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De novo sequencing and spectral alignment are computationally important for the
prediction of new protein peptides via tandem mass spectrometry (MS/MS). Both
approaches are established upon the problem of finding the longest antisymmetric
path on formulated graphs. The problem is of high computational complexity and
the prediction accuracy is compromised when given spectra involve noisy data,
missing mass peaks, or post translational modifications (PTMs) and mutations.
This paper introduces a graphical mechanism to describe relationships among mass
peaks that, through graph tree decomposition, yields linear and quadratic time
algorithms for optimal de movo sequencing and spectral alignment respectively.
Our test results show that, in addition to high efficiency, the new algorithms can
achieve desired prediction accuracy on spectra containing noisy peaks and PTMs
while allowing the presence of both b-ions and y-ions.

1. Introduction

Tandem mass spectrometry (MS/MS) has been extensively used in pro-
teomics to identify and analyze proteins?3:°. In this method, molecules of
a protein can be cleaved into short peptide sequences by enzymes. Amino
acids in these peptides are then determined and combined to obtain the
sequence of the protein. To sequence a peptide, sequences with the same
amino acids are fragmented into charged prefix and suffix subsequences
(ions) and their mass/charge ratios can be measured by a mass spectrome-
ter. In a theoretical MS/MS spectrum, there are usually two types of ions
present: b-ions associated with N-terminals and y-ions with C-terminals.
Ideally, fragmentation may occur at any position along the peptide back-
bone and we thus expect to be capable of inferring the amino acids a peptide
contains from its MS/MS spectrum and the masses of single amino acids.
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However, difficulty may arise when we intend to identify the ion types for
mass peaks. In addition, experimental spectra are usually incomplete and
contain noisy peaks. Therefore, the de novo sequencing of a peptide solely
from its spectrum remains a challenging task®:S.

A number of algorithms have been developed for the de novo sequenc-
ing problem. An early developed algorithm'? generates all amino acid se-
quences and the corresponding theoretical spectra to be compared with the
experimental spectrum. Since, to find out the best match an exponential
number of spectra may need to be generated, the algorithm is not efficient.
Prefix pruning approaches have been developed to speed up the search by
restricting it to sequences whose prefixes match the spectrum well*?-17-18,
However, heuristic pruning may adversely affect the sequencing accuracy
while the computation time may remain expensive. Recently, based on
the notion of spectrum graph®, the de novo sequencing problem has been
reduced to finding the longest (or maximum scored) antisymmetric path
in directed graphs?-5-7-8:15 However, a straightforward path-finding al-
gorithm may yield undesired paths containing multiple vertices associated
with complementary ions. This issue was resolved later with a linear time
dynamic programming algorithm® that ensures the path found to be anti-
symmetric. However, it requires quadratic time to discover one modified
amino acid and more time to deal with additional noisy peaks.

Comparing and evaluating the similarity between two spectra are often
used in database search for peptide identification!®. Traditional methods
for computing the similarity identify the shared mass peaks between two
spectra and use the count as a measure of the similarity. More recently,
spectral alignment was proposed as a new method for evaluating spectral
similarity; it proves useful for identifying related spectra in the presence
of post translational modifications (PTMs) and mutations?. In particular,
based on finding the longest (k-shift) path in alignment graph, a spectral
alignment algorithm can align two spectra of n peaks in time O(n2k), where
k is the maximum number of peak shifts resulting from PTMs?. However,
the algorithm considers only b-ions or y-ions but not both. To consider both
ion types, a dynamic programming algorithm in the same spirit as that for
de novo sequencing® is possible. But it would require a computation time
that is polynomial of a much higher degree.

In this paper, we introduce a graphical mechanism to describe related
mass peaks in spectra. In particular, the peaks associated with complemen-
tary ions are linked with non-directed edges, yielding extended spectrum
graphs and extended alignment graphs. Such graphs demonstrate small
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tree width ¢ (usually ¢ < 6) for real mass spectra, so a very efficient algo-
rithm for finding the longest antisymmetric path can be devised based on
the tree decompositions of these graphs. In particular, the resulting new al-
gorithms for de novo sequencing and spectral alignment run in time O(6'n)
and O(6!n?) respectively. Based on the notion of tree decomposition, the
antisymmetry of complementary vertices can be efficiently ensured on the
found path; both ion types can be simultaneously considered by our algo-
rithms. In addition, using the graphical mechanism, vertices for peaks with
similar masses can be easily related and considered simultaneously in the
tree decomposition-based dynamic programming algorithm. This allows
vertices for noisy peaks to be eliminated from the found path.

