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Bayesian networks (BNs) and dynamic Bayesian networks (DBNs) are becoming
more widely used as a way to learn various types of networks, including cellular
signaling networks16,14 , from high-throughput data. Due to the high cost of per-
forming experiments, we are interested in developing an experimental design for
time series data generation. Specifically, we are interested in determining properties
of time series data that make them more efficient for DBN modeling. We present a
theoretical analysis on the ability of DBNs without hidden variables to learn from
proteomic time series data. The analysis reveals, among other lessons, that under
a reasonable set of assumptions a fixed budget is better spent on collecting many
short time series data than on a few long time series data.

1. Introduction

Time series data, and dynamic Bayesian networks (DBNs) to model such

data, have become more popular as an approach to learning gene regula-

tory networks3,12,6,13. As experimental techniques for collecting proteomic

data has improved, there has been a shift to learning protein networks from

various types of proteomic data16,20. However, the cost of generating exper-

imental proteomic data is still high, hence, we are interested in developing

an experimental design for time series data generation that is more efficient

for dynamic Bayesian network learning.

In a typical experiment, mass spectrometry (MS) is used to measure

protein abundance at several specific time points after a particular stimulus

to an organism or cell sample. The peaks in the MS data can be discretized

to indicate the presence or absence of protein, avoiding certain problems

associated with continuous values (S. McIlwain, personal communication

2005). From the discretized data, we can then learn a DBN model that

best fits the data. Biologists can visually examine such a DBN structure

(Fig. 1a) and interpret an arc from protein X1 at time t to protein X2 at
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Figure 1. a) Simple DBN model. Labeled circles within a dotted oval represent our
variables in one time slice. Formally, arcs connecting variables from one time slice to
variables in the next have the same meaning as in a BN, but they intuitively carry a

stronger implication of causality. b) Example of probabilistic CPTs.

time t + 1 as evidence that X1 influences X2.

Following earlier experiments in learning DBNs from time series data13,

we consulted with biologists about the design of future time series experi-

ments. While a number of design issues arise, the most common question

is the following. “Given that we have resources to run r experiments, is

it better to run many short time series or a few long time series?” Design

issues also arise for our learning algorithms. For example, given a specific

number of experiments r that will be run, and a given amount of time to

learn a DBN model from the data, should we place a limit on the number

of parents a node can have and, if so, what should this limit be? One way

to answer these questions is to perform many runs with many time series

data sets having different properties; unfortunately, few such data sets are

available, and the cost of producing such a data set requires design insight

now, before additional data sets are available. An alternative way to gain

insight is to construct a formal model of the learning task, as realistic as

possible though necessarily making some simplifying assumptions.

The present paper limits its attention to DBNs whose variables are

Boolean, though the results extend naturally to non-Boolean discrete vari-

ables. Because of the use of Boolean variables, our DBNs also can be

viewed as (deterministic or probabilistic) Boolean networks. Friedman and

Yakhini5 have examined the sample complexity of minimum description

length based learning procedures for Bayesian network structures and

Dasgupta4 determined the sample complexity of learning fixed-structure

Bayesian networks with and without hidden nodes using the PAC (prob-

ably approximately correct) framework. Furthermore, Akutsu et al.1 for-

malized the task of constructing Boolean networks from data and others

extended or improved their initial results2,17,10. Nevertheless, the results
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do not give guarantees about the accuracy of the learned network on new

or unseen data, or the amount of data required to achieve a given level

of accuracy. The present paper addresses the question of polynomial-time

learnability using the PAC-learning framework18 and its extension to prob-

abilistic concepts8. Consequently, the novel aspect of this paper is its pro-

vision of (probabilistic) accuracy guarantees based on data set size. The

formal results in this paper, imply the following practical advice for the

design of time series MS experiments that will be analyzed using DBNs.

First, many short time series experiments, specifically two time steps,

are preferable to a single long time series experiment.

Second, given the number of time series experiments that can feasibly

be run with present-day costs, the number of parents per node in a DBN

should be limited to at most three per node.

