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Classification of helical structures and identification of class specific sequence fea-
tures is of interest for protein structure modeling. We use geometric invariant
based method to first select helix-like local conformations. These conformations
are mapped in a principal component space and subjected to Gaussian mixture
modeling. The largest Gaussian corresponds to the regular a-helix. Kinked he-
lix and curved helix appear as a separate gaussians. Class conditional, position
specific amino acid propensity analysis reveals striking difference among the three
classes. In regular helix, proline propensity is significant only in the beginning and
low in the rest of the region regardless of length of the helix. In kinked helix, the
proline propensity has a sharp peak at the helix center, while in the curved helix,

the proline propensity has a broad peak in the middle region.
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1. Introduction

a-Helices are the most important structural elements in globular proteins.
Based on handedness of helix turn, they have been classified as right handed
a-helices and left handed a-helices'. The right handed helices are most
commonly occurring helices in globular proteins. Although, a-helices are
certainly the most regular structural building blocks, they show significant
imperfections’'23. The perturbation is caused by a variety of reasons such
as occurrence of proline residue* in the middle producing a kink. Based
on structural and geometric features, the helices are categorized as linear,
curved and kinked a-helices*?.

It is well known that the structural and geometric differences give rise
to different subclasses of a-helix. Moreover, the structural features of a he-
lix is encoded in its sequence composition. Propensities of different amino
acids for formation of a specific secondary structure is a basis of many sec-
ondary structure prediction methods®. Kumar and Bansal® have reported a
strong correlation between propensities of individual amino acids and helix
length, geometry and location on protein globe. Doig and co-workers” have
reported amino acid propensities at N and C terminus of a-helices. Engel
and DeGrado® have reported very strong position dependent propensities
of different amino acids throughout the length of a helix. These meth-
ods first extract helices from protein dataset based on secondary structure
assignment® or steriochemical punctuation marks'®. These methods have
limitations in terms of accuracy in determining beginning and endpoints of
the helix.

In our earlier work, we have reported classification of overlapping oc-
tapeptide substructures in globular proteins''. To obtain more fine-grained
classification of a-helices, we have combined all the octapeptides classified
as helices and modeled the structure space as a mixture of Gaussian. The
resulting clusters represents various helix subclasses. The overlapping oc-
tapeptides in a particular subclass are merged to form longer length pep-
tides. Thus, we construct our dataset of helices of varying length. Thus,
our method provides structure based unbiased way of extracting helices.
The analysis of amino acid propensities for different subclasses of helices
reveals that the amino acid propensities in helices are strongly dependent
on the subclass and position in the helix structure.



Proceedings Trim Size: 9in x 6in

2. Method
2.1. Selection of Helices

We had performed k-means clustering(k=150) on overlapping octapeptides
local conformations drawn from ASTRAL 95 dataset, version(1.67)12. The
octapeptides were described using a set of 29 non-redundant geometric
13,2 such as edge, perimeter, volume, area of triangle etc.!l.
The geometric invariants were directly computed from z,y, z coordinates
of C, atom. Thus, we have approximated backbone geometry with C,
geometry'*. Consensus secondary structure was calculated for the clus-
ters resulting from K-means application''. To obtain a more finer level

invariants

classification of a-helices, we have combined all the octapeptide local con-
formations, which have been classified in the clusters, which have consensus
secondary structure as HHHHHHHH.

2.2. Gaussian Mixture Modeling of a-helix Structure Space

Each geometric invariant was normalized to mean-centric, unity standard
deviation values'®. Principal component analysis'® was performed on the
standardized geometric invariants of octapeptides helical structures. We
have chosen first s principal components to represent an octapeptide helix
structure. Thus, n octapeptide helical structures are represented as a vector
in space spanned by the first s principal components.

