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We propose a computational strategy for discovering gene networks affected by a
chemical compound. Two kinds of DNA microarray data are assumed to be used:
One dataset is short time-course data that measure responses of genes following

an experimental treatment. The other dataset is obtained by several hundred
single gene knock-downs. These two datasets provide three kinds of information;
(i) A gene network is estimated from time-course data by the dynamic Bayesian
network model, (ii) Relationships between the knocked-down genes and their reg-

ulatees are estimated directly from knock-down microarrays and (iii) A gene net-
work can be estimated by gene knock-down data alone using the Bayesian network
model. We propose a method that combines these three kinds of information to
provide an accurate gene network that most strongly relates to the mode-of-action

of the chemical compound in cells. This information plays an essential role in
pharmacogenomics. We illustrate this method with an actual example where hu-
man endothelial cell gene networks were generated from a novel time course of
gene expression following treatment with the drug fenofibrate, and from 270 novel

gene knock-downs. Finally, we succeeded in inferring the gene network related to
PPAR-α, which is a known target of fenofibrate.
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1. Introduction

The microarray technology has produced a huge amount of gene expression
data under various conditions such as gene knock-down, overexpression,
experimental stressors, transformation, exposure to a chemical compound,
and so on. Using a large volume of microarray gene expression data, a num-
ber of algorithms together with mathematical models1,5,7,9,12,23 for estimat-
ing gene networks has been proposed and successfully applied to the gene
network estimation of S. cerevisiae, E. coli etc. As a real application of gene
network estimation techniques, computational drug target discovery19 en-
hanced with gene network inference6,14,20,22 has made tremendous impacts
on pharmacogenomics.

In this paper, we propose a computational strategy for discovering the
druggable gene networks, which are most strongly affected by a chemical
compound. For this purpose, we use two types of microarray data: One
is gene expression data obtained by measuring transcript abundance re-
sponses over time following treatment with the chemical compound. The
other is gene knock-down expression data, where one gene is knocked-down
for each microarray. Figure 1 is the conceptual view of our strategy. First,
we estimate dynamic relationships denoted by GT between genes based on
time-course data by using dynamic Bayesian networks.17 Second, in gene
knock-down expression data, since we know the information of knocked-
down genes, possible regulatory relationships between knocked-down gene
and its regulatees can be obtained. We denote this information by R. Fi-
nally, the gene network GK is estimated by gene knock-down data denoted
by XK together with GT and R by using Bayesian networks based on
multi-source biological information.13 The key idea for estimating a gene
network based on multi-source biological information is to use GT and R

as the Bayesian prior probability of GK . The prior probability of the graph
proposed by Imoto et al.13 only uses binary prior information, i.e. known
or unknown for each gene-gene relation. In this paper, we extend the prior
probability of graph13 in order to use prior information represented as con-
tinuous values. After estimating a gene network, for extracting biologically
plausible information from the estimated gene network, we have also devel-
oped a gene network analysis tool called iNET that is an extended version of
G.NET.14 The iNet tool provides a computational environment for various
path searches among genes with annotated gene network visualization.

As for related works, Basso et al.2 estimated a gene network of human
B cells as an undirected graph by their proposed algorithm. Our aim is to
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Figure 1. Conceptual view of the proposed method.

estimate druggable gene networks as directed graphs, that are sub-networks
of the tissue-specific network. In this method, the edge direction is very
important information and selection of compound-related genes is neces-
sary. Therefore, the aim of this paper is clearly different from theirs. Di
Bernardo et al.6 proposed an interesting method for identifying mode-of-
action of a chemical compound based on microarray gene expression data.
Di Bernardo et al.6 used statistical inference of a linear regression-based
network model to find affected genes by a chemical compound. On the
other hand, our interest is not only in the identification of affected genes,
but also in the elucidation of their dependency as the network. In addi-
tion, since di Bernardo et al.6 used examples of S. cerevisiae genes, more
discussions might be needed in order to apply their method to human genes.