Third, even with only two parents per node, the worst-case number of

examples required to guarantee a given level of accuracy with a given prob-

ability is cubic in the number of variables n, and this number typically is in

the thousands. If we are concerned with gaining insight into—or accurate

prediction of—only a small number m of the n variables, we can reduce

this term to n2m. This often is the case where we are interested in learning

or refining a model of a particular pathway, and we know most of the key

players (proteins). If in addition we have an over-estimate of the potential

other players, and there are l of these, then we can reduce this term further

to l2m, reducing the number of required experimental data.

2. Definitions and Terminology

The PAC framework allows us to provide upper and lower bounds on the

number of examples needed to learn a hypothesis class assuming that the

learning algorithm is making use of all the data. We formulate our defini-

tions for the PAC framework below in the style of Kearns and Vazirani9.
Definition 2.1. A Boolean dynamic Bayesian network (DBN) is defined
over the Boolean variables

X1,1, X2,1, . . . , Xn,1,

X1,2, X2,2, . . . , Xn,2,

. . . ,

X1,T , X2,T , . . . , Xn,T

where Xi,t denotes variable Xi at time t. For each 1 ≤ i ≤ n and 1 <

t ≤ T the value of variable Xi,t is fi(X1,t−1, . . . , Xn,t−1), where fi is some

(possibly stochastic) Boolean function.
Definition 2.2. We denote by DBN (Cn) the class of Boolean DBNs for

which each function fi comes from Boolean concept class Cn.
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Any particular Boolean DBN in DBN (Cn) is a set of functions

fi(X1,t−1, . . . , Xn,t−1), one for each variable Xi, 1 ≤ i ≤ n (fi does not

change with time). For example, the Boolean concept class Cn might be all

stochastic functions of at most k variables. This class of functions corre-

sponds to all possible conditional probability tables (CPTs) in a DBN for a

node with at most k parents. An example of such a CPT is given in Fig. 1b.

If the DBN is deterministic, Cn might be the set of all (non-stochastic) func-

tions of at most k variables, that is, all truth tables over k variables. For

such a CPT, each row in Fig. 1b would instead have one of the probabilities

set to 1 and the other set to 0. A generalization of this class, allowing more

than k parents in a still limited fashion would be to have as Cn the set of all

functions that can be represented by a k disjunctive normal form (kDNF).

3. Results

3.1. Boolean DBN from 2-slice data

Before presenting the first of our related models, we establish some conven-

tions. In practice a DBN model may contain some variables that cannot be

observed or measured; such variables are known as hidden variables. The

present paper does not consider hidden variables or missing data.

In generating a MS data set, the cost of r experiments (measuring the

abundance of each protein in r samples) is the same regardless of whether

the r samples are all part of a single, long time series or many different

time series. Therefore, we treat our number of data points as the number

of experiments rather than the number of time series.

In the ordinary PAC-learning model, one assumes each data point is

drawn randomly, independently according to some probability distribution

D. Our models cannot assume this, because in a time series each data point

(after the first) depends on the previous data point. The most faithful

we can remain to the original PAC-learning model is to specify that the

first data point in each time series is drawn randomly according to some

probability distribution D, and the first data points in different time series

are drawn independently of one another.

For simplicity, we begin with a formal model of DBN learning that

resembles the PAC-learning model as much as possible, by restricting con-

sideration to deterministic concepts. Given a deterministic DBN and a spe-

cific (input) time slice, the next (output) time slice is fixed according to

the DBN. We say that a DBN model and a target DBN disagree with one

another on an input time slice iff, given the input time slice, the two DBNs
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produce different outputs. A DBN model is (1 − ε)-accurate with respect

to a target model iff the sum of the probabilities, according to D, of input

time slices on which the two DBNs disagree is at most ε. As is standard

with the PAC model, we take |T | to denote the size of the target concept

(DBN model) T ∈ DBN (Cn) in a “reasonable” encoding scheme. For con-

creteness, we specify |T | as the number of bits required to encode, for each

variable Xi, its parents and its function fi. The following definition is an

application of the PAC-learning model to DBNs.

