
A Point-Process Model for Rapid Identification of Post-Translational Modifications

Bo Yan, Tong Zhou, Peng Wang, Zhijie Liu, Vincent A. Emanuele II, Victor Olman, and
Ying Xu

Pacific Symposium on Biocomputing 11:327-338(2006)



A POINT-PROCESS MODEL FOR RAPID IDENTIFICATION OF 
POST-TRANSLATIONAL MODIFICATIONS 

BO YAN1, TONG ZHOU2, PENG WANG1, ZHIJIE LIU1, VINCENT A. EMANUELE 
II2, VICTOR OLMAN1, YING XU1

1Department of Biochemical and Molecular Biology, University of Georgia, GA, USA 
2School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, USA 

Post-translational modifications (PTMs) are very important to biological function, and 
yet are notoriously difficult to detect and identify, especially in a high-throughput manner. 
Most of the existing approaches rely on exhaustive searches which are highly time 
consuming and thus are currently limited to handling of a few types of PTMs. In this 
paper, we present a point-process model that aims to find the optimal mass shifts to 
maximize the spectra alignment between an experimental MS/MS spectrum and a 
candidate theoretical spectrum, through cross-correlation calculation, yields a rapid 
search for all types of PTMs in a blind mode, i.e., without giving the types of the 
searching PTMs in advance. The test results show that our new approach’s performance 
is comparable to or better than the other blind search methods, but is more efficient 
computationally and simpler in its concept. 

1.   Introduction 

Post-translational modifications (PTMs) are chemical alterations in protein 
structures that change the properties of protein by proteolytic cleavage or by 
modification of amino acids [1]. They play key roles in many important cellular 
functions and regulatory processes. However, accurate identification of PTMs 
through analysis of high-throughput MS/MS data represents a highly 
challenging problem [2, 3]. The main difficulty lies in that the occurrences of 
PTMs change the molecular weights and the fragmentation patterns of peptides, 
which make them difficult to detect using the classical MS/MS data 
interpretation methods. Currently, great amount of tandem mass spectra, 
possibly ranging from tens of thousands to millions of mass spectra, are being 
collected daily across many proteomic centers and labs for functional studies of 
proteins. However often only a small fraction of these data could be successfully 
interpreted using popular analysis tools such as Sequest [4], Mascot [5], PepFrag 
[6] and ProteinProspector [7], etc. This can be attributed to several factors, 
including technical reasons such as poor peptide fragmentation, contaminants 



 

and others. Among the biological reasons, PTMs are generally believed to be a 
major contributor [8].  

Theoretically all possible PTMs can be identified by exhaustively searching 
through all types of (known) PTMs and their combinations. However, such a 
strategy is very time consuming; only a few types and a very small number of 
PTMs can be taken into account in real applications [5, 9, 10]. While recently 
Tanner et al. [11] reported a fast PTMs search method which uses peptide 
sequence tags [12, 13] as efficient filters to reduce the size of the database by a 
few orders of magnitude, this algorithm also has to “guess” the types of PTMs in 
advance and the time complexity depends exponentially on the number of 
allowed PTM types. On the other hand, most de novo sequencing algorithms can 
be modified to identify PTMs by regarding the PTMs as pseudo amino acids in 
additional to the 20 basic ones [14-22]. However, the requirement of relative 
high quality spectra such as perfect fragmentations, has seriously limited their 
applications. 

Recently, an approach called blind PTM identification has been proposed 
by Pevzner’s group [23], which allows to search for all possible types of PTMs 
without looking up a set of pre-specified PTMs. They reported an interesting 
dynamic programming approach to performing the optimal spectral alignment. 
The idea is that each peak segment in a theoretical spectrum is allowed to shift 
by one or more “appropriate” values, such that the resulting spectrum optimally 
matches the experimental spectrum, and from which PTMs and their locations 
could be derived [23]. This method could also reveal some still unknown 
modifications. While encouraging results have been documented, the demand 
for computing power to obtain the optimal spectral alignment may be too high to 
be practically applicable.  