To demonstrate the whole process of the proposed method, we ana-
lyze expression data from human endothelial cells. We generate new time-
course data that reveal the responses of human endothelial cell transcripts
to treatment with the anti-hyperlipidaemia drug fenofibrate. We also gener-
ate new data from 270 gene knock-down experiments in human endothelial
cells. The fenofibrate-related gene network is estimated based on fenofibrate
time-course data and 270 gene knock-down expression data by the proposed
method. The estimated gene network reveals gene regulatory relationships
related to PPAR-α, which is known to be activated by fenofibrate. Our
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computational analysis suggests that this computational strategy based on
gene knock-down and drug-dosed time-course microarrays will give a new
way to druggable gene discovery.

2. Methods for Reverse-Engineering Gene Networks

In the proposed method, we use Bayesian networks and dynamic Bayesian
networks for estimating gene networks from gene knock-down and time-
course microarray data, respectively. In this section, we briefly describe
these two network models and then elucidate how we combine multi-source
biological information to estimate more accurate gene networks.

2.1. Preliminary

Suppose that we have the observational data X of the set of p random
variables X = {X1, ..., Xp} and that the dependency among p random
variables, shown as a directed graph G, is unknown and we want to estimate
it from X. In gene network estimation based on microarray data, a gene
is regarded as a random variable representing the abundance of a specific
RNA species, and X is the microarray data. From a Bayes approach,
the optimal graph is selected by maximizing the posterior probability of
the graph conditional on the observed data. By the Bayes’ theorem, the
posterior probability of the graph can be represented as

p(G|X) =
p(G)p(X|G)

p(X)
∝ p(G)p(X|G),

where p(G) is the prior probability of the graph, p(X|G) is the likelihood
of the data X conditional on G and p(X) is the normalizing constant and
does not depend on the selection of G. Therefore, we need to set p(G) and
compute p(X|G) for the graph selection based on p(G|X).

The prior probability of the graph p(G) enables us to use biological data
other than microarray data to estimate gene networks and the likelihood
p(X|G) can be computed by Bayesian networks and dynamic Bayesian net-
works from gene knock-down and time-course microarray data, respectively.
We elucidate how we construct p(G|X) in the following sections.

2.2. Bayesian Networks

Bayesian networks are a graphical model that represents the causal rela-
tionship in random variables. In the Bayesian networks, we use a directed
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acyclic graph encoding Markov relationship between connected nodes. Sup-
pose that we have a set of random variables X = {X1, ..., Xp} and that there
is a causal relationship in X by representing a directed acyclic graph GK .
Bayesian networks then enable us to compute the joint probability by the
product of conditional probabilities

Pr(X ) =
p∏

j=1

Pr(Xj |Paj), (1)

where Paj is the set of random variables corresponding to the direct parents
of Xj in GK . In gene network estimation, we regard a gene as a random
variable representing the abundance of a specific RNA species, shown as a
node in a graph, and the interaction between genes is represented by the
direct edge between nodes.

Let XK be an N × p gene knock-down data matrix whose (i, j)-th
element xj|Di

corresponds to the expression data of j-th gene when Di-
th gene is knocked down, where j = 1, ..., p and i = 1, ..., N . Here we
assume that i-th knock-down microarray is measured by knocking-down
Di-th gene. Since microarray data take continuous variables, we represent
the decomposition (1) by using densities

fBN(XK |Θ , GK) =
N∏

i=1

p∏
j=1

fj(xj|Di
|paj|Di

,θj),

where Θ = (θ′
1, ...,θ

′
p)

′ is a parameter vector, paj|Di
is the expression

value vector of Paj measured by i-th knock-down microarray. Hence, the
construction of the graph GK is equivalent to model the conditional proba-
bilities fj (j = 1, ..., p), that is essentially the same as the regression prob-
lem. For constructing fj(xj|Di

|paj|Di
,θj), we assume the nonparametric

regression model with B-splines of the form

xj|Di
=

|Paj |∑
k=1

mjk(pa
(k)
j|Di

) + εj|Di
,

where pa
(k)
j|Di

is the k-th element of paj|Di
, εj|Di

∼ i.i.d.N(0, σ2) for i =
1, ..., N , and mjk (k = 1, ..., |Paj |) are smooth functions constructed by
B-splines as mjk(x) =