Definition 3.1. An algorithm PAC-learns a deterministic DBN (Cn) iff

there exist polynomials poly1( , , , ) and poly2( ) such that for any target

DBN T in DBN (Cn), any 0 < ε < 1 and 0 < δ < 1, and any prob-

ability distribution D over initial data points for time series: given any

r ≥poly1(n,|T |, 1
ε
,1
δ
) data points, the algorithm runs in poly2(rn) and with

probability at least 1 − δ outputs a model that is (1 − ε)-accurate wrt T .

Theorem 3.1. For any fixed k ∈ N the class of DBN (kDNF) is PAC-

learnable from 2-slice data.

Proof. Algorithm A learns a kDNF formula to predict each of the n vari-

ables at time slice 2 from the values of the n variables at time slice 1.

Each 2-slice time series (input and output) is used to generate one exam-

ple for each Xi,2. For each 1 ≤ i ≤ n the output (class) is Xi,2 and input

features are X1,1, . . . , Xn,1. Given a PAC learning algorithm L for kDNF

expressions7, we run L on n feature vectors to find a concept in Cn.

Algorithm A iterates: for each variable Xi,2, 1 ≤ i ≤ n, we call kDNF

learning algorithm L with δ
n

as the maximum probability of failure (i.e.,

with desired confidence of 1 − δ
n
) and with ε

n
as the maximum error (i.e.,

with desired accuracy of 1 − ε
n
). Algorithm A’s final model is the set of

functions fi(X1,1, . . . , Xn,1) returned by L, one per output variable Xi,2.

Algorithm A runs in polynomial time since n∗poly1(n,|T |,n
ε
,n
δ
) yields a

polynomial, and each call to L runs in time polynomial in the size of its in-

put. It remains only to show that with probability 1−δ the error is bounded

by ε. The definition of union bound states that if A and B are any two events

(i.e., subsets of a probability space), then Pr(A∪B) ≤Pr(A)+Pr(B)9. Since

each call to L fails to achieve the desired accuracy with probability only
δ
n
, by the union bound the probability that there exists any of the n calls

to L that fails to achieve the desired accuracy is at most δ. If each call to

L has a desired error bound of ε
n
, then the error of the model (probability

according to D of drawing an input time slice on which the learned model

and target will disagree for some variable Xi,2, 1 ≤ i ≤ n) is the union of

all n error expressions from L, i.e., Pr(Error) = ε
n

+ ε
n

+ . . . + ε
n
≤ ε.
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kDNF is a richer representation than one usually uses in a DBN. Typ-

ically, each variable is a function (represented as a CPT) of up to k par-

ents. We denote the class of such DBNs by DBN (k-parents). While PAC-

learnability of a more restricted class does not automatically follow from

PAC-learnability of a more general class, in this case arguments very similar

to those just given show that, for any fixed k ∈ N, the class of deterministic

DBN (k-parents) is PAC-learnable from 2-slice data.

3.2. Boolean DBN from r-slice data

It is equally common in practice for time series measurements to yield one

long time series instead of multiple time series of length 2, or somewhere

between these two extremes. While the total number of experiments r is

determined largely by budget, the choice of time series lengths for any fixed

total number of MS experiments r usually is not driven by expense. Rather,

researchers make the choice they believe will provide the most information,

because r experiments will have the same cost regardless of whether they

occur in one long time series or many shorter time series.

We now ask whether the class DBN (k-parents) is PAC-learnable from

a single time series, and if so, whether the total number of experiments

required might be less. It is trivial to prove that no algorithm PAC-learns

this class when all the data points are in a single time series; the algorithm

simply cannot learn enough about the distribution D according to which

the start of each time series is drawn. But such a trivial negative result in

unsatisfying. In practice if we subject a cell to an experimental condition

and run a long time series of measurements, it is because we wish to learn an

accurate model of how the organism responds to that particular condition.