Let y = {&1,Z2,...,&,} be the set of n helix octapeptides. We model
the data as a mixture of k& Gaussian,

K
)= 6ifi(y,0:) (1)
i=1

where, k is the number of components in the mixture, ¢; is the probability
that a given helix octapeptides will come from ith component, also called
as ith mixing proportion, 6; is the vector of parameters describing the ith
component. Since we’re using Gaussian mixture model, 6; consists of the
mean vector, u; and covariance matrix, ;. Thus ith component in the
mixture is characterized by ¢;, u; and ¥;. To estimate the parameters
of the Gaussian mixture model, we used Expectation Maximization(EM)
algorithm, fastmix'®, which automatically determines optimal number of
components k required to maximize the expectation based on Bayesian
information content!®.



Proceedings Trim Size: 9in x 6in

Each helix octapeptide Z is scored against each Gaussian ¢ in the mixture
using the following formula:

- 1 1. . 1= -
I p(il7) = (—5 In || = 5(F - i) 7' @) +ind) ()

The score signifies amount of influence each Gaussian exerts on the helix
octapeptide. The octapeptides is assigned to the highest scoring Gaussian.

2.3. Visualization of Clusters

The clusters are visualized in form of bivariate distribution of the first two
principal components conditioned on third and fourth principal component
and marginal on the subsequent principal components. The detail pro-
cedure for obtaining such conditional bivariate distribution is given in .
The third and fourth principal components are divided into 4x4 equidensity
grid. For each cell in the grid, we calculate bivariate density for the first
two principal components. The bivariate distribution shows multiple peaks.
Each peak has one to one corresponds to a mixture components and hence
with clusters. Each peak is labeled with the cluster number and cartoon
representing the structure of the helix octapeptide closest to its mean.

2.4. Concatenation of octapeptides to form longer helices

The octapeptide helices are assigned to different subclasses based on Gaus-
sian mixture modeling. We carried out analysis of structural subclass as-
signed to the neighboring octapeptides ¢ and ¢ + 1, which share an overlap
of consecutive seven residues at the end of ¢ and at the start of ¢ + 1. Sup-
pose that the length of ith octapeptides is [. The neighboring octapeptides,
assigned to the identical subclass, are merged to from helix of length [+ 1.
Such kind of neighboring helices can be combined to form longer helices as
they share similar geometric and structural properties.

2.5. Amino Acid Propensity Analysis

We analyzed position specific propensity of different amino acids for differ-
ent subclasses. The position specific propensity is defined as &,

py = du nij/ i nij 3)
fi N;/ Zz Ni

where, f;; is the fraction of ¢th amino acid at jth helix position, n;; is the

number of ith amino acid at jth helix position, f; is the fraction of ith
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amino acid over entire protein structure dataset and NN, is the number of
ith amino acid over entire protein structure dataset.

3. Results

Approximately 0.4 million helices were selected from 1.7 million overlap-
ping octapeptides drawn from ASTRAL 95 dataset(version 1.67)'? based
on the criteria defined in subsection 2.1. Principal component analysis of
the dataset reveals that the first six principal components explain about
80% of variance in the data. The details about interpretation of principal
components based on contributions from individual geometric invariants
are documented in our earlier work!!

3.1. Visualization of Clusters

Due to space constraints, we have shown the two most interesting cells
from 4x4 equidensity grid in Figure 1. The fig. 1a shows two distinct and
well separated peaks corresponding to gaussians 1 and 6. The cartoons
of representative structures suggest that the Gaussian 1 is regular a-helix,
whereas Gaussian 6 is kinked helix. The peak for regular a-helix is sharp
and tall, whereas the peak corresponding to kinked helix is broad and short
in height. The sharp nature of regular a-helix peak signifies highly regular
nature of the class with lesser tolerance towards structural variations. The
tall height of the peak signifies that the regular a-helix class is the most
dominant class among helix subclasses. The broad nature of kinked helix
peak suggests tolerance for structural variations. The short height of the
peak denotes lesser probability of occurrence of kinked helices regular a-
helices

The fig. 1b shows three distinct peaks corresponding to gaussians 1, 4
and 9. The cartoons denotes the structural differences between the classes
corresponding to the peak. It further suggests that the peak for Gaussian 1
represents regular a-helix class, the peak for Gaussian 4 denotes a extended
helix and the peak for Gaussian 9 denotes a helix class with distortion in
the middle. The height of the corresponding peaks suggests that the regular
a-helices have the highest probability of occurrence than the remaining two
subclasses.