We have implemented the algorithms and tested their performance on
both simulated spectra and real experimental ones with noisy peaks. Our
algorithm is able to identify the correct peptide sequences from all the tested
spectra with noisy peaks in a few seconds. In particular, the algorithm
achieves more than 96% accuracy on spectra in which the number of noisy
peaks is the same as that of others. In addition, we used the algorithm to
identify PTMs of amino acids based on spectra generated in silico. Test
results for spectral alignment demonstrated that the algorithm can identify
all PTMs accurately in a few seconds.

2. Models and Algorithms
2.1. Problem Description

Since theoretically, any ion has its complementary ion contained in the
same spectrum'®, we assume the MS/MS spectrum S of a peptide P be
a set of mass peaks {z1,%2, -+ ,Z2x}, where z; > z; for i > j. For any
mass peak z; in S, there exists a mass peak zap+1—; complementary to
x; and the sum of their mass values is the total mass M of P. One of
x; and Taog41—; 1S a b-ion and the other is a y-ion. A spectrum graph
G = (Vs, Es) can be constructed from the mass peaks in S. Specifically,
vertex v; € V; represents x; and, in addition to the mass peaks in S, vertices
source vg and sink vap41 are included in G with virtual mass values 0 and M
respectively. Directed edge (v;,v;) € Ej if the mass value difference z; — x;
is the mass of a single amino acid. Sequencing a peptide from its spectrum
thus corresponds to finding the longest antisymmetric directed path from
the source vy to the sink vogy1. A path is antisymmetric if it includes at
most one of the complementary vertices v; and vag41—, foralli =1,..., k.
An extended spectrum graph can be obtained from a spectrum graph by
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Figure 1. (a) The mass peaks in a tandem mass spectrum with total mass 471. (b)
The corresponding extended spectrum graph, where dashed undirected edges connect
complementary vertices. (c) The mass peaks in two tandem mass spectra A and B that
are to be aligned. The total mass of spectrum A is 261. Mass peaks 3 and 4 in spectrum
B have a shift of 20 in their mass values compared to those in spectrum A. (d) The
alignment graph constructed based on the mass peaks in A and B. Solid and dashed
directed edges represent real and virtual connections respectively; dashed non-directed
edges connect complementary vertices; only edges along the diagonal vertices are drawn
in the figure.

connecting all pairs of complementary vertices with non-directed edges.
Figure 1(a)(b) provide an example for a spectrum and its corresponding
extended spectrum graph.

An alignment graph H = (V,,E,) can be constructed based on two
spectra to be aligned. We assume the set of mass peaks for spectra A and
B are Sq4 = {x1,22, - , 22k, } and Sp = {y1,Y2,- - , Y2k, } respectively.
The set of vertices V, = (Sa x Sp) U {(20,Y0), (T2, +1,Y2ks+1) }, Where g,
ZTag,+1 and Yo, Yak,+1 are virtual mass peaks with zero and total peptide
masses in spectra A and B respectively. (x;,y;) is connected to (z,yr)
with a real directed edge if x, > x; and zp — x; = y; — y;. In addition to
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real directed edges, an extended alignment graph may also contain virtual
directed edges and non-directed edges. (z;,y;) is connected to (xy,y;) with
a virtual directed edge if xy > @, v > y; and |(y; —y;) — (xx — zi)| < Ap,
where A,, is the maximum mass peak shift due to modified amino acids.
Two vertices (z;,y;) and (xg,y;) are complementary if z; and zy, or y; and
y are complementary mass peaks. Complementary vertices are connected
with non-directed edges. The source and the sink in the graph are vertices
(z0,¥y0) and (T2, +1, Y2k,+1) respectively. The similarity between spectrum
A and B can thus be evaluated by finding in H the longest directed an-
tisymmetric path that connects the source and the sink. Figure 1(c)(d)
provides an example of two spectra and their extended alignment graph.

Weights on directed edges in the graph are masses. In practice, directed
edges in an extended spectrum or alignment graph can be scored based on
other experimental parameters. For example, Dancik et al. proposed a
stochastic edge scoring scheme where each mass peak in the spectrum is
generated with a certain probability; the score of a directed edge can be
evaluated based on the probabilities of its ends. The sequencing result with
the maximum likelihood corresponds to the maximum scored antisymmetric
path connecting the source and the sink in the graph.

