio of test patterns that were classified (i.e., assigned to a labelled
cluster) to total test patterns. Accuracy is defined as the ratio of patterns
that were correctly classified to the total number patterns classified. For our
purposes, both are expressed as percentages. A third number that has been
calculated for each network is what we call the network’s score:

Score = Coverage*Accuracy*100

The score allows us to compare networks based on a single number. Ob-
viously, there are other ways one may calculate a score that weights the con-
tribution of coverage and accuracy differently. For our purposes, we will treat
them as equal contributions to the overall score of the network, although we
will also discriminate by coverage before attempting to find the network with
the best accuracy.

Our results are summarized in Table 3. The network with the best overall
performance and also the best coverage was the 8x8 output matrix with an
initial learning rate of 0.6. The most accurate network was the 8x8 output
matrix with an initial learning rate of 0.5. This network produced 100% ac-
curacy, but provided only 31% coverage. Note that there are other networks
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Output | Learn Rate | Nbrhood | Iterations | Coverage | Accuracy | Score
12x12 0.9 12 10 50% 75% 38
12x12 0.8 12 10 41% 62% 25
12x12 0.7 12 10 47% 60% 28
12x12 0.6 12 10 28% 56% 16
12x12 0.5 12 10 38% 42% 16
10x10 0.9 10 10 53% 76% 40
10x10 0.8 10 10 31% 60% 19
10x10 0.7 10 10 41% 62% 25
10x10 0.7 10 50 28% 44% 12
10x10 0.6 10 10 53% 1% 38
10x10 0.5 10 10 44% 50% 22
8x8 0.9 8 10 53% 65% 34
8x8 0.8 8 10 41% 62% 25
8x8 0.7 8 10 38% 58% 22
8x8 0.6 8 10 69% 68% 47
8x8 0.5 8 10 31% 100% 31
6x6 0.9 6 10 31% 80% 25
6x6 0.8 6 10 31% 80% 25
6x6 0.7 6 10 41% 85% 35
6x6 0.6 6 10 41% 62% 25
6x6 0.5 6 10 41% 85% 35
5x5 0.9 5 10 25% 88% 22
5x5 0.8 5 10 22% 86% 19
5x5 0.7 5 10 9% 33% 3
5x5 0.6 5 10 19% 100% 19
5x5 0.5 5 10 25% 5% 19
4x4 0.9 4 10 9% 100% 9
4x4 0.8 4 10 9% 100% 9
4x4 0.7 4 10 6% 100% 6
4x4 0.6 4 10 6% 100% 6
4x4 0.5 4 10 13% 5% 10
3x3 0.9 3 10 0% N/A% 0
3x3 0.8 3 10 0% N/A% 0
3x3 0.7 3 10 0% N/A% 0
3x3 0.6 3 10 0% N/A% 0
3x3 0.5 3 10 3% 100% 3

Table 3: Summary of Results. Values listed for learning rate and neighborhood are initial
values. Score = Coverage* Accuracy*100.
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Output Matrix | Coverage | Accuracy | Score
12x12 41% 59% 25
10x10 44% 64% 29

8x8 46% 1% 32
6x6 3% 78% 29
5x5 20% 76% 16
4x4 9% 95% 8
3x3 1% 100% 1

Table 4: Average performance of networks by size of output matrix.

which produced 100% accuracy, but all of these networks exhibited very poor
coverage (less than 10%) and were rejected from serious consideration.

Overall, it was observed (see Table 4) that the networks with 8x8 out-
put matrices performed best (average score of 32) and also provided the best
coverage (average of 46%). Networks with 12x12, 10x10, 6x6 and 5x5 output
matrices also performed reasonably well. The networks with smaller output
matrices had very high accuracy, but their coverage was quite poor (again,
less than 10%). It was also observed that increasing the number of iterations
during training did not improve network performance, but actually degraded
performance for the test case (10x10 output matrix, 0.7 initial learning rate,
50 iterations).