It is interesting to note that the helix structure space is sparse as shown
by a lot of open area in both the bivariate plots in fig. 1a and fig. 1b.
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Figure 1. Representative conditional bivariate probability distribution of local helix
conformations(A, B). Each panel shows a bivariate distribution on the first two prin-
cipal component values, conditional on a specific range of the third and fourth princi-
pal components and marginal on the subsequent principal components values. (A) A
bivariate distribution on the first two principal component values, conditional on the
following values of the third and fourth principal components, —oco < PC3 < —0.84 and
—oo < PCy < —0.70. (B) A bivariate distribution on the first two principal component
values, conditional on the following values of the third and fourth principal components,
4+0.68 < PC3 < 400 and +0.72 < PCy < 400

3.2. Properties of Gaussian Miztures

The summary of mixture parameters estimated by Expectation maximiza-
tion algorithm'® are provided in Table 1. Total of eleven gaussians have
been detected with skewed mixing proportions. The gaussians are arranged
in their descending values of mixing proportions. The most heavily repre-
sented Gaussian has mixing proportion of 76%. The lowest mixing propor-
tion is 1%. The helix octapeptides are assigned to appropriate gaussians.

The first Gaussian represent regular right handed « helix subclass. Its
centroid occupies positive value on the first principal component, a small
positive value on fourth one, and small negative values on second, third, fifth
and sixth principal components(Table 1). These values are in agreement
with the interpretation of contributions of individual geometric invariants
to the principal components. The covariance matrix of the first cluster is
the tightest among all the clusters, suggesting highly regular nature of the
helix subclass(Table 1).

The Gaussian number 6 and 10 have substantial negative values for their
means along the first principal component. The Gaussian number 6 cor-
responds to kinked helix and number 10 corresponds to curved helix. The
curved helix shows smaller length between the first and the last residue of
helix octapeptide(Table 2). The decrease in length is accompanied by in-
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crease in the area of triangle formed by first, fifth and the last residue(Table
2). The kinked helices have mixing proportion of 2%, whereas the curved
helix has a mixing proportion of 1%.

Comparison of covariance matrices of regular, kinked and curved helix
reveals that regular helix has the tightest covariance matrix, kinked helix
has moderate covariance matrix, whereas the curved helix had the largest
covariance matrix.

Table 1. Gaussian mixture characteristics of the helix subclasses

Characteristics ~ Regular a-helix =~ Kinked Helix =~ Curved Helix

b 0.76 0.02 0.01
w1 1.12 -5.94 -7.71
e -0.06 2.02 -5.33
w3 -0.14 -3.03 -4.27
L 0.04 -4.82 2.51
s -0.03 -1.29 1.39
e -0.04 -2.24 -0.41
o11 1.20 4.28 7.23
0922 0.75 4.93 7.70
033 0.93 2.94 6.33
044 0.85 3.91 5.22
o55 0.73 2.82 7.04
066 0.63 2.16 9.63

Note: a. Zf ¢; = 1. ¢; represent probability of a helix octapep-
tides belonging to mixture ¢. The total number of helix subclasses,
k = 11. The three most important helix subclasses are described
here.

b. pu;; represents mean of mixture ¢ on jth principal component.
c. o0;; represents variance of mixture ¢ along ith principal compo-
nent. The covariance matrix for each mixture contains non-zero
values only along its diagonal.