∑Mjk

m=1 γ
(jk)
m b

(jk)
m (x). Here γ

(jk)
m and b

(jk)
m (x) (m =

1, ...,Mjk) are parameters and B-splines, respectively.
The likelihood p(XK |GK) is then obtained by

p(XK |GK) =
∫

fBN(XK |Θ , GK)p(Θ |λ, GK)dΘ , (2)
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where p(Θ |λ, GK) is the prior distribution on the parameter Θ specified
by the hyperparameter λ. The high-dimensional integral can be asymptot-
ically approximated with an analytical form by the Laplace approximation
and Imoto et al.12 defined a graph selection criterion, named BNRC, of the
form

BNRC(GK) = −2 log{p(GK)} − r log(2π/N)

+ log |Jλ(Θ̂ |XK)| − 2Nlλ(Θ̂ |XK),

where

lλ(Θ |XK) =
1
N

{log fBN(XK |Θ , GK) + log p(Θ |λ, GK)} ,

Jλ(Θ |XK) = − ∂2

∂Θ∂Θ ′ lλ(Θ |XK),

r is the dimension of Θ , and Θ̂ is the mode of lλ(Θ |XK). The net-
work structure is learned so that BNRC(GK) decreases by the greedy hill-
climbing algorithm.12 We should note that the solution obtained by the
greedy hill-climbing algorithm cannot be guaranteed as the optimal. To
find better solution, we repeat the greedy algorithm and choose the best
one as ĜK . It happens quite often that the likelihood p(XK |GK) gives
almost the same values for several network structures, construction an ef-
fective p(GK) based on various kinds of biological information is a key
technique. We elucidate how we construct p(GK) in Section 2.4.

2.3. Dynamic Bayesian Networks

Dynamic Bayesian networks represent the dependency in random variables
based on time-course data. Let X (t) = {X1(t), ..., Xp(t)} be the set of p

random variables at time t (t = 1, ..., T ). In the dynamic Bayesian networks,
a directed graph that contains p nodes is rewritten as a complete bipartite
graph that allows direct edges from X (t) to X (t+1), where t = 1, ..., T −1.
The directed graph GT of the causal relationship among p random variables
is then constructed by estimating the bipartite graph defined above. Under
GT structure, we then have the decomposition

Pr(X (1), ...,X (T )) =
T∏

t=1

p∏
j=1

Pr(Xj(t)|Paj(t − 1)), (3)

where Paj(t) is the set of random variables at time t corresponding to the
direct parents of Xj in GT .
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Let XT be a T × p time-course data matrix whose (t, j)-th element
xj(t) corresponds to the expression data of j-th gene at time t, where
j = 1, ..., p and t = 1, ..., T . As we described in the Bayesian networks, the
decomposition in (3) holds by using densities

fDBN(XT |Ξ , GT ) =
T∏

t=1

p∏
j=1

fj(xj(t)|paj(t − 1), ξj , GT ),

where Ξ = (ξ′
1, ..., ξ

′
p)′ is a parameter vector, paj(t) is the expression value

vector of direct parents of Xj measured at time t. Here we set paj(0) = ∅.
We can construct fDBN by using nonparametric regression with B-splines
in the same way of the Bayesian networks. Therefore, by replacing fBN by
fDBN in (2), Kim et al.17 proposed a graph selection criterion for dynamic
Bayesian networks, named BNRCdynamic, with successful applications.

2.4. Combining Multi-Source Biological Information for

Gene Network Estimation

Imoto et al.13 proposed a general framework for combining biological knowl-
edge with expression data aimed at estimating more accurate gene net-
works. In Imoto et al.13, the biological knowledge is represented as the
binary values, e.g. known or unknown, and is used for constructing p(G).
In reality, there are, however, various confidence in biological knowledge
in practice. Bernard and Hartemink3 constructed p(G) using the binding
location data18 that is a collection of p-values (continuous information). In
this paper, we construct p(G) by using multi-source information including
continuous and discrete prior information.