In this paper, we describe a point-process model [24], a time-delay 
estimation framework, to blindly search for all possible PTMs in an efficient 
manner. Through analyzing the cross correlation function between a query 
spectrum and a candidate theoretical spectrum from peptide database, as 
modeled by two point processes, we are able to detect all good local and global 
alignments between the two processes at once straightforwardly, and thus to 
infer the types and locations of PTMs efficiently. Spectral similarity is measured 
by the optimal common mass peaks shared between two spectra, short peptide 
segments due to missing peaks or resulting from PTMs thus can be tolerated. 

We have implemented the algorithms and tested their performance on both 
simulated and real experimental spectra. Our approach is able to conduct blind 
PTMs search in a few seconds. For simulated spectra with 0, 1, 2 and 3 PTMs, it 
achieves 100%, 97%, 86% and 75% success rates respectively. The performance 



  

on experimental spectra is comparable with or better than Tsur et al.’s result 
[23].  

2.   Algorithm 

2.1.    A point process model  

We model a tandem mass spectrum by a point process [24]: 
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where  is a set of mass peak locations with N peaks and }{ it )(t$  is the 
Kronecker delta function [25]. It follows easily that 
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To deal with PTMs, we assume, without loss of generality, that  can be 
clustered into K+1 groups (to model K mass shifts) such that 
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and the resulting PTM spectrum is ! "k k0
Note that here we have separated the spectral peaks into K+1 different 

groups  according to their shift patterns in light of PTMs. 
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In practice, 
k
is the number of the mass peaks shifted by one PTM, which 

is often much larger than 1. Therefore, the largest K+1 values of 
N

)()xyc  will be 
at , i.e.,  correspond to K mass shifts introduced by multiple PTMs 
(and their combinations), plus the local alignment between the unaffected 
portions of the two spectra. In other words, if a candidate peptide is a good 
match and no PTM exists in the query spectrum, the maximum of 

K
kk 0}{ ",")

)()xyc  shall 
occur at 00 -,")  (the rule used in Sequest [4]). On the other hand, if a 
candidate is the correct hit and the query peptide contains PTMs, the highest 
peaks of )()xyc  have a very good chance to be the right PTMs (and/or their 
combinations)1. This forms the basis of our approach to inferring PTMs. 

2.2.   Implementation  

We have implemented two modes to perform blind PTMs search, (a) a 
homology search mode and (b) a strict match mode. We first calculate the cross-
correlations between the query experimental spectrum and the theoretical one of 
each candidate from a peptide database, from which we feasibly obtain all non-
zero )()xyc . Obviously those )()xyc  values contain all possible mass shifts to 
optimize the spectral alignment. The homology search mode reports the best hit 
which has the best spectral alignment with a set of optimal mass shifts. The 
strict match mode further requires that the hit peptide’s molecular weight, or its 
molecular weight after modifications (if there are any PTMs), must be equal to 
that of the query peptide (at some tolerance). The search procedure is only 
applied to the candidates whose parent mass is at most , Da away from the 
query peptide (in this paper, , is set to 160 Da which is large enough to cover 
three typical PTMs). 

Homology search mode:  For each spectral alignment between the query 
spectrum and a peptide candidate, we record and the three additional 
largest values of 

)0(xyc
)()xyc  at 0.) , say )( 1,xyc , )( 2,xyc and )( 3,xyc  . To find the 

best hits from our target database, we screen two best candidates, one with the 
highest value of , and the other with the highest value of )0(xyc )()0( 1,( xyxy cc . 
We first check the best hit with the highest value of . If this value is 
higher than a threshold, say 0.5, we consider there is a good match between the 
query and the candidate, and no PTM exists. Otherwise, either the correct 
peptide is not in the database or the query peptide has been modified. Then we 
check the best hit with the highest value of 

)0(xyc

)()0( 1,( xyxy cc . If this value is 

                                                           
1 We have observed in the dataset MOD1 (2620 experimental spectra with one PTM, see Results) 

that for 96.30%, 2.48% and 0.38%  of cases, the PTMs correspond to the highest, second highest 
and third highest peaks of  cxy()/),  respectively. 



  

higher than a threshold, say 0.7, we consider that there is a good match between 
the query spectrum and the candidate peptide if the candidate is modified by , 
and we regard ,  as the right PTM.  

1,

1

One might consider using )()()0( 21 ,(,( xyxyxy ccc  (and so on) as the 
criterion. Our test results show that using )()0( 1,( xyxy cc  has a better 
performance, even for the cases with more than one PTM. One possible reason 
is that no matter how many PTMs exist, the first highest peaks of )()xyc  ( 0.) ) 
has the largest probability to be one of the right PTMs or of their combinations. 
However it may not hold for the rest highest peaks of )()xyc . 

