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Tandem mass spectrometry (MS/MS) has become increasingly important and 
indispensable in high-throughput proteomics for identifying complex protein mixtures. 
Database searching is the standard method to accomplish this purpose. A key sub-routine, 
peptide identification, is used to generate a list of candidate peptides from a protein 
database according to an experimental MS/MS spectrum, and then validate these 
candidate peptides for protein identification. Although currently there are many 
algorithms for peptide identification, most of them either lack an effective validation 
module or only validate the first-ranked peptide, thus leading to a low identification 
reliability or sensitivity. This paper proposes a new algorithm, named pepReap, to 
overcome the above drawbacks. It consists of a two-layered scoring scheme based on 
machine learning. The first layer is a rough scoring function which uses some simple and 
heuristic factors to measure the degree of the matches between an experimental MS/MS 
spectrum and the candidate peptides; thus a ranked list of candidate peptides is generated 
at a relatively low computational cost. The second layer is a fine scoring function which 
re-ranks the candidate peptides generated in the first layer and determines which one 
among them is the true positive. The fine scoring function was designed based on support 
vector machines (SVMs) using more comprehensive factors, such as the correlations 
between ions, the mass matching errors of fragment and peptide ions, etc. Consequently, 
the SVM classifier serves as not only a scorer but also a validation module. Experimental 
comparison with the popular SEQUEST algorithm coupled with threshold validation 
criteria on a reported dataset demonstrates that the pepReap algorithm achieves higher 
performance in terms of identification sensitivity with comparable precision. 

1. Introduction 

The essential mission of proteomics is to identify and quantify all the levels of 
proteins found in a cell or tissue under various physiological conditions [1]. 
Tandem mass spectrometry (MS/MS), which can measure the mass-to-charge 
ratios (m/z) of ionized molecules, has become increasingly important and indis-
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pensable for identifying complex protein mixtures in high-throughput pro-
teomics experiments [2–4]. 

In a typical “bottom-up” experiment, protein mixtures are directly digested 
with a site-specific protease, usually the trypsin, into complex peptide mixtures 
which are subsequently separated by liquid chromatography (LC). The separated 
peptides eluted from LC are then ionized with one or more units of charges (to 
form precursor ions), selected according to their m/z values, and analyzed 
through fragmentation by MS/MS. In this process, hundreds of thousands of 
MS/MS spectra are produced which are then computationally interpreted to 
generate their candidate peptide sequences. Finally the candidate peptides are 
validated and the correct ones are grouped to identify the proteins from which 
the peptides derived. The peptide identification including peptide scoring and 
subsequent validation is a critical step in the process of protein identification 
[5,6]. 

Aiming at the drawbacks of existing algorithms for peptide identification, 
we developed a more robust algorithm, pepReap, which consists of a two-
layered scoring scheme based on support vector machines (SVMs) using some 
elaborated features characterizing the matches between peptides and MS/MS 
spectra, to obtain a positive or negative score for each candidate peptide, explic-
itly distinguishing correct matches from incorrect matches dispensing with set-
ting significant thresholds. 

2. Background and Related Work 

2.1. Peptide MS/MS Spectrum 

The basic molecular building blocks of proteins are amino acids which are dif-
ferentiated from each other by the side chain R (shown in Figure 1(a)). A protein 
or peptide is a chain that consists of amino acid residues linked together by 
peptide bonds formed by condensation reactions (shown in Figure 1(b)). For 
MS/MS, peptides are the products of enzymatic digestion of proteins. 
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Figure 1. The general structures for (a) amino acids and (b) peptides. 
 

In a tandem mass spectrometer, precursor ions within a given range around 
a specific m/z value are selected and subjected to fragmentation by collision-
induced dissociation (CID) resulting in various types of fragment ions. Fragment 
ions are measured to obtain a number of spectral peaks each comprising an m/z 



and an intensity value. Peaks plus the m/z value and charge state of the precursor 
ion constitutes a peptide MS/MS spectrum which normally corresponds to a 
unique peptide. Besides the peaks from the peptide to be identified, there are 
also many noisy peaks brought by chemical contaminants or electronic fluctua-
tions. 

