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We present a kernel-based approach to the classification of time series of gene
expression profiles. Our method takes into account the dynamic evolution over
time as well as the temporal characteristics of the data. More specifically, we
model the evolution of the gene expression profiles as a Linear Time Invariant
(LTI) dynamical system and estimate its model parameters. A kernel on dynamical
systems is then used to classify these time series. We successfully test our approach
on a published dataset to predict response to drug therapy in Multiple Sclerosis
patients. For pharmacogenomics, our method offers a huge potential for advanced
computational tools in disease diagnosis, and disease and drug therapy outcome
prognosis.

1 Introduction

Gene expression levels change over time, as proteins interfere with gene tran-
scription. Proteins and DNA interact in a complex feedback system of gene
expression control, in which some proteins foster gene expression as transcrip-
tion factors, while others reduce transcription activity as inhibitors (for details
see [1]). Furthermore, protein-protein interactions can increase or reduce the
influence of certain proteins on transcription. These networks of gene expres-
sion control form the basis of essential cellular processes such as the cell cycle,
development, and disease progression.

Single microarray profiles describe one current state of a cell only and
may prove inadequate to study these complex interactions that steer biological
processes. Therefore, it becomes necessary to view and analyze gene expression
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profiles as dynamical systems evolving with time. Such an approach may lead
to a more expressive model for interpreting molecular processes within cells.

Over recent years, a growing number of time series of microarray data has
become available in databases such as the Stanford Microarray Database [2]
and GEO [5]. Whereas early studies used algorithms on microarray time series
that had been developed for static data (for example [12]), the interest in
algorithms that are able to handle and analyze time series of gene expression
data in particular has grown tremendously since. The interested reader is
referred to [3] for a full review of approaches and challenges in this field.

1.1 Classification Using Time Series Gene Expression Profiles

Most data mining algorithms that have been developed for gene expression
time series (for example [10]) deal with the problem of clustering. Given a
set of data points D, clustering algorithms try to decompose D into subsets
{D1, . . . , Dn} such that similarity between data points is maximized within
each cluster, i.e. each subset, and minimized between distinct clusters. In
short, clustering finds classes of data when classes are unknown. In medical
applications, clustering is most required when exploring subtypes of the same
disease or when searching groups of genes with similar expression profiles, i.e.
to find classes in unorganized data.

On the other hand, classification deals with the problem of predicting
class membership of unlabeled test data points after learning from a train-
ing set of data points with known class memberships. Predicting class labels
can be regarded as equivalent to predicting unknown characteristics of data
points. Central questions in pharmacogenomics constitute such classification
problems: Will patient X respond well to a certain therapy or drug treatment?
Has patient X been infected by a pathogen? Is patient X recovering from a
disease? Pharmacogenomics could greatly benefit from computational tools
that answer or at least help human experts to answer these questions. The
growing number of time series microarray data provide the training data from
which such advanced classifiers can learn.

Goal and outline of this article In this project, our aim was as follows:
Define a novel approach to time series microarray classification which uses Sup-
port Vector Machine (SVM) classification and a kernel function which respects
the temporally changing character of these expression profiles. In what follows,
we will present our dynamical systems kernel for gene expression time series
data. Modeling the time series as dynamical systems, we measure distances
between these systems and then classify them using a SVM. In Section 2, we
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will briefly review kernel methods. In Section 3, we show how microarray
time series data can be modeled as dynamical systems and how kernels can be
defined on them. We show the feasibility of our approach in experiments in
Section 4 on drug response prediction. We conclude with a discussion of our
findings and an outlook to future extensions and refinements of our method.

2 Support Vector Machines and Kernels

In this section we give a brief overview of binary classification with SVMs and
kernels. For a more extensive treatment we refer the reader to [11], and the
references therein.

Given m observations (xi, yi) drawn iid (independently and identically
distributed) from a distribution over X ×{±1} our goal is to find a function
f : X → {±1} which classifies observations x ∈ X into classes +1 and −1. In
particular, SVMs assume that f is a linear function given by

f(x) = sign(〈w, x〉 + b), (1)

and maximize the margin of separation between the decision boundary and the
points from opposite classes. We also need to take into account the slack when
the two classes are not linearly separable. Without going into details (which
can be found in [11]) this leads to the optimization problem:

minimize
w,b,ξ

1
2
‖w‖2 + C

m∑

i=1

ξi

subject to yi (〈w, xi〉 + b) ≥ 1 − ξi ∀1 ≤ i ≤ m
ξi ≥ 0

(2)

Here, the constraint yi (〈w, xi〉 + b) ≥ 1 ensures that each (xi, yi) pair is clas-
sified correctly. The slack variable ξi relaxes this condition at penalty Cξi.
Finally, minimization of ‖w‖2 ensures maximization of the margin by seeking
the smallest ‖w‖ for which the condition yi (〈w, xi〉 + b) ≥ 1 is still satisfied.