3.3. Finer structural differences between distinct subclasses

The analysis reveals three distinct helix subclasses: regular, kinked and
curved. We analyzed structural differences between these distinct sub-
classes based on structural descriptors used for representing the helix oc-
tapeptides. The structural differences between these subclasses have been
summarized in Table 2.

The structural descriptors characterize differences between various sub-
classes. The distance between i and ¢ + 3 residues(d; +3) characterizes
regularity of helix. The regular a-helix has the least d; ;13 with the least
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Table 2. Mean and standard deviation of d;;13, dis, Vol;it1,i+2,i+3, and
Areasg for vastly differing subclasses.

Structure Descriptors Regular a-helix Kinked Helix Curved Helix
diit3 515+ /— 0.20 551+ /— 0.45 5.64+ /— 0.57
dis 1064+ /— 033 1138+ /— 0.74 864+ /— 1.59
voli,i+1,i+2,i+3 6.99 + / — 0.57 5.56 + / — 2.61 5.31 + / — 3.00
areaiss 1040+ /— 149 1853+ /— 4.16 11.384/— 5.93

Note: (i) d; ;43 denotes distance between ¢ and ¢ + 3 residues.

(ii) d1s denotes distance between first and the last residue.

(iii) vol; i4+1,i+2,i+3 denotes volume of tetrahedron formed by ¢,i+1,i+2and i+3
residues.

(iv) areaiss denotes area of triangle formed by first, fifth and eighth residue.

standard deviation signifying regular nature of helices. The kinked helix
show longer average d; ;+3 with more deviation. The longest average d; j+3
is assumed by the curved helix. The larger values of mean and standard
deviation of d; ;43 denotes significant departure from the regularity.

The distance between end to end residues d;g of helices characterizes ex-
tended structure. The kinked helix is the most extended structures among
the distinct subclasses. The regular a-helix has moderate end to end length.
The decrease in the end to end distance either denotes shrink or a curve in
the helix octapeptide. The area of triangle(Areaiss) formed by first, fifth
and the last residue differentiate between helices with a bend , kinked and
regular ones when coupled with d;s. With reference to regular a-helix, the
decrease in dig and increase in Areajss denotes a curve in the middle of
the octapeptide. The increase in both dig and Areaiss denotes a kinked
helix.

The sign of Vol iy1,i42,i+3 differentiate between left handed and right
handed systems'!'. The positive values of volumes in all three distinct
subclasses means that all the helix subclasses make a right handed system.

3.4. Concatenation of octapeptides to form longer helices

For the regular a-helix subclass, the majority of neighboring octapeptides
lies in the same subclass endorsing the strong regular nature of the subclass.
This leads to formation of variable length helices. The distribution of length
of regular helices shows a wide spectrum of values ranging from 8 to 82,
with the maximum number(6909) of regular a-helix of length 8, while a
singleton a-helix of length 82. The distribution of length of regular a-helix
is shown in Fig. 2. The distribution shows roughly exponential trend. The
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maximum helix length in kinked and curved helix is 9.
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Figure 2. Distribution of length of regular a-helices in cluster 1 (8 < length < 82)

3.5. Analysis of amino acid propensities in helix subclasses
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Figure 3. Propensity of (a) Proline and (b) Glycine in regular a-helix, kinked helix and
curved helix.

The analysis of amino acid propensities at different positions in differ-
ent helix subclasses was carried out on the helices having length 8. The
propensities of an individual amino acids at various positions in different
subclasses were plotted. We have shown propensity graphs for two repre-
sentative amino acids, glycine and proline, in fig 3.

Proline is considered as a prominent helix breaker*. The propensity
graph of proline (Fig. 3a) shows different propensity numbers at different
positions of different helix classes. The proline has significant propensity
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up to third position in regular a-helix. The highest proline propensity
was observed in kinked helix at fifth position, where the kink occur. The
kinked helix also shows significant proline propensity at second position.
The curved helix has highest proline propensity at fifth position. It also
shows significant proline propensities at sixth and seventh position also.
Thus, proline propensity is higher in the curving region of curved helix.