Let Zk is the matrix representation of k-th prior information, where
(i, j)-th element z

(k)
ij represents the information of “gene i → gene j”. For

example, (1) If we use a prior network Gprior for Zk, z
(k)
ij takes 1 if e(i, j) ∈

Gprior or 0 if e(i, j) /∈ Gprior. Here e(i, j) denotes the direct edge from
gene i to gene j. (2) By using the gene knock-down data for Zk, z

(k)
ij

represents the value that indicates how gene j changes by knocking down
gene i. We can use the absolute value of the log-ratio of gene j for gene i

knock-down data as z
(k)
ij . Using the adjacent matrix E = (eij)1≤i,j≤p of G,

where eij = 1 for e(i, j) ∈ G or 0 for otherwise, we assume the Bernoulli
distribution on eij having probabilistic function

p(eij) = π
eij

ij (1 − πij)1−eij ,
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where πij = Pr(eij = 1). For constructing πij , we use the logistic model
with linear predictor ηij =

∑K
k=1 wk(z(k)

ij − ck) as πij = {1+ exp(−ηij)}−1,
where wk and ck (k = 1, ...,K) are weight and baseline parameters, re-
spectively. We then define a prior probability of the graph based on prior
information Zk (k = 1, ...,K) by

p(G) =
∏

i

∏
j

p(eij).

This prior probability of the graph assumes that edges e(i, j) (i, j = 1, ..., p)
are independent of each other. In reality, there are several dependencies
among eij ’s such as p(eij = 1) < p(eij = 1|eki = 1), and so on, we consider
adding such information into p(G) is premature by the quality of such
information.

3. Application to Human Endothelial Cells’ Gene Network

3.1. Fenofibrate Time-Course Data

We measure the time-responses of human endothelial cell genes to 25µM
fenofibrate. The expression levels of 20,469 probes are measured by
CodeLinkTM Human Uniset I 20K at six time-points (0, 2, 4, 6, 8 and
18 hours). Here time 0 means the start point of this observation and just
before exposure to the fenofibrate. In addition, we measure this time-course
data as the duplicated data in order to confirm the quality of experiments.

Since our fenofibrate time-course data are duplicated data and contain
six time-points, there are 26 = 64 possible combinations to create a time-
course dataset. We should fit the same regression function to a parent-child
relationship in the 64 datasets. Under this constrain, we consider fitting
nonparametric regression model to the connected data of 64 datasets. That
is, if we consider gene i → gene j, we will fit the model x

(c)
j (t) = mj(x

(c)
i (t−

1)) + εj(t), where x
(c)
j (t) is the expression data of gene j at time t in the

c-th dataset for c = 1, ..., 64. In the Bayesian networks, the reliability of
estimated edges can be measured by using the bootstrap method. For time-
course data, several modifications of the bootstrap method are proposed
such as block resampling, but it is difficult to apply these methods to the
small number of data points generated by short time-courses. However, by
using above time-course modeling, we can define a method based on the
bootstrap as follows: Let D = {D(1), ..., D(64)} be the combinatorial time-
course data of all genes. We randomly resample D(c) with replacement
and define a bootstrap sample D∗ = {D∗(1), ..., D∗(64)}. We then re-
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estimate a gene network based on D∗. We repeat 1000 times bootstrap
replications and obtain Ĝ∗1

T , ..., Ĝ∗1000
T , where Ĝ∗B

T is the estimated graph
based on the B-th bootstrap sample. The estimated reliability of edge can
be used as the matrix representation of the first prior information Z1 as
z
(1)
ij = #{B|e(i, j) ∈ Ĝ∗B

T , B = 1, ..., 1000}/1000.

3.2. Gene Knock-Down Data by siRNA

For estimating gene networks, we newly created 270 gene knock-down data
by using siRNA. We measure 20,469 probes by CodeLinkTM Human Uniset
I 20K for each knock-down microarray after 24 hours of siRNA transfec-
tion. The knock-down genes are mainly transcription factors and signaling
molecules. Let x̃Di = (x̃1|Di

, ..., x̃p|Di
)′ be the raw intensity vector of i-th

knock-down microarray. For normalizing expression values of each microar-
ray, we compute the median expression value vector v = (v1, ..., vp)′ as the
control data, where vj = mediani(x̃j|Di

). We apply the loess normaliza-
tion method to the MA transformed data and the normalized intensity
xj|Di

is obtained by applying the inverse transformation to the normalized
log(x̃j|Di

/vj). We refer to the normalized log(x̃j|Di
/vj) as the log-ratio.