2.2. Tree Decomposition and Tree Width

Definition 2.1. ' Let G = (V, E) be a graph, where V is the set of vertices
in G, E denotes the set of edges in G (E may contain both directed and
non-directed edges). Pair (T,X) is a tree decomposition of graph G if it
satisfies the following conditions:

(1) T = (I,F) defines a tree, the sets of vertices and edges in T are I
and F respectively,

(2) X ={X;liel,X;CV}, andVu € V, 3i € I such that u € X;,

(8) Y(u,v) € E, 3i € I such that u € X; and v € X,

(4) Yi,j, k € 1, if k is on the path that connects i and j in tree T, then
X;NX; C Xy

The tree width of the tree decomposition (T, X) is defined as max;er | X;|—1.
The tree width of the graph G is the minimum tree width over all possible
tree decompositions of G.

Figure 2(a)(b) shows that tree decomposition provides an alternative
view over a graph where vertices are grouped into tree nodes according to



September 23, 2005 13:35 Proceedings Trim Size: 9in x 6in liu

;o (o)
(a) (b)
Figure 2. (a) An example of a graph. (b) A tree decomposition for the graph in (a).

their topological relationships (represented by edges, arcs, etc). Our exper-
iments on simulated and real spectra show that the tree width for extended
spectrum graphs and extended alignment graphs are generally around 5.
The property of having a small tree width makes it possible for us to de-
velop very efficient algorithms for both problems based on the technique of
tree decomposition, since partial optimal solutions on subgraphs induced
by subtrees can be efficiently extended and combined with exhaustive enu-
meration restricted to vertices in a single tree node!.

2.3. The Path-finding Algorithm

The algorithm selects a tree node that contains both the source and the sink
as the root of a tree decomposition and maintains a dynamic programming
table for each tree node. The algorithm follows a bottom-up fashion to fill
the tables for all the tree nodes. The table in the root thus stores the length
of the longest antisymmetric path connecting the source and the sink. The
algorithm then follows a recursive tracing back procedure to find all the
vertices in the path.

For a tree node with ¢ vertices, the dynamic programming table contains
2t+1 columns, of which the first ¢ columns store the selection of each vertex
in the node to form a subpath. In addition, ¢ — 1 columns are used to store
the comnection state between each pair of consecutive selected vertices in
the tree node. Two additional columns V' and L store the walid bit and
the largest length of the partial path associated with the combination of
selections and connection states in the same table entry respectively.

The selection value of a vertex in a tree node is 1 if it is selected to
be in the partial optimal path and 0 otherwise. The value of a connection
state could be one of the integers in set {0,1,--- 1}, where [ is the number
of children of the tree node. The connection state for a pair of consecutive
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Figure 3. A tree decomposition and its corresponding dynamic programming tables.
The algorithm follows a bottom-up fashion starting with leave tree nodes. When com-
puting the dynamic programming tables for an internal node X;, the tables of its child
nodes X; and X}, need to be queried to compute the validity (V') and the largest path
length (L) of a given entry in the table for Xj;.

selected vertices in the tree node is 0 if they are contiguous in the path
and is ¢ (4 > 0) if the vertices between the pair of vertices are covered by
the subtree rooted at the ith child. The number of possible combinations
of selections and connection states can thus be up to (2(I +1))!. However,
since we can remove tree nodes with more than two children by generating
extra tree nodes, the table for a tree node with ¢ vertices may contain up
to 6! entries. The valid bit for a given entry is set to be 1 if there exists a
partial antisymmetric path that follows the combination of selections and
connection states in the entry. To determine the relative order of selected
vertices in a partial path, the algorithm topologically sorts the vertices in
each tree node.

To determine an entry in the table for a leaf node, the algorithm ex-
haustively enumerates and directly computes the validity and largest path
length for every possible combination of selections and connection states
for vertices in the node. For an internal node, the algorithm refers to the
tables of its children to determine the validity and longest path length for
each of its table entry. In particular, for a given entry, the algorithm ob-
tains its selections of vertices and the corresponding connection states and
then queries the table contained in each of the child nodes. All valid table
entries whose selections of vertices and connection states do not contradict
the given entry are queried and the one with the largest path length is
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selected as the descendent entry in the child. The algorithm sets an entry
to be invalid if its selection of vertices violates the antisymmetric property
or one of the child nodes contains no descendent entries. The largest path
length for the entry is then computed by summing up the number of edges
covered by the node itself and the largest path length for the descendent
entry found in each of its child nodes.