Therefore, we next consider a natural variant of our first learning model,

where this variant is tailored to data points in a single time series.
Definition 3.2. An algorithm learns a deterministic class DBN (Cn) from

a single time series iff there exists polynomials poly1( , , , ) and poly2( )

such that for any target DBN T in DBN (Cn), any 0 < ε < 1 and 0 < δ < 1,

and any starting point for the time series: given a time series of any length

r ≥ poly1(n,|T |, 1
ε
,1
δ
), the algorithm runs in poly2(rn) and with probability

at least 1−δ outputs a model that with probability at least (1−ε) correctly

predicts time slice r + 1.
Notice that we do not require that the learning algorithm be capable

of performing well for most starting points, but only for the one given. For

deterministic DBN models, after some m time slices the time series must

return to a previous state, from which point on the time series will cycle
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with some period length at most m. If for some class of DBN models m is

only polynomial in the number of variables n then it will be possible to PAC-

learn this class of models from a single time series, within the definition just

given. Unfortunately, even for the simple class of deterministic DBN (k-

parents), the period is superpolynomial in n and the size of the target

model, leading to the following negative result.

Theorem 3.2. For any k ≥ 2 the class of DBN (k-parents) is not learnable

from a single time series.

Proof. Assume there exists a learning algorithm L for DBN (k-parents).

Then for any k-parent target DBN T , any 0 < ε < 1 and any 0 < δ < 1,

given a time series of any length r ≥ poly1(n,|T |, 1
ε
,1
δ
), L will run in time

polynomial in the size of its input and with probability at least 1 − δ will

output a model that will correctly predict time slice r+1 with probability at

least 1−ε. Because any 2-parent DBN can be represented in a number of bits

that is polynomial in n, we can simplify poly1(n,|T |, 1
ε
,1
δ
) to poly1(n,1

ε
,1
δ
).

We consider a time series that starts from a point in which every variable

is set to 0. For a suitable choice of n (any n such that n − 1 is divisible by

3) we can build two 2-parent deterministic DBNs T1 and T2 over variables

X1, ..., Xn with the following properties when started from a time slice with

variables set to 0: in both T1 and T2, Xn remains 0 for r ≥ 2
n−1

3 steps and

then Xn goes to 1 at step r + 1; in T1 once Xn goes to 1 it remains 1; in

T2 when Xn goes to 1 it then reverts to 0 on the next step.

We choose ε = δ = 1

4
and large enough n such that 2

n−1

3 > poly1(n,1
ε
,1
δ
).

We present the algorithm L with a time series generated by T1, of length r

as specified in the previous paragraph, starting from the time slice in which

all variables are set to 0. Then L must, with probability at least 1 − 1

4
,

return a model that will correctly predict time slice r + 1. Therefore, with

probability at least (3

4
)(3

4
) > 1

2
, L’s output model predicts the value of Xn

to be 1. Consider what happens when we give L exactly the same learning

task, except that the target is T2 instead of T1. The time series of length

r that L sees is identical to the previous one, so L will with probability

greater than 1

2
incorrectly predict the value of Xn at time slice r+1. Hence

L will not produce, with probability at least 1−δ, a model that will predict

time slice r + 1 with accuracy at least 1 − ε.

3.3. Stochastic Model of Boolean DBN from 2-slice data

When we learn a Boolean DBN model, we are not only interested in learning

the correct Boolean functions but also inferring a good model of probability
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wrt the target distribution. We therefore extend our theoretical framework

to bring our model closer to practice. The foundation of this extension

consists of the notions of p-concept (probabilistic concept) and (ε, γ)-good

models of probability, defined as follows8. In these definitions X is the do-

main of possible examples and D is a probability distribution over X .

Definition 3.3. A probabilistic concept (p-concept) is a real-valued func-

tion c : X → [0, 1]. When learning the p-concept c, the value c(x) is in-

terpreted as the probability that x exemplifies the concept being learned.

A p-concept class Cp is a family of p-concepts. A learning algorithm for Cp

attempts to learn a distinguished target p-concept c ∈ Cp wrt a fixed but

unknown and arbitrary target distribution D over the instance space X8.

Given this definition, it is easy to see that a function fi in a (not necessarily

deterministic) Boolean DBN, which gives the probability distribution over

possible values for Xi at time t + 1 conditional on the values of the n

variables at time t, is a p-concept. Therefore, a Boolean DBN as defined

earlier is completely specified by a set of n p-concepts, one for each variable.