3.2  Majority Voting Schemes

The performance of the best network allowed for better-than-random accu-
racy (68%) and acceptable coverage of 69%. The most accurate network had
100% success for those patterns that it was able to classify, but provided only
marginal coverage at 31%. Certainly for such a critical application as predict-
ing HIV drug resistance, we would want better performance.

One possibility is to make use of multiple networks at once using a majority
voting scheme. In majority voting, the results of presenting a pattern to a
number of networks is tallied, and the majority classification is taken as correct.
In situations where one or more networks fail to classify the pattern (e.g., the
pattern is assigned to a 'mixed’ or unlabelled cluster), only the outputs of the
networks that successfully classify the pattern are used. In the case of a tie
(there were none for the schemes that we explored), the lowest drug resistance
classification was selected. That is, we considered the risk of trying a drug
treatment that did not work to be lower than the risk of missing a potentially
effective drug treatment.
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Voting Scheme Coverage | Accuracy | Score
Majority of 6 Most Accurate 84% 85% 71
Majority of Best + 3 Most Accurate 88% 79% 70
Majority of 4 Best Score 84% 70% 59
Best Single Network’ 69% 68% 47
Most Accurate Single Network 31% 100% 31

Table 5: Comparison of scores for various majority voting schemes.

Three schemes were tested and compared to the best single network and
the most accurate single network. The first scheme was a combination of the six
most accurate networks: 8x8-0.5, 6x6-0.7, 6x6-0.5, 5x5-0.9, 5x5-0.8, and 5x5-
0.6 (the number after the dash is the initial learning rate). The second scheme
combined the best single network with the three most accurate networks: 6x6-
0.7, 6x6-0.5, and 8x8-0.5. Again, those networks with 100% accuracy but very
low coverage (the networks with 4x4 and 3x3 output matrices) were ignored.
Our final scheme combine the results of the four networks with the best overall
scores: 8x8-0.6, 10x10-0.9, 10x10-0.6, and 12x12-0.9.

Perrone claims that the performance of a combiner (e.g., a majority voting
scheme) is never worse than the average of the individual classifiers, but not
necessarily better than the best classifier!® In our case, all of the majority vot-
ing schemes outperformed the single best network (see Table 5). The average
coverage across the three voting schemes was 85%), the average accuracy of the
three was 78%, and the average score was 67. This represents a significant
improvement over the single best network (69%, 68%, and 47, respectively).

4 Conclusions and Further Work

This research explored the possibility of using self-organizing feature maps to
predict drug resistance in HIV-1 infected patients based only on the peptide
sequence of the HIV protease mutant strain. This differs from previous work
which attempted to predict drug resistance based on structural features of
the HIV protease! This paper shows that the single best classifier found pro-
duces acceptable results (69% coverage and 68% accuracy), but to produce a
predictive system suitable for clinical use, multiple networks configured in a
majority voting scheme may be necessary. The best scheme was the six most

“Best single network was 8x8 output matrix, 0.6 initial learning rate, initial neighborhood
of 8, 10 iterations; most accurate single network was 8x8 output matrix, 0.5 initial learning
rate, initial neighborhood of 8, 10 iterations
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accurate networks, with coverage of 84%, accuracy of 85%, and a score of 71.
All majority voting schemes outperformed the single best network.

There are many opportunities for further research on using SOFMs for
predicting drug resistance. In the case of HIV drug resistance, there are addi-
tional drugs (e.g., Indinavir and Nelfinavir) and drug combinations that may
be explored. The difficulty with this work and work with other HIV treatments
is the lack of publicly available clinical data (IC90 values). Christodoulou and
Pattichis have also incorporated the use of confidence measures for weighting
individual network results in majority voting schemes®, which may be applied
to the HIV drug resistance problem. Finally, SOFMs may be applied to the
treatment, of other retroviral diseases such as human T-cell leukemia virus
(HTLV-1) and hairy cell leukemia (HTLV-2), as well as DNA viruses such as
Hepatitis-B and Herpes.
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