The propensity graph of glycine (Fig. 3b) shows that the propensity of
glycine shows different trends based on position and helix subclass. The
regular a-helices shows significant glycine propensity only at the end po-
sition of the helix. The other position shows moderate glycine propensi-
ties. Kinked helix shows significant glycine propensity at third position and
moderate propensities at the remaining positions. The curved helix shows
significant glycine propensities at second, fourth, fifth and sixth position
position with highest propensity at fourth position.

3.6. Analysis of lengthwise amino actid propensities for
regular o helix
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Figure 4. Propensity of (a) Proline and (b) Glycine in regular a-helix of varying lengths

The lengthwise propensity analysis was done for the regular a-helix
class. We have selected three groups of lengths: 10, 15 and 25 for analysis.
All the sequences having length < 10 were merged in first group, the se-
quences having length between 11 and 15 were merged in secondary group,
while the sequences having length between 16 and 25 are merged in the
third group. The lengthwise propensity analysis is carried out on all the
three groups for all 20 amino acids. Here, We have included two represent
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propensity graphs of proline and glycine(Fig 4).

The propensity of proline is shown in fig 4a. and the propensity of
glycine is shown in fig 4b. Regardless of the total length of helix, we have
observed almost similar trends for both proline and glycine. Proline is
having significant propensity up to first three positions in all three groups.
For the rest of the positions the propensity is almost zero. Glycine is
having significant propensity in the beginning of helix, then low propensity
in the middle region and then high propensity at towards the end. The
same trend is observed in all three groups. Since we have combined helices
having length between 11 to 15 in group of 15, glycine propensity starts
upward trend from 11th position for group of length 15, the same is true
for the other two groups.

4. Discussion

We have reported a novel method for fine grain classification of helical sub-
structures into its subclasses using geometric invariants and Gaussian mix-
ture modeling. We also provide detailed explanation about roles of various
structure descriptors in differentiating between various helix subclasses. It
is interesting to note that the individual geometric invariants are capable of
differentiating one or other feature of helix geometries(Table 2). The linear
combination of these individual descriptors differentiates between various
subclasses more efficiently.

Gaussian mixture modeling of helix local conformation space provides a
formal framework for analyzing geometry of theoretical helix structures or
newly formed helix structure. The modeling of this sort provides a formal
method for detecting outliers in the data as well as subclass of a partic-
ular helix structure. The Bayesian information content based expectation
maximization algorithm'® ensures that the right number of mixture compo-
nents are selected to model the Gaussian mixture accurately. The mixing
proportion ¢; assigned to different subclasses matches well with literature
reported mixing proportions(Table 1). The regular o-helix subclass has
been assigned a mixing proportion of 76%, which is in accordance with
74% mixing proportion reported by Kumar and Bansal®. The visualization
of helix local conformation space in form of conditional bivariate distri-
bution plots(Fig 1) helps in getting quick idea about separation between
various subclasses and differences in their geometry.

The merging of neighboring octapeptides having identical subclass pro-
vides more accurate and unbiased approach for extracting helices from pro-
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tein structures. This is a fundamental shift from the literature reported

methods, which depends on secondary structure assignment?® or helix break-

ing signals in protein sequence®. The method provides structure based

method for extracting helices more accurately.

Analysis of propensities of amino acids for different classes of helix re-
veals different position specific trends. It implies that the propensity of
amino acid is also dependent on the class of helix. The analysis of propen-
sity for different length of helices reveals similar trends regardless of length
of helix.

Class conditional position specific analysis of amino acid propensities
provides vital clues in better understanding sequence-structure relation-
ship in various subclasses of a-helices, leading to better prediction of helix
subclass in protein structure prediction. The results presented in the paper
are also useful for designing artificial helices from a specific subclass.
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