2.1 Kernel Expansion

To obtain a nonlinear classifier, one simply replaces the observations xi by
Φ(xi). That is, we extract features Φ(xi) from xi and compute a linear classifier
in terms of the features. Note that there is no need to compute Φ(xi) explicitly,
since Φ only appears in terms of dot products:

• 〈Φ(x), w〉 can be computed by exploiting the linearity of the scalar prod-
uct, which leads to

∑
i αiyi〈Φ(x), Φ(xi)〉.
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• Likewise ‖w‖2 can be expanded in terms of a linear combination scalar
products by exploiting the linearity of scalar products twice to obtain∑

i,j αiαjyiyj〈Φ(xi), Φ(xj)〉.

Furthermore, if we define

k(x, x′) := 〈Φ(x), Φ(x′)〉, (3)

we may use k(x, x′) wherever 〈x, x′〉 occurs. This is often referred to as the
kernel trick and the resulting hyperplane (now in feature space) is written as

f(x) = 〈Φ(x), w〉 + b =
m∑

i=1

αiyik(xi, x) + b. (4)

The family of methods which relies on the kernel trick are popularly called
kernel methods, and SVMs are one of the most prominent kernel methods.

2.2 Kernels and Microarrays

In evaluation studies comparing different classification techniques, SVMs out-
performed all competitors such as Fisher’s linear discriminant, Parzen windows
and two decision tree learners [6, 13]. Kernel methods have been applied to
classify microarray data in numerous studies such as [6], and [9]. An increasing
number of application studies in medicine and pharmacogenomics utilize ker-
nel methods to disease, especially cancer diagnosis (for example [8]). Although
these studies dealt with time series of microarray measurements, they ignore
the temporal character of the data; i.e. microarray data are compared without
exploiting the fact that measurement i follows measurement i − 1. As these
dynamics might reflect, for example, patients’ reaction to drug therapy or in-
fection with a pathogen, pharamacogenomics requires a classification method
based on the temporal dynamics in gene expression profiles.

A key advantage of kernel methods is that meaningful classifiers can be
constructed from non-vectorial data if a sufficiently expressive kernel function
can be designed. We are therefore not restricted to vectorial representations
when classifying time series of microarray expression data. We exploit this
property, in the sequel, by defining a kernel on dynamical systems for time
series gene expression profiles.

3 Kernels on Time Series Microarray Data

In this section, we discuss how time series microarray data can be modeled as a
Linear Time Invariant (LTI) dynamical system. We then present sub-optimal,
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but fast, methods for identifying model parameters. Using these estimated
parameters we define kernels on dynamical systems to compare different time
series which, in turn, are used by a SVM for classification.

3.1 The Model

We begin by modeling time series microarray data as a partially observed
discrete time LTI model. These models are also popular in control theory
where they are often called Auto Regressive Moving Average (ARMA) models
or Kalman Filters. The time-evolution of this model is described as

yt = Pxt + wt where wt ∼ N (0, R) (5a)
xt = Qxt−1 + vt where vt ∼ N (0, S). (5b)

Here, yt ∈ Rm is observed, xt ∈ Rn is the hidden or latent variable, and P ∈
Rm×n, Q ∈ Rn×n, R ∈ Rm×m and, S ∈ Rn×n, moreover R and S are positive
semi-definite matrices. Typically m , n, and we set P$P = 1 to fix the scaling
(see e.g. Section 4 [7]). The way to understand these models is to assume that
the actual dynamics of the system are guided by a very small number of latent
variables while the output space might be very high-dimensional. For instance,
gene expression profiles might contain many thousands of genes, while only a
few factors may be responsible for the expression.

3.2 Estimating the Parameters

Given a sequence of τ observations the identification problem is to estimate the
model parameters P , Q, R and S. Exact solutions like the n4sid method in
the systems identification toolbox of MATLAB(TM) exist, but they are very
expensive to compute when the output space is high dimensional. Instead, we
use a sub-optimal closed form solution proposed by [7]. Set Y := [y1, . . . , yτ ],
X := [x1, . . . , xτ ], and W := [w1, . . . , wτ ] and solve

min ||Y − PX ||F = min ||W ||F such that P ∈ Rm×n and P$P = 1 .