Common fragmentation patterns of parent ions and nomenclature for frag-
ment ions are shown in Figure 2. According to the fragmentation position rela-
tive to the peptide bond along the backbone and the terminal (N or C-terminal) 
where the charge(s) is (are) retained, fragment ions are classified as a-, b-, c-, x-, 
y-, or z-ions. The pairs of (a, x), (b, y) and (c, z) are complementary ion types. 
Fragment ions can be singly or multiply charged and possibly lose a neutral 
water (H2O) or ammonia (NH3). 
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Figure 2. Fragmentation patterns of parent ions and nomenclature for various types of fragment ions. 
 

The notations used for describing fragments are listed in Table 1. Based on 
the notations, cnsc 1{ , , , }i i i kT t t t! !" !  denotes a set of consecutive ions, cmplT = 
{ , }i n it t #  a pair of complementary ions, and 0 *

homo { , , , }i i i iT t t t t!!"  a set of ho-
mologous ions, with t denoting any ion type and 0 < k < (n-i). Ions of a, b, y and 
their homologues are dominant fragments observed in MS/MS spectra. 
 
Table 1. Notations for fragments. 

Notation Meaning 
i (0 < i < n) Subscript denoting the cleavage site, i.e., the number of residues contained in the 

fragment; n is the number of residues in the precursor, i.e., the peptide length 
! Overline denoting the complement of an ion type, e.g., b  is y 
0 Superscript indicating a neutral loss of water 
* Superscript indicating a neutral loss of ammonia 

++ Superscript denoting a double-charge state (single-charge state by default) 

2.2. Approaches to Peptide Identification from MS/MS Spectra 

There are mainly three approaches to peptide identification from MS/MS spectra: 
de novo sequencing [7–9], sequence tagging [10,11] and database searching 
[13–23]. 

De novo sequencing tries to infer the complete peptide sequence directly 
from the m/z differences between peaks in an MS/MS spectrum without any help 
of databases. It is capable of identifying the peptides which are not present in 



databases or suffer from unanticipated post-translational modifications (PTMs) 
or mutations; however, it is generally less tolerant of low-quality mass spectra 
than the database searching approach. 

Sequence tagging yields one or more partial sequences (called sequence tag) 
by manual interpretation or de novo sequencing. Candidate peptides containing 
this sequence tag can be found by homologous sequence searching. The se-
quence tags can serve as an effective filter for candidate peptide generation in 
database searching especially when PTM identification is involved [12]. 

Database searching is the most widely used method in high-throughput pro-
teomics experiments due to its sensitivity, rapidness, and tolerance for low-
quality spectra. It compares an experimental MS/MS spectrum with theoretical 
ones predicted from the peptide sequences resulting from in silico digestion of 
proteins in databases, whereby the experimental spectrum is correlated by a 
scoring function with a ranked list of candidate peptides. The match of the high-
est score is normally regarded as the peptide corresponding to the spectrum. 
However, random matches often occur between theoretical fragments and noisy 
peaks, or between false isobaric theoretical fragments and signal peaks. In addi-
tion, unanticipated fragment ions or modifications can lead to missing matches. 
Therefore the best matching peptide may not be correct and inversely the correct 
peptide may not be the top-ranked one. Consequently the peptide identifications 
need to be carefully validated. 

Scoring functions, validation method, and fragmentation model [24,25] are 
central and fundamental to all the above three approaches. 

2.3. Peptide Scoring and Validation Methods in Database Searching 

To measure the similarity between experimental and theoretical MS/MS spectra, 
two strategies are adopted based on the descriptive framework or probabilistic 
framework [13].  

In the probabilistic strategy, a probability is calculated for the event that the 
match between a peptide and an experimental spectrum is completely random 
[18], or that a peptide actually generated the experimental spectrum [19–21]. 
The combination of the above two means leads to the likelihood-ratio score 
[22,23]. 

In the descriptive strategy, an experimental and a theoretical MS/MS spec-
trum are represented as vectors 1 2( , , , )ns s s" !S  and 1 2( , , , )nt t t" !T , respec-
tively, where n denotes the number of predicted fragments, si and ti are binary 
values or the observed and predicted intensity values of the ith fragment, respec-
tively. The spectral dot product (SDP) between S and T serves as their similarity 
measure [15]. In SDP, correlative information among fragments is totally ig-



nored. Many scoring algorithms are based on the SDP [14–16]. A representative 
of the descriptive strategy is the popular SEQUEST algorithm [14], in which 
consecutive ion pairs are considered in a preliminary scoring function and then 
the cross-correlation analysis is performed between the experimental and theo-
retical spectra. The KSDP algorithm adopted in the pFind software extends the 
SDP by using the kernel technique to comprehensively incorporate correlative 
information among ions [16,17]. 