Figure 3 provides an example of computing the table entries for an
internal node X;. Without loss of generality, we assume X; has two child
nodes X; and Xy, and X; = {a,b,c}, X; = {a,d,b} and X}, = {b,e,c}. To
determine the V' and L for the entry {(1,1,1),(1,2)} in the table for X;,
the algorithm needs to query both of the tables for X; and X}, since the
entry suggests that the vertices on the path between a and b are covered
by the subtree rooted at X; and those between b and c are covered by that
rooted at Xj. To query the table for X, the algorithm only checks valid
entries that select both a and b since X; N X; = {a, b}, thus the leading two
entries in the table for X; are checked by the algorithm. Similarly, since
X;N Xy, = {b,c}, the algorithm only checks valid entries that select both b
and c in the table for Xj.

In the last stage of the computation, the algorithm queries the table
in the root node and considers those valid entries that select both the
source and the sink and finds the one with the longest path length. The
algorithm then follows an up-bottom tracing back procedure to recover
the nodes selected to be present on the path. The path found by the
algorithm is guaranteed to satisfy the antisymmetric property since, based
on the definition of tree decomposition, any pair of complementary vertices
is covered by at least one tree node. The computation time needed by the
algorithm is O(6!N), where ¢ is the tree width of the tree decomposition
and N is the number of vertices in the graph. The algorithm uses a greedy
graph reduction technique to obtain a tree decomposition for a graph*.

3. Experimental Results

We implemented the path-finding algorithm for both de novo sequencing
and spectral alignment problems. The programs were tested on simulated
and real MS/MS spectra. For de novo sequencing, we evaluated the perfor-
mance of the program on simulated spectra that contain different amount
of noise, and then analyzed real experimental MS/MS spectra. For spec-
tral alignment, we generated simulated spectra for peptides with PTMs and
identified modified amino acids.
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3.1. De Nowvo Sequencing

To evaluate the performance of the program on spectra with different
amount of noise, we obtained simulated tandem mass spectra for 100,000
fully tryptic digested peptides of proteins in the Yeast genome. We then
filtered out peptides of less than 5 and more than 24 amino acids. In addi-
tion to the mass peaks that result from the fragmentation of peptides, we
incorporated noisy mass peaks into these simulated spectra and applied the
program to obtain the peptide sequences from these noisy spectra. To sim-
ulate the noise generally present in real experimental spectra, noisy mass
peaks were generated in groups and the differences of mass values for mass
peaks in the same group were selected to be those of single amino acids or
their combinations. Table 1 shows the performance of the program on spec-
tra with different amount of noise. As we have expected, the tree widths
of the spectrum graphs increase when more noisy peaks are inserted into
the spectra. The program thus needs more computation time for analyzing
a spectrum. In addition, a slight drop in sequencing accuracy is observed
when an ideal spectrum is changed into a noisy one.

Table 1. The accuracy of the program on spectra with different amount of
noise. N/S is the ratio of the number of noisy peaks to that of others in a spec-
trum. AC is the percentage of amino acids that are correctly identified by the
program; PT(< 5), PT(= 5) and PT(> 5) are percentages of spectrum graphs
whose tree widths are less than 5, equal to 5 and greater than 5 respectively;
CT is the average amount of time the program needs to analyze a spectrum.

N/S | AC (%) | PT(<5) (%) | PT(=5) (%) | PT(>5) (%) | CT(sec)
0.00 98.60 52.45 44.93 2.62 1.54
0.20 98.27 42.48 41.38 16.15 7.24
0.50 98.29 37.69 34.84 27.47 12.37
0.80 97.98 32.98 37.13 29.87 13.10
1.00 96.95 27.64 39.47 32.89 15.46

To evaluate the performance of the program on real experimental spec-
tra, we downloaded 14 tandem mass spectra for peptides in E. Coli proteins
from the Open Proteomics Database (OPD) and collected 3 experimental
FT-ICR data from two different peptide sources. Before we applied the
program to a spectrum, the mass peaks in the spectrum were preprocessed.
Isotopic mass peaks and mass peaks with intensities less than 0.1 of the
maximum intensity value were removed. In addition, a complementary ion
was added back for each ion in the spectrum if it was missing. Table 2
shows sequencing results obtained with the program for each spectrum.
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The program identified most amino acids correctly with few sequencing er-
rors. However, the reason for these errors is clear. The program is unable
to identify I from L and K from Q since the mass of I is equal to that of L,
and the mass difference between K and Q is too small to be recognized by
the program.

Table 2. The performance of the program on real experimental spectra. TW is
the tree width of the spectrum graph; CT is the computation time of the program.
Peptides in the first eighteen rows are from OPD. The first six are from EF-Tu
protein, followed by seven from glutamate synthase, enolase, sodium-calcium an-
tiporter, HU-2, ferric transport, and S5; the last two are from thioredoxin. The rest
three rows are from experimental FT-ICR with the first two from horse myoglobin
and the last one from BSA.