The unique solution to the above problem is given by P̂ = Un and X̂ = ΣnV $
n

where UnΣnV $
n is the best rank n approximation of Y . Un, Σn and Vn can

be estimated in a straightforward manner from the Y = UΣV $, the Singular
Value Decomposition (SVD) of Y .

In order to estimate Q we solve min ||QX̂ −X ′||F where X ′ = [x2, . . . , xτ ]
which again has a closed form solution using SVD. Now, we can compute
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v̂t = xt − Qxt−1, and set

S =
1

τ − 1

τ−1∑

i=1

v̂iv̂
$
i .

The covariance matrix R can also be computed from the columns of W in a
similar manner. For more information including details of efficient implemen-
tation we refer the interested reader to [7].

3.3 Dynamical System Kernels

For the sake of defining kernels we use the behavioral framework of [15] and
identify dynamical systems, X := (P, Q, R, S, x0), with their trajectories Traj(X) =
{yt|t ∈ 1, . . . ,∞}. These trajectories can now be interpreted as linear opera-
tors mapping from Rm (the space of observations y) into the time domain (N
in discrete time systems).

By using a exponentially decaying weighting factor we can define the kernel
between two dynamical systems X and X ′ as the dot product of the trajecto-
ries. In other words:

k(X, X ′) :=
∞∑

t=1

e−λty$
t y′

t = tr(Traj(X) T Traj(X ′)$), (6)

where T is a diagonal operator with entries e−λt. Since yt, y′
t are random vari-

ables (5a), we also need to take expectations over wt, vt, w′
t, v

′
t. Some tedious

yet straightforward algebra [14] allows us to compute (6) as follows:

k(X, X ′) = x$
0 M1x

′
0 +

1
eλ − 1

tr [SM2 + R] , (7)

where x0 and x′
0 are the initial conditions, and M1, M2 satisfy the Sylvester

equations:

M1 = e−λQ$P$P ′Q′ + e−λQ$M1Q
′ and M2 = P$P ′ + e−λQ$M2Q

′. (8)

The important point to note is that even though the kernel involves summing
over infinite terms, they can be computed in O(m3) time. These kernels can
also be interpreted in a more general framework using the Binet-Cauchy for-
mula. More details can be found in [14].

In our experiments we will use this kernel to compute similarities between
gene expression profiles, after having encoded the latter as a dynamical system.
This approach has the further advantage that it allows us to compare sequences
of different lengths, as they are all mapped to dynamical systems in the first
place.
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4 Experiments

4.1 Drug response prediction

A central prognosis problem in pharmacogenomics is drug response prediction.
We therefore tested our dynamical systems kernel classifier on a set of microar-
ray expression time series data from [4], to predict whether Multiple Sclerosis
patients will respond well to treatment with recombinant human interferon
beta (rIFNβ).

The dataset contains time expression profiles of 52 multiple sclerosis pa-
tients, out of which 33 were good and 19 were poor responders to rIFNβ. Ex-
pression profiles of 70 genes were measured for up to seven times per patient;
the first five observations were at a regular interval of 3 months each while the
last two observations were spaced 6 months apart. 17 patients missed a test
and hence have only 6 measurements, 8 patients missed two tests and hence
have only 5 measurements.

On this data, Baranzini et al. aimed at determining higher-order pre-
dictive patterns associated with treatment outcome and tried to uncover key
players (i.e. responsible genes) associated with a good or poor response. When
searching for gene expression signatures associated with drug response, they
conducted clustering of samples using normalized data for all 70 genes at each
time point. Although they applied different similarity measures and clustering
algorithms, they did not observe concomitant segregation of samples according
to their responder status. They therefore applied a method for feature selec-
tion which allowed them to determine triplets of genes whose early expression
correlates with responder status. We were interested in the question of pre-
dicting user response to the drug using our dynamical systems kernels. As a
side effect, we also wanted to estimate the latent dimension of the system, i.e.
the number of factors which actually leads to the observed behavior.

For our experiments we modeled the temporal microarray data from [4]
as LTI dynamical systems. The parameters of our LTI model were estimated
using the methods described in Section 3.2. λ was set to 10 by cross-validation,
n was set to a default value of 1. We then computed the kernel matrix for all
pairs of dynamical systems and used a SVM for classification. We took 100
random splits of the data into 4 folds of equal size and performed 4-fold cross-
validation on each of these splits. We report our classification accuracies as
averages over these 100 repetitions.

Our classifier achieved an average prediction accuracy of 87.05% which
compares very favorably with the 87.8% accuracy reported by [4]. We must
note here that our results are obtained without any specialized knowledge
of the dataset or feature selection methods; Baranzini et al. obtained their
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result by selecting features, namely triplets of genes whose early expression
levels correlate best with response outcome. Furthermore, standard state of
the art clustering techniques such as two-way hierarchical clustering failed to
satisfactorily separate these samples (see Figure 1 in [4]).