Definition 3.4. A p-concept h is an (ε, γ)-good model of probability of a

target p-concept c with respect to D iff Prx∈D[|h(x) − c(x)| > γ] ≤ ε.

We generalize this definition to apply to DBNs as follows. Given an input

time slice, a DBN model defines a probability distribution over output time

slices. We say that two DBNs M and T γ-disagree on an input time slice

if they disagree by more than γ on the probability of an output time slice

given that input. A learned DBN M is an (ε, γ)-good model of probability

of a target DBN T with respect to a probability distribution D over input

time slices if and only if the sum of the probabilities of input models on

which M and T γ-disagree is at most ε.

The learning model we present next is a straightforward application

of Kearns and Schapire’s notion of polynomially learnable with a model of

probability to DBNs, analogous to our earlier application of the PAC model

to deterministic DBNs. In the following definition we take Cn to be any

p-concept class. Thus for example DBN (k-parents) is the set of DBNs in

which each variable has at most k-parents; the p-concept class used here

is the class of p-concepts of k-relevant variables, or the class of p-concepts

representable by CPTs conditional on k parents.

Definition 3.5. Where Cn is a p-concept class, we say that an algorithm

learns DBN (Cn) with a model of probability iff there exist polynomials

poly1( , , , , ) and poly2( ) such that for any target T ∈ DBN (Cn), any

0 < ε < 1, 0 < δ < 1, and 0 < γ < 1, and any probability distribution D

over initial data points for time series: given r ≥ poly2(n, |T |, 1

ε
, 1

δ
, 1

γ
) data
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points, the algorithm runs in poly2(rn) and with probability at least 1− δ

outputs an (ε, γ)-good model of probability of the target.

Theorem 3.3. For any fixed k ∈ N the class DBN (k-parents) is learnable

with a model of probability from 2-slice time series data.

Proof. We describe a learning algorithm B that is analogous to algorithm

A of Theorem 3.1, and the correctness proof is analogous as well. In place

of the kDNF learning algorithm used by the earlier algorithm A, algorithm

B uses an algorithm P that with probability 1 − δ learns an (ε, γ)-good

model of probability for any p-concept with at most k relevant variables8.

More specifically, where δ, ε and γ are the parameters provided to al-

gorithm B, algorithm B calls algorithm P using instead δ
n
, ε

n
and γ

2n
.

Algorithm B iterates: for each variable Xi,2, 1 ≤ i ≤ n, algorithm B

makes a call to algorithm P with the examples and parameters as spec-

ified. Algorithm B’s final model of probability for each Xi, 1 ≤ i ≤ n,

is Pr(Xi,t|X1,t−1, . . . , Xn,t−1) = Pr(Xi,t|Pa(Xi)t−1), where Pa(Xi)t−1 de-

notes the (at most k) parents of Xi from the previous time step, as deter-

mined by algorithm P , and Pr(Xi,t|Pa(Xi)t−1) denotes the specific function

(representable as a CPT) learned by algorithm P .

Algorithm B runs in polynomial time since n∗poly1(n,|T |,n
ε
,n
δ
,2n

γ
) yields

a polynomial, and each call to P runs in time polynomial in the size of its

input. The remainder of the reasoning is analogous to that in the proof of

Theorem 3.1, except that we must also note the following. If the learned

DBN and target DBN agree within γ
2n

on the probability for a given setting

for each variable Xi, 1 ≤ i ≤ n, then they agree within γ on the probabil-

ity of the entire setting. It follows that since for any given variable Xi the

learned DBN with probability 1− δ
n

has an ( ε
n
, γ

2n
)-good model of probabil-

ity compared with the target DBN, then with probability 1− δ the learned

DBN is an (ε, γ)-good model of probability of the target DBN.

We can also extend our model from a single time series to apply to

probabilistic concepts. Since deterministic DBNs are a special case of prob-

abilistic ones, it follows that the result for learning DBN (2-parents) with

a model of probability, from a single, long time series is a negative one.

4. Lessons and Limitations

The results show that, for natural definitions of learnability, DBNs are

learnable from 2-slice time series data but not from a single, long time series.