Real Sequence Obtained Sequence TW | CT(sec)
RAFDQIDNAPEEKA RAFDQIDNAPEEQA 6 12.11
RPQFYFRT RPQFYFRT 1 0.42
KVGEEVEIVGIKE QVGEEVEIVGIKE 6 5.16
KMVVTLIHPIAMDDGLRF KM\TVTLHPIAMDDGLRF 5 7.30
RAGENVGVLLRG RAGENVGVLLRG 6 13.09
KMVVTLIHPIAMDDGLRF | QMVVTIIHPIAMDDGLRF 5 6.85
KVVRTAIHALARMQHRG T(VVRTAIHALARMQHRG 6 9.19
KFNQIGSLTETLAAIKM KFNQIGSLTETLAAIQM 6 10.27
RKFATQYMNLFGIKQ RKFATQYMNLFGIKK 6 10.15
KTQLIDVIAEKA QTQIIDVIAEKA 5 5.09
KPVYSNGQAVKD KPVYSNGQAVQD 5 2.53
KLNIDQNPGTAPKY KlNIDQNPGTAP_gY 6 5.80
KNQTLALVSSRP QNQTLALVSSRP 6 4.85
RVKSQAIEGLVKA RVKSQAIEGLVQA 6 £.10
HGTVVLTALGGILK HGTVVLTAIGGEQ 4 0.22
VEADIAGHGQEVLIR VEADIAGHGQEVLLR 6 10.34
DAFLGSFLYEYSR DAFLGSFLYEYSR 5 2.18

3.2. Spectral Alignment

As an application of spectral alignment, we used the program to identify
modified amino acids on peptide sequences with PTMs. We generated pairs
of spectra in silico for peptides and their modified sequences and perform
a spectral alignment between each pair of spectra. The mass modifica-
tions can be identified from the longest antisymmetric path found by the
program. We introduced two additional parameters, k and A, where k
is the maximum number of modifications allowed in the peptide and A
is the maximum amount of mass modification that may occur on a single
amino acid. Based on the parameters k& and A, the number of non-directed
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edges in the alignment graph can be significantly reduced. In particular,
for spectra A and B with sets of mass peaks S4 = {z1,x2," -, x2p, } and
Se = {y1,¥2,"+ , Y2k, } respectively, (x;,y;) and (zog,+1-4,y;/) are con-
nected with an non-directed edge if and only if |y;; — yag,+1—;] < kKA. In
addition, A is used as the A,, defined in section 2.1 for adding virtual di-
rected edges to the graph. In our experiment, the values of k£ and A were
set to be 3 and 20.0 since, in practice, most of the peptides contain up to
3 modified amino acids. Table 3 shows the results we have obtained on
identifying modified amino acids on pairs of spectra we generated in silico.
The table shows that the tree width of an alignment graph ranges from 4 to
6 and the program is able to identify the modified amino acids accurately
in a few seconds.

Table 3. The performance of the program on identifying modified amino acids
using spectral alignment. DM is the number of modified amino acids identified by
the program; TW is the tree width of the alignment graph; CT is the computation
time in seconds. Modified amino acids are superscripted with asterisks.

Peptide Modified Peptide DM | TW | CT(sec)
RAIKNLL RAIK*NLL 1 4 0.04
FKMKRTQVFWKV FK*MKRTQVFWK*V 2 6 2.43
MALPFQLLRQLGVA | M*ALPFQLLRQLGVA 1 1 0.12
AKYEGGL AK*YEGGL 1 4 0.07
DFLIKRGV DFLIK*RGV 1 5 0.73
PKDMILLFATTTTKF | PK*DMILLFATTTTK*F 2 6 2.31
LWEVKDRTAHS LWEVK*DRTAHS 1 6 3.50
IGALKDKITMS IGALK*DKITM*S 2 5 0.70
MAIVMGRLEVKAIS MAIVMGRLEVK*AIS 1 4 0.12
FVPGQKNGIKGDLS FVPGQK*NGIK*GDLS 2 4 0.04

4. Conclusions

We have extended the notions of MS/MS spectrum graphs and alignment
graphs to include relationships among mass peaks such as complementarity
and modification. Based on the notion of tree decomposition, such graphs
have been exploited for the development of fast optimal algorithms for
In addition to the
efficiency, our work can accurately sequence peptides from noisy spectra
and identify post translational modifications of amino acids while allowing
the presence of both types of ions. In addition, we expect this approach
can be extended to accurately infer partial sequence “tags” from a MS/MS
spectrum 4, which can speed up the database search significantly.

de novo peptide sequencing and spectral alignment.
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