In 270 gene knock-down microarray data, we know which gene is
knocked-down for each microarray. Thus, when we knock-down gene Di,
genes that significantly change their expression levels can be considered as
the direct regulatees of gene Di. We measure this information by com-
puting corrected log-ratio as follows: The fluctuations of the log-ratios de-
pend on their sum of sample’s and control’s intensities. From the nor-
malized MA transformed data, we can obtain the conditional variance
sj = Var[log(xj|Di

/vj)| log(xj|Di
· vj)] and the log-ratios can be corrected

z
(2)
ij = log(xj|Di

/vj)/sj satisfying Var(z(2)
ij ) = 1.

3.3. Results

For estimating fenofibrate-related gene networks from fenofibrate time-
course data and 270 gene knock-down data, we first define the set of genes
that are possibly related to fenofibrate as follows: First, we extract the set
of genes whose variance-corrected log-ratios, | log(xj|Di

/vj)/sj |, are greater
than 1.5 from each time point. We then find significant clusters of selected
genes using GO Term Finder. Table 1 shows the significant clusters of genes
at 18 hours. The first column indicates how expression values are changed,
i.e. “↗” and “↘” mean “overexpressed” and “suppressed”, respectively.
The GO annotations of clusters with “↘” are mainly related to cell cycle,
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Table 1. Significant GO annotations of selected fenofibrate-related genes from 18 hours
microarray.

GO Function p-value #genes

↘ GO:0007049 cell cycle 1.0E-08 35

↘ GO:0000278 mitotic cell cycle 3.7E-07 19
↘ GO:0000279 M phase 5.0E-06 17
↗ GO:0006629 lipid metabolism 1.3E-05 25
↘ GO:0007067 mitosis 1.3E-05 15

↘ GO:0000087 M phase of mitotic cell cycle 1.6E-05 15
↘ GO:0000074 regulation of cell cycle 2.7E-05 22
↗ GO:0044255 cellular lipid metabolism 4.4E-05 21
↗ GO:0016126 sterol biosynthesis 4.3E-04 6

↗ GO:0016125 sterol metabolism 4.5E-04 8
↗ GO:0008203 cholesterol metabolism 1.5E-03 7
↗ GO:0006695 cholesterol biosynthesis 2.4E-03 5

↗ GO:0008202 steroid metabolism 3.6E-03 10
↘ GO:0000375 RNA splicing, via transesterification reactions 4.1E-03 9
↘ GO:0000377 RNA splicing, via transesterification reactions

with bulged adenosine as nucleophile 4.1E-03 9

↘ GO:0000398 nuclear mRNA splicing, via spliceosome 4.1E-03 9
↗ GO:0006694 steroid biosynthesis 6.0E-03 7
↘ GO:0016071 mRNA metabolism 6.3E-03 13

the genes in these clusters are expressed ubiquitously and this is a common
biological function. On the other hand, the GO annotations of clusters with
“↗” are mainly related to lipid metabolism. In biology, it is reported that
the fenofibrate acts around 12 hours after exposure.8,10 Our first analysis
for gene selection suggests that fenofibrate affects genes related to lipid
metabolism and this is consistent with biological facts. We also focus on
the genes from the 8 hour time-point microarray. Unfortunately, no cluster
with specific function could be found in the selected genes from the 8 hour
time-point microarray However, there also exist some genes related to lipid
metabolism. Therefore we use the genes from the 8 and 18 hour time-point
microarrays. Finally we add the 267 knock-down genes (three genes are
not spotted on our chips) to the selected genes above, total 1192 genes are
defined as possible fenofibrate-related genes and used for the next network
analysis.