If we adopt a compromise, with k-slice time series for fixed k greater than

two, we can again get positive results but the total number of time slices,

e.g., experiments to be run, increases linearly with k. Hence the results
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imply that while time series are desirable, they should be kept as short

as possible. The reasoning is that if we subject a cell to many different

conditions and collect multiple 2-slice data, we can capture the change

easily, whereas if we subject a cell to 1 condition and collect one long time

series one would have to wait a very long time to see this condition.

Because PAC bounds are worst-case, the number of examples they imply

are required, while polynomial in the relevant parameters, can be much

greater than typically required in reality. Nevertheless, we can gain some

insight into which factors most affect sample size required for a given degree

of accuracy. The sample sizes required by the algorithms in this paper follow

directly from those required by the learning algorithms they employ as

subroutines. The sample sizes for those algorithms grow linearly with the

number of variables n, the target concept size, and 1

ε
(and 1

γ
where relevant),

and logarithmically with 1

δ
. But note that the sizes of our target concepts in

DBN (kDNF) and DBN (k-parents) are at least O(nkn), because we must

specify the choice of k out of n possible parents for each of n variables.

Therefore, by far the most important factor in sample size is k, and the

next most important is n. Because current costs limit MS data set sizes to

around 1000 experiments (we know of no such data sets), a value of three for

k seems the largest reasonable value, with k = 2 probably more sensible.

The size of the target concept can be limited based on prior knowledge

about particular pathways in which we are most interested.

The models defined in this paper are a natural application of existing

PAC models to DBN learning. Nevertheless, several assumptions are inher-

ited in this application—some from PAC modeling and some from DBNs—

and several additional assumptions have been made. We now discuss these

classes of assumptions in turn.

Inherent to the use of PAC modeling are the assumptions that (1) we

must perform well on all target concepts, and (2) examples are drawn ran-

domly, independently according to some probability distribution. Regarding

assumption (1), numerous regulatory motifs have been identified to date,

including logic gates and memory elements11,15,19, giving credence to the

simple DBN representation of difficult target concepts such as counters. For

some real biological pathways that have very short periods, perhaps single,

long time series will be more effective than our results imply. Regarding

assumption (2), it seems plausible that an organism’s environment imposes

some probability distribution over states in which its regulatory machinery

may find itself, and to which it will need to respond. Nevertheless, per-

haps through careful selection of experimental conditions, active learning
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approaches may arise that will benefit more from a few long time series

than from many short ones.

Inherent in the use of DBNs are several notable assumptions as well.

First, the DBN framework assumes we are modeling a stationary process;

while the state of an organism is not static (e.g., mRNA levels may change

over time), the organism’s regulatory network itself does not change over

time. This assumption appears reasonable for the application to learning

regulatory pathways. But more specific assumptions include the assump-

tion of discrete time steps—that an organism, like a computer, operates on

a fixed clock that governs when changes occur—and a first-order Markov

assumption, that the organism’s next state is a function of only its previous

state inputs. These assumptions clearly are violated to some extent, and

those violations present caveats to our lessons. For example, perhaps col-

lecting longer time series, with a very fast sampling rate, could allow our

algorithms to try different sampling rates (by skipping some of the time

steps), to find optimal rates for providing insight into certain processes.

Finally, we have made additional simplifying assumptions beyond those

of the PAC framework or DBNs. Specifically, we have assumed all Boolean

variables and no missing values or hidden variables. While discretization

is common, one may also use the continuous values in the data. We see

no obvious reason why using such values should change the lessons in this

paper, but such a change is possible. Missing values are rare in MS data,

but one might wish to include hidden variables for unmeasured environ-

mental factors. Extending the present work to handle hidden variables is

an interesting direction for further work.

In addition to handling continuous-valued variables and hidden vari-

ables, another significant direction for further work is the use of background

knowledge to limit the space of potential models and hence the sample

complexity. Also, based on the notion of membership queries, perhaps the

models in this paper can be extended to model active learning approaches.

Finally, we intend to use the lessons from this paper to design a large num-

ber of short time series experiments aimed at gaining more detailed models

of a few key pathways in human cells.
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