In routine experiments, the threshold method is widely used to validate pep-
tide identifications of SEQUEST. However, there are no uniform rules to set the 
cutoff values [3,4,26,27]. Some sophisticated validation algorithms based on 
probability (or pseudo-probability) [28–31] and machine learning [30,32,33] 
have been developed to improve the reliability of peptide identifications. Most 
algorithms take advantage of some outputs of SEQUEST, such as XCorr, "Cn, 
Sp, RSp, and Ions [14]. Keller et al. discriminated between positive and negtive 
identifications according to a Gaussian and a gamma distribution [28]. MacCoss 
et al. proposed a scoring scheme which normalizes XCorr values to be inde-
pendent of peptide length and then derived a confidence of an identification [29]. 
RScore combines the XCorr and matched intensity value to get a measurement 
of randomicity [31]. Anderson et al. and Baczek et al. performed classification 
tasks via machine learning approaches using outputs of SEQUEST and some 
additional factors (for example, the peak count, the ratios of matched peaks and 
matched intensities; isoelectric value, hydrophobicity, molecular weight, and 
charge state of peptides) [32,33]. These algorithms are remedies for the valida-
tion of SEQUEST results to some extent. However, they all focus on deciding 
whether the first-ranked peptide is correct while ignoring all other lower-ranked 
peptides that often include the correct one. Moreover, they do not fully exploit 
the features characterizing the quality of matches between MS/MS spectra and 
peptides. 

In this paper, the scoring and validating processes are combined together by 
directly using an SVM classifier for scoring the peptide-spectrum matches based 
on a variety of matching features. 

3. Methods 

3.1. The Framework of pepReap 

The pepReap algorithm comprises a rough scorer and a fine SVM scorer shown 
in Figure 3.  

In the first step, a ranked list of candidate peptides is generated by the rough 
scoring function: 
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where Nmatch is the number of the predicted fragment ions matching the peaks in 
the experimental spectrum, Ii is the intensity value of the ith matched peak and 
Lpep is the peptide length. Similar formulas have been adopted in SEQUEST [14] 
and pFind [16]. 

In the second step, an SVM-based scoring function gives a signed decision 
value according to the features constructed from the matching matrix (see sec-
tion 3.2). The parameters of the SVM scorer are tuned on a training dataset by 
cross validation. 
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Figure 3. The framework of the pepReap algorithm. 

3.2. Matching Matrix 

To make data processing convenient, a matching matrix between a peptide and a 
spectrum is constructed, as shown in Figure 4. The matching matrix is an m × n 
array, where m denotes the number of different ion types under consideration, n 
is the length of a peptide, the column indexes (1, 2, , )n!  represent the cleavage 
sites of a peptide, the row indexes ( , , , )a b y!  denote various ion types and the 
element pti ( { , , , }t a b y& ! ) holds the information of the corresponding 
matched peak, or keeps null. 
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Figure 4. Matching matrix between a peptide and a spectrum. 

3.3. Support Vector Machines 

Support vector machines are developed by Vapnik and his coworkers based on 
the statistical learning theory [34]. The principle of structural risk minimization 
establishes the basis of the good generalization performance of SVMs. For a 
binary classification problem, the input to the SVM training algorithm is a set of 
n samples denoted as 



 1 1 2 2{( , ), ( , ), , ( , )},n nD y y y" !x x x  (2) 
where d

i &$x  is the ith sample and { 1,1}iy & # is its class label. The objective 
of SVMs is to find an optimal separating hyperplane that maximizes the margin 
between two classes in a high dimensional feature space into which the input 
vectors are mapped by a kernel function, as shown in Figure 5. The kernel func-
tion implicitly calculates a dot product in the feature space with all necessary 
computations performed in the input space. One advantage of it is that it can get 
linearly non-separable samples in the input space to be linearly separable in the 
feature space. 
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Figure 5. A linear separating hyperplane (the solid line in the right coordinates) in the feature space 
corresponding to a non-linear boundary (the dashed line in the left coordinates) in the input space. 
The data points in circles are support vectors (SVs). 
 

The decision function of the SVM classifier is 
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where the coefficients !i are solved in the interval [0, C] by a convex quadratic 
programming. C is a tradeoff between maximizing the margin and minimizing 
the empirical risks and can be specified for positive and negative samples re-
spectively in the case of unbalanced datasets. The radial basis function (RBF) 
kernel 2( , ) exp( )i j i jK )" # #x x x x  is popular for practical use due to its 
approximate behaviors to other kernels under certain conditions and the less 
number of parameters to be tuned (only C and ") [35]. 