Strict match mode: This mode uses a parameter K to guess the number of 
PTMs.  

For K=0, we implement it as a simple version of Sequest [4]. 
For K=1 (i.e., with one PTM), we report the top candidate with a , such that 

01,## || PWPWexp
 and )()0( ,( xyxy cc  is maximized, where , represents the 

mass of a possible PTM which could be any value ranging from 0 to 160 Da in 
this paper. PWexp and PW are the molecular weights of the query and the 
candidate peptides, respectively, and 0 is their maximal difference allowed after 
modification (4 Da is used).  

For K=2, we report the best candidate with a pair },{ ji ,,  such that 

01,(,## |)(| exp jiPWPW  and )()()()0( jixyjxyixyxy cccc ,(,(,(,(  is 
maximized. Where 

i,  and 
j,  ( 0.,., ji

) represent the masses of two 
possible PTMs, respectively.  

Since the relationship! "k kxy0
 always holds, the individual signal 

(peak) at  will diminish as K increases and will ultimately disappear into 
the background noise as K increases beyond certain value. We have found that 
strict match model is unsuitable to deal with the case with more than two PTMs. 
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K
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2.3.   Determination of PTM positions 

The above calculation procedure itself does not provide information about the 
location of PTMs, if there are any. A tracing back procedure has been developed 
to locate the actual location of each predicted PTM based on the starts of peak 
shifts. Further details of this algorithm are omitted in this extended abstract. 

2.4.   Statistical significance measurement 

We use the following z-score to measure the significance of the best hit,   

raw_score

raw_scoreraw_score
scorez

2
34#

"#  



 

where raw_score represents a xyc score , <raw_score> and 
raw_score2 are the mean 

or standard deviation of the raw_scores derived from all peptide candidates. 
We consider that a hit is significant if the hit has a high z-score. We found 

that in general, a correct peptide and its homologs have both high raw_score and 
z-score. To further classify them, we introduce a $-score which is the difference 
in raw_score between the best two matches (equivalent to cn,  used in Sequest 
[4]). For a best hit with both high raw_score and z-score, if it has a large $-score 
as well, we consider that the hit could be the correct peptide; otherwise, the hit is 
predicted to be a homolog of the correct peptide. 

3.   Results 

Annotated tandem mass spectra with known PTMs are currently very limited in 
proteomics community. In this paper, we have tested our approach on three 
datasets: a large set of simulated spectra with PTMs, a set of annotated 
experimental spectra with added PTMs, and a small set of annotated 
experimental spectra with real PTMs. 

3.1.   Datasets 

SIM_SET:  Consisting of 4 subsets of simulated spectra, with 0, 1, 2, or 3 
PTMs respectively. Each subset contains 10,000 spectra. The peptides are 
randomly chosen from yeast peptide database which is tryptically digested 
(allowed up to 2 missing cleavages). The lengths of chosen peptides are required 
to be at least 6, 8, 10, and 12 aa’s for cases of 0, 1, 2 and 3 PTMs, respectively. 

 The set of simulated PTMs is acetylation of Lysine (+42), hydroxylation of 
Proline (+16), methylation of Aspartic acid or Glutamic acid (+14), oxidation of 
Methionine (+16), and phosphorylation of Serine (+80).  

MOD_SET:  Annotated high-quality yeast mass spectra from the Open 
Proteomics Database [26] (charge 2, Sequest Xcorr score * 2.5). We constructed 
three subsets of modified spectra by adding 0, 1 or 2 PTMs selected from above 
PTM pool. We shift the peaks (here b, y ions only) of a spectrum to the selected 
modifications. If certain peaks are absent in the spectrum, we just skip these 
missing peaks. For the three subsets, we got 2657, 2620 and 2422 spectra with 0, 
1, 2 PTMs respectively.  

EXP_SET:  47 annotated high-quality spectra with real PTMs from Strader 
et al. [27]. 42 out of 47 are associated with one PTM, and most of them are 
oxidation of Methionine while a few are methylation of Lysine or Arginine. The 
47 spectra are from 26 peptides of R. Palustris. We perform blind search against 
yeast peptide database mixed up with the 26 peptide sequences of R. Palustris. 