In our second experiment, we checked the influence of the number of mea-
surements per patient on classification accuracy. From a pharmacogenomics
point of view, it is interesting to know if we are already able to predict therapy
outcome correctly after few measurements. We repeated our classification ex-
periment considering the first k measurements with k ∈ {2, ..7} (at least two
measurements are needed to derive a dynamical system). If a patient’s data
contains less than k measurements, we derive the dynamical systems using all
available measurements. As before, in Figure 1 we report results as average
classification accuracy of 4-fold cross-validation repeated 100 times.

Figure 1: Mean classification accuracy in 100 repetitions versus number of measurements.

As expected, classification accuracy steadily increases as the number of
measurements grows. After 3 measurements we already reach a prediction
accuracy of more than 80%. But curiously enough, classification accuracy
after 7 observations is less than the classification accuracy after 6 observations.
This can be explained as follows: The last two observations are taken at a
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different time interval (6 months) than the first five observations (3 months).
Therefore, the last two observations encode longer range interactions. But, for
some patients only six or less observations are available. This means that we
are not able to effectively model this long range interaction for those patients
and this is reflected in the classification accuracy.

Also observe that by looking at only the first 6 measurements leads to
an average classification accuracy of around 90%. This significant jump in
classification accuracy (from around 83.5% for 5 measurements) can also be
attributed to the modeling of long range effects between 5th and 6th measure-
ment.

Observe that for 6 measurements, we now found a mean accuracy of 89.81%
which is significantly better than that of the best-scoring gene triplet reported
in [4] with 87.8% accuarcy (Yates’ corrected χ2 = 10.26, P = 0.0014).

Figure 2: Mean classification accuracy in 100 repetitions versus dimension of latent variable
space.

As a final experiment, we tested the impact of the latent dimension n of
the system on classification accuracy. All results reported so far were with
n = 1 which was chosen using cross-validation. We repeated our classification
experiment once for each n in {2, . . . , 5}. The best accuracy was achieved when
we considered only 6 measurements. Results of 4-fold cross-validation repeated
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100 times is reported in Figure 2.
Interestingly, a one-dimensional latent variable is the best choice for our

dynamical systems model. As a consequence, one single factor, i.e., one group
of genes with highly correlated expression levels, seems to be responsible for
the microarray time series expression data which allow us to separate good
and poor responders with high accuracy.

5 Discussion

In this paper, we modeled a series of gene expression profiles as LTI dynamical
systems, and used a kernel on dynamical systems to classify them. The main
advantage of our method is that it respects the temporal nature of the data,
and is independent of the length of the time series being compared.

Our model can also be extended to predict future values of the time series.
In other words, after building the LTI model, we can simulate it to predict
the value of a gene expression profile at a future time step. This could have
potential applications in disease progression prognosis or in simulations of the
cellular gene expression control network.

Ideally, domain knowledge about the underlying dynamics of the data
should be used to estimate the latent dimension of our model. But in some
cases this knowledge might not be available, and we might have to resort to
methods like Locally Linear Embedding (LLE) which estimate the effective
data dimension.

Our model assumes that the time series has been sampled at constant
discrete time intervals. If this assumption is violated then we can use Kalman
Filtering to predict the value of the missing observations. In our experiments,
the results are encouraging even though we ignore the missing observations.
Future work will focus on addressing this issue.

Furthermore, we assume that gene expression level dynamics can be mod-
eled as a linear process. While this appears to be a rather simplistic assump-
tion, our experiments verify that it is rich enough to capture complex dynamics.
But, if one examines gene expression dynamics that evolve nonlinearly, our ap-
proach might fail to describe the underlying biological process appropriately.
In these cases we need to resort to more advanced methods described in [14].

We have shown the potential of our method in drug response prediction in
our experiments, but our method offers far more possibilities for applications
in pharmacogenomics and medicine, namely in disease diagnosis, and disease
and therapy outcome prognosis. For example, one could predict if cancer
patients should continue to receive chemotherapy, given their response to initial
treatments. Besides, observing microarray time series data, one could try to
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predict if a person has been infected by a pathogen or has been exposed to
extreme environmental conditions such as heat or stress at a certain point in
time.

Furthermore, it will be interesting to combine our classification approach
with two central topics of interest in microarray data analysis, namely methods
to detect genes that are key players in biological processes and to derive gene
regulatory networks from gene expression data.
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