By converting the estimated dynamic network and knock-down gene
information into the matrix representations of the first and second prior
information Z1 and Z2, respectively, we estimate the gene network ĜK

based on Z1, Z2 and the knock-down data matrix XK . For extract-
ing biological information from the estimated gene network, we first focus
on lipid metabolism-related genes, because the clusters related this func-
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Figure 2. Down-stream of PPAR-α.

tion are significantly changed at 18 hours microarray. In the estimated
gene network, there are 42 lipid metabolism-related genes and PPAR-α

PPAR-α

PLA2R1

ENC1

STAT5B

ZNF198

ZNF251

PTPRB

ATR

VLDLR
LDLR

PCDHA
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Figure 3. A sub-network related to

PPAR-α.

(Homo sapiens peroxisome proliferative
activated receptor, alpha) is the only
transcription factor among them. Ac-
tually, PPAR-α is a known target of
fenofibrate. Therefore, we next focus
on the node down-stream of PPAR-α.
In Figure 2, the node down-stream of
PPAR-α (491 genes). Here we consider
that genes in the four steps down-stream
of PPAR-α are candidate regulatees of
PPAR-α. Among the candidate reg-
ulatees of PPAR-α, there are 21 lipid
metabolism-related genes and 11 mole-
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cules previously identified experimentally to be related to PPAR-α. Ac-
tually, PPAR-α is known to be activated by fenofibrate. We show one
sub-network having PPAR-α as a root node in Figure 3. One of the drug ef-
ficacies of fenofibrate whose target is PPAR-α is to reduce LDL cholesterol.
LDLR and VLDLR mainly contribute the transporting of cholesterol and
they are children of PPAR-α, namely candidate regulatees of PPAR-α, in
our estimated network. As for LDLR, it has been reported the relationship
with PPAR-α.15 Moreover, several genes related to cholesterol metabolism
are children of PPAR-α in our network. We also could extract STAT5B and
GLS that are children of PPAR-α and have been reported their regulation-
relationships with PPAR-α.16,21 Therefore, it is not surprising that our
network shows that many direct and indirect relationships involving known
PPAR-α regulatees are triggered in endothelial cells by fenofibrate treat-
ment. In the node up-stream of PPAR-α, PPAR-α and RXR-α, which
form a heterodimer, share a parent. We could extract fenofibrate-related
gene network and estimate that PPAR-α is the one of the key molecules of
fenofibrate regulations without previous biological knowledge.

4. Discussion

From the point of view of pharmacogenomics, it is very important to know
druggable gene networks. Our gene networks have the potential to pre-
dict the mode-of-action of a chemical compound, discover more effective
drug target and predict side-effects. In this paper, we proposed a computa-
tional method to discover gene networks relating to a chemical compound.
We use gene knock-down microarray data and time-course response mi-
croarray data for this purpose and combine multiple information obtained
from observational data in order to estimate accurate gene networks un-
der a Bayesian statistics framework. We illustrated the entire process of
the proposed method using an actual example of gene network inference in
human endothelial cells. Using fenofibrate time-course data and data from
gene knock-downs in human endothelial cells, we successfully estimated a
gene network related to the drug fenofibrate, which is a known agonist of
PPAR-α. In the estimated gene network, PPAR-α has many direct and
indirect regulatees including lipid metabolism related genes and this result
indicates PPAR-α works as a trigger of the estimated fenofibrate-related
network. There are many known relationships in the candidate regulatees
of PPAR-α and we could find the relationship between PPAR-α and RXR-
α in the estimated network. Peroxisome proliferator-activated receptors



September 23, 2005 21:15 Proceedings Trim Size: 9in x 6in imoto

(PPARs) are ligand-activated transcription factors expressed by endothe-
lial cells and several other cell types. They are activated by ligands such
as naturally occurring fatty acids and synthetic fibrates. Once activated,
they heterodimerize with the retinoid-X-receptor (RXR) to activate the
transcription of target genes. Many of these genes encode proteins that
control carbohydrate and glucose metabolism and down-regulate inflam-
matory responses.4 The further details on the relation between PPAR-α
and RXR-α and their common parent will be discussed in another paper
with biological evidences.
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