  

All the experimental mass spectra were LCQ data which had a relative low 
mass resolution. We run a data preprocessing procedure as described in 
PepNovo [26] to filter tiny noise peaks and isotopic peaks. For cross-correlation 
calculation, we regard peak shifts in the range of )5.0,5.0( (,#,  as having the 
same nominal shift ,, where , is an integer. However, our approach doesn’t 
require that , is an integer. 

3.2.    Search results on simulated spectra 

Table 1 shows the blind search results on the SIM_SET. Both search modes 
obtained a similar performance: for 0, 1, 2 and 3 PTMs, we got 100%, 97%, 
85% and 72% of the spectra correctly identified, respectively. We consider a 
(best) hit as correct only if it matches the original peptide sequence exactly.  

Table 1: Search results against the simulated spectra by homology search mode (a) and 
by strict match mode (b). SIMk refers to the sub datasets with k PTMs. Values at rank i 
are the percentages of the correct candidates reported at Top i. CPU is the average 
amount of time the program needs to analyze a spectrum (on a PC with a 2.8GHz CPU). 

rank 1 rank 2 rank 3 rank 4 rank 5 CPU(s)
SIM0 100% 0 0 0 0 1.516
SIM1 97.45% 1.53% 0.57% 0.21% 0.10% 1.563
SIM2 85.52% 3.83% 1.85% 1.15% 0.91% 1.467
SIM3 72.04% 7.12% 3.16% 1.85% 1.33% 1.556

 
(a) 

 
 
 rank 1 rank 2 rank 3 rank 4 rank 5 CPU(s)

SIM0 100% 0 0 0 0 0.764
SIM1 97.90% 1.39% 0.39% 0.17% 0.03% 1.321
SIM2 85.60% 5.55% 2.10% 1.25% 0.66% 1.532

 (b) 

 
 

3.3.   Search results on experimental spectra 

Table 2 lists the search results against the MOD_SET. For spectra without 
PTMs, both blind search modes achieved 99% success rate, very close to the 
performance of Sequest [4] (note that the experimental spectra were annotated 
by Sequest). For spectra with one or two PTMs, the identification rates were 
relative lower. However, we found that there were certain correct candidates not 
reported exactly at the number one hit but within top five hits. If we regard them 
correct as well, then homology search mode achieved 65% and 20% success 
rates for spectra with one or two PTMs respectively, while strict match mode 
achieved 81% and 17% accuracies respectively. These results are comparable to 
or even better than Tsur et al.’s dynamic programming approach, which 
obtained 57.3% and 15.6% accuracies for spectra with one or two PTMs 
respectively  [23]. 



 

Table 2: Search results against the experimental spectra by homology search mode (a) 
and by strict match mode (b). MODk refers to the datasets with k PTMs. Total column is 
the percentage of the correct candidates reported within rank 5 in the hit list. *Search 
results against the dataset MOD2 by assuming peptides containing one PTM. 

rank 1 rank 2 rank 3 rank 4 rank 5 total CPU(s)
MOD0 99.28% 0.41% 0.08% 0.04% 0 99.81% 0.823
MOD1 44.39% 9.77% 5.04% 3.05% 2.40% 64.65% 1.563
MOD2 11.44% 3.51% 2.31% 1.16% 1.32% 19.74% 1.604

 
(a) 

 
 
 rank 1 rank 2 rank 3 rank 4 rank 5 total CPU(s)

  MOD0 99.21% 0.56% 0.04% 0.08% 0 99.89% 0.765
  MOD1 60.38% 11.95% 4.31% 2.52% 2.01% 81.17% 1.467
  MOD2 5.86% 3.43% 2.56% 2.52% 2.27% 16.64% 1.645
  MOD2* 16.23% 5.08% 2.48% 1.65% 1.61% 27.05% 1.523

 (b) 

 
 
 
The technical reason for that strict match mode havs a much lower success rate 
for two PTMs may lie in that, finding a pair },{ ji ,,  with maximization of  

)()()()0( jixyjxyixyxy cccc ,(,(,(,(  might not be a good criterion to screen 
the correct candidate. Since not all the four signals can be observed 
simultaneously in some cases (depending on the positions of the two PTMs). 
Thus we searched MOD2 again by assuming k=1 (equivalent to maximizing 

), a significant improvement was then achieved –– 16% of 
spectra were identified correctly as top 1 and 27% within top 5. 