3.4. Performance Measurement 

For a binary classification problem, let tp, fp, tn and fn denote the number of true 
positives, false positives, true negatives and false negatives respectively. The 
Matthews correlation coefficient (MCC) [36] incorporates all four prediction 
indexes into a single statistic to measure the performance of classifiers: 
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The MCC is a number in the interval [-1, 1], with 1 indicating completely cor-
rect classification, -1 indicating completely incorrect classification and 0 indicat-



ing no correlations between predictions and the true class labels. The MCC is 
superior to the accuracy which is defined as the proportion of correctly classified 
samples, especially when datasets are unbalanced, because the accuracy is 
dominated by the majority class and thus can be misleading. Therefore the MCC 
is employed in the cross-validation training process of SVMs. 

Sensitivity (SEN = tp / (tp + fn)) and precision (PRE = tp / (tp + fp)) are 
used as the performance measures for comparing pepReap with SEQUEST. 

3.5. Features Characterizing the Quality of Matches 

In the step of SVM scoring, we constructed some features from the matching 
matrix to characterize the quality of matches between peptides and spectra. The 
features fall into seven categories: outputs of rough scoring, total matched inten-
sities for various ion types, correlations bwtween matched ions, residue compo-
sition and properties of candidate peptides, statistics of cleavage sites, ratios and 
mass errors of matched peaks, and some other descriptive features such as 
missed proteolytic cleavage site and charge state. 

The measures for consecutive, complementary, and homologous ions are 
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respectively, for all It > 1, where It is the intensity of a matched peak in the 
matching matrix, and Tj is a set comprising all i

jT  with {cnsc,cmpl,homo}j & . 
The average matching error is calculated by 
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where M is the number of matching fragments and emzi and tmzi are the ob-
served and the theoretical m/z values of a predicted fragment respectively. 

Fragmentation patterns of peptides are influenced not only by collision en-
ergy of the tandem mass spectrometer but by physical and chemical properties 
(gas-phase basicity, hydrophobicity, etc.) of amino acid composition, as is ex-
plained by the mobile proton model [37]. Therefore we believe that such fea-
tures as the number of certain residues, the hydrophobicity of peptides, and the 



statistics of cleavage sites jointly provide better clues to describing the quality of 
matches. These statistics are normalized by the peptide length. 

4. Experiments 

4.1. Datasets 

The ion trap MS/MS spectra reported in Ref. 38 were used for our experiments. 
These spectra were divided into two datasets, A and B, according to the different 
concentration of two mixtures of 18 purified proteins with known sequences 
which were digested by trypsin. All the spectra were searched using SEQUEST 
against a database combining the human proteins with the 18 proteins; then the 
peptide identification results were validated manually. Consequently, there are 
totally 2054 spectra identified correctly with their peptide terminus consistent 
with the substrate specificity of trypsin. In our experiments, 731 validated iden-
tifications in dataset B were used for training the SVM scorer in pepReap and 
1323 validated identifications in dataset A were used for comparing pepReap 
with SEQUEST. 

4.2. Noise Reduction and Intensity Normalization 

To weaken the influence of noises on peptide identification and eliminate the 
diversities of total ion currents of different spectra, noise reduction and intensity 
normalization are performed. All the peaks lower than 2% intensity of the high-
est peak are removed and the intensities of the remaining peaks are normalized: 

 100Ni Oi Oj
j

I I I" $ %  (9) 

where INi is the normalized intensity and IOi is the original intensity. 

4.3. Protein Database and Search Parameters 

The protein database searched is a union of the SWISS-PROT protein database 
and the 18 known proteins. The search parameters used in pepReap and 
SEQUEST is: maximum number of missed cleavage sites: 2; tolerance of frag-
ment ions: 1.0 Da; tolerance of precursor: 3.0 Da; ion types: b, b++, b0, y, y++, y0; 
and enzyme: trypsin. 

4.4. Feature Selection 

A total of 56 features are extracted from each match between a spectrum and its 
corresponding candidate peptides. These features are scaled into the interval [0, 



1]. The best 20 features are selected by information gain ratio [39] on dataset B 
through cross validation, as listed in Table 2. 
 

Table 2. The top 20 features selected by information gain ratio. 
FEATURES GAIN RATIO FEATURES GAIN RATIO 

delta_rough_score 0.409 ± 0.096 missed_cleavage_site 0.045 ± 0.001 
rough_score 0.409 ± 0.096 total_intensity_b 0.044 ± 0.003 
match_ratio_intensity 0.274 ± 0.035 intensity_b 0.037 ± 0.001 
rank_rough_score 0.275 ± 0.001 average_match_error 0.032 ± 0.001 
intensity_y 0.156 ± 0.004 homologous_y 0.031 ± 0.004 
match_ratio_peak 0.160 ± 0.026 peptide_match_error 0.027 ± 0.001 
complementary_by 0.146 ± 0.013 peptide_mass 0.027 ± 0.001 
total_intensity_y 0.092 ± 0.003 number_HKR_pep 0.016 ± 0.000 
total_consecutive_y 0.088 ± 0.012 hydrophobicity_pep 0.012 ± 0.001 
total_consecutive_b 0.056 ± 0.001 clvgsite_median_b 0.012 ± 0.001 

4.5. Results 

A ranked list of 500 candidate peptides was first generated by rough scoring, 
whereby we observed that all correct peptide identifications ranked in the top ten 
except for four spectra in dataset A and two spectra in dataset B. The SVM 
scorer was trained and tested on the top ten rough-scoring results of dataset B 
and dataset A, respectively. LIBSVM, an implementation of SVMs, with the 
RBF kernel, was employed [40]. A peptide is regarded as the correct answer if 
its SVM prediction value is the highest and above a given threshold; otherwise, 
peptides are considered incorrect answers. Performance comparison between the 
pepReap algorithm using the SVM scorer and the SEQUEST using threshold 
validation criteria are shown in Table 3. 
 
Table 3. Performance comparison of pepReap and SEQUEST. 

pepReap SEQUEST(threshold2) 
Training Set (Dataset B) Test Set (Dataset A) Test Set (Dataset A) 

weight1 best C best " MCC SEN PRE SEN PRE 
  1:1 4.0000 0.03125 0.9212±0.0158 0.9106 0.9128 0.8715 a 0.9107 a 
10:1 0.0625 0.12500 0.9269±0.0177 0.9116 0.9204 0.5397 b 0.9420 b 
50:1 1.0000 0.12500 0.9300±0.0105 0.9175 0.9257 0.5548 c 0.9410 c 
      0.6757 d 0.9391 d 
Note: 1The weight is used to set the parameter C of class 1 and -1 to weight × C. 2The  commonly 
used threshold criteria for evaluating SEQUEST identification results are, (a) XCorr # 1.5, 2.0, 2.0 
[3], (b) "Cn # 0.1 and XCorr # 1.9, 2.2, 3.75 [26], (c) "Cn # 0.1 and XCorr # 1.8, 2.2, 3.7 [27], and 
(d) "Cn # 0.08 and XCorr # 2.0, 1.5, 3.3 [4], for +1, +2, +3 charged fully tryptic peptides, 
respectively. 
 

From Table 3, it can be seen that the high precision of SEQUEST is ob-
tained at the cost of a very low sensitivity. In contrast, pepReap achieves much 
higher sensitivity than SEQUEST with some insignificant loss of precision. 
Both measures tend to increase when higher weight ratios for positives and 
negatives are applied to the SVM scorer. 



5. Conclusions and Future Work 

We have presented a novel and promising peptide identification algorithm, 
named pepReap, based on support vector machines. The characteristics distin-
guishing the pepReap from other algorithms lie in the flexible use of an SVM 
classifier both as the scoring function and the validation module and compre-
hensive features we used for measuring the match between a spectrum and a 
peptide. Preliminary experimental results on a dataset demonstrate that the 
pepReap algorithm can achieve much higher identification sensitivity without 
significant loss in identification precision compared with the popular SEQUEST 
algorithm that uses simple threshold validation criteria. A prerequisite of the 
pepReap algorithm is a set of mass spectra with known peptide sequences. Such 
training dataset for a given instrument can be obtained by first applying an inde-
pendent identification algorithm to the spectra to be identified and then picking 
out high-confidence identifications. Our future work includes exploiting more 
informative features based on improved fragmentation models, testing the 
pepReap algorithm on more datasets and comparing it with sophisticated valida-
tion algorithms coupled to the SEQUEST (e.g. algorithms in Ref. [28], [32]). 
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