)()0( jixyxy cc ,(,(

Test results on the 47 experimental spectra with real PTMs were similar to 
those obtained for the experimental spectra with added PTMs. Since most of 
spectra have one PTM, only k=1 was searched by strict match mode. We got 27 
spectra (i.e., 57.45% of spectra) identified correctly (ranked at top 1) by strict 
match mode and 24 spectra (i.e., 51.06%) correctly by homology search mode. 

3.4.   Hits of homologs 

We have observed that some of the top hits have both relatively high z-score and 
raw_score. However they don’t match the original peptide sequence exactly. We 
found that many of them are the homologs of the original peptides which have 
very similar sequences. For example, for the query peptide 
DGKYDLDFKNpESDK (where the lower case letter p indicates hydroxylation 
of Proline), our homology search mode reported a very similar peptide 
DGKYDLDFKNPNSDK with one mutation pE12PN. Table 3 lists some 
examples of the top one hits being the homologs of the query peptides. We 
estimated that ~20% of the poorly performed results by homology search mode 
are due to the reason of homologous proteins, which should be considered as 
partially correct. In Table 3, we also listed several important features of the 
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correct candidates. As we have expected that the vast majority of the inferred 
optimal modifications for the correct candidates correspond to the correct PTM.  

4.   Discussion and Conclusion 

We have presented a point-process model for rapid blind PTMs search without 
the need of a list of pre-specified PTMs. Our test results show that its 
performance is comparable to or better than Tsur et al.’s dynamic programming 
approach [23].  Since both approaches aim to find a set of optimal mass shifts to 
maximize the spectral alignment, it is not surprising that they have a similar 
blind search performance. However, our algorithm is able to feasibly obtain all 
possible mass shifts (naturally includes the optimal mass shifts) using one round 
of cross-correlation calculation, thus it is conceptually simple and more 
computationally efficient than otheirs. Moreover, the computing time of our 
algorithm is independent of the number of PTMs, one major merit compared to 
most of the existing approaches, for which the computing time grows 
exponentially at the size of the set of pre-specified PTMs. We also implemented 
a homology search mode which is able to find the homologs of a query peptide. 
This feature is also found to be useful in mass spectra interpretation. 
Furthermore, since the similarity between two spectra is measured by the shared 
common mass peaks, our algorithm can tolerate short peptide segments resulted 
from multiple PTMs or missing peaks. 

Cross correlation function has long been used to measure the similarity 
between two time-dependent signals. Both our approach and Sequest [4, 9] use it 
to measure the spectral similarity between two spectra.  However our approach 
is significantly different from that employed in Sequest. First, Sequest performs 
an exhaustive search to identify PTMs for which a set of pre-specified PTMs 
must be given in advance. Second, Sequest considers the cross correlation value 
at ) = 0 only. If the experimental spectrum contains PTMs, Sequest enumerates 
all possible PTM modifications for each candidate peptide, shifts mass peaks in 
a theoretical spectrum for each PTM and then compares the modified theoretical 
spectrum with the query spectrum. Third, Sequest doesn’t remove isotopic peaks 
before spectral comparison. Instead, it adds artificial satellite peaks in theoretical 
spectrum to mimic the experimental spectrum which unnecessarily increases the 
computing time, and even worse it might increase the false positive 
identification rate. Our approach has extended the overall functionality of 
Sequest while maintaining its sensitivity. 

In this paper, our algorithm has only considered b and y ions with +1 charge 
state for spectral alignment, thus it is suitable to handle MS/MS with +1 and +2 



  

charge states, but unsuitable for spectra with +3 charge state for which the 
daughter ions with +1 and +2 charge states are tangled together. A simple 
solution could be to consider b and y ions with both +1 and +2 charge states 
together. However, an elaborative model should be developed to deal with this 
case in the future. In addition, we didn’t explicitly utilize peak intensities and 
the number of consecutive peaks, etc. in our work. A more sophisticated scoring 
system which incorporates these features may further increase the success rate. 
Note that considering neutral mass losses doesn’t improve the performance of 
pattern match, since contaminants generally have the same neutral mass loss 
patterns as